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Introduction

The goal of this work is to give a motivated proof of an important theorem in the theory of el-
liptic curves over finite fields. This theorem, due to John T. Tate ([Tat66]) in its original form,
was proven more generally for abelian varieties using difficult algebro-geometric machinery.
We show, following a suggestion of Tate himself1, that in the special case of dimension one it
is possible to get a very close result using only classical tools. Specifically, we approach the
theory of elliptic curves from the Zariski-Weil point of view of varieties, circumventing the
need for schemes. The deepest fact from algebraic geometry proper that we shall require is
the Riemann-Roch theorem. Most of our tools are standard and can be found in any one of
the usual sources, such as J. Silverman’s landmark text [Sil09]. We supplement this typical
arsenal with a now superseded – but, crucially, accessible by our methods – result by Deuring
([Deu41]) concerning the lifting of endomorphisms from positive to zero characteristic. This
theorem requires in turn some analytic ingredients in order to establish a certain integrality
result. Namely, we will exploit well-known computations with modular forms to show that
the j-invariants of two elliptic curves connected by a nonconstant isogeny satisfy a polynomial
relation with integer coefficents. Although this last result also follows from more sophis-
ticated methods, we stress that all our arguments use little more than what is considered
‘basic’ elliptic curve theory. Our work is laid down in three chapters. In the first, we give
the primary definitions and recall the most important facts about the objects we shall be
dealing with. We introduce elliptic curves along with their natural group structure, isogenies
as the corresponding maps between them, and discuss how duality ties into the structure
of endomorphism rings. The second chapter specialises to the realm of finite fields, where
several unique phenomena such as the Frobenius and supersingularity emerge. We define the
Tate module and state the homonimous theorem, along with a memorable consequence that
helps reinforce the importance of said result: two elliptic curves over a finite field admit a
nontrivial isogeny between them if and only if they have the same number of points over
that field. Finally, in the last chapter, we briefly switch to the analytic point of view and
outline the tools we need to borrow from the complex theory before diving into the proof of
the lifting theorem. After this detour we deliver on our promise by giving a simple proof of
Tate’s theorem along with its corollary.

1“In case A′ and A′′ are elliptic curves this theorem is an easy consequence of results of Deuring, as
Mumford pointed out to me four years ago.”
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Euclid alone has looked on Beauty bare.
Let all who prate of Beauty hold their peace,

And lay them prone upon the earth and cease

To ponder on themselves, the while they stare

At nothing, intricately drawn nowhere

In shapes of shifting lineage; let geese

Gabble and hiss, but heroes seek release
From dusty bondage into luminous air.

O blinding hour, O holy, terrible day,

When first the shaft into his vision shone

Of light anatomized! Euclid alone

Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,

Have heard her massive sandal set on stone.

Edna St. Vincent Millay



CHAPTER 1
Background Results on Elliptic

Curves

1.1 Basics of curves
To begin our journey, we first recall some basic algebro-geometric notions. All results in
this chapter are standard and most will be cited without proof. Where a reference is not
provided, the interested reader may consult any one of the usual texts, such as [Mum99]. The
vast majority of our material on elliptic curves, in this as well as the subsequent chapters, is
taken from [Sil09].
This work aims to use only (or mostly) classical tools. We shall therefore refrain from employ-
ing scheme theory except at times in passing remark where we feel it can offer an alternative
point of view for the trained reader.
The term “curve” will be always tacitly taken to mean “smooth geometrically connected pro-
jective curve” unless otherwise stated. We now recollect some standard definitions and facts
we shall freely employ in the sequel.

Definition 1.1. For a divisor D on the curve C, denote by H0(D) the K-vector space

{f ∈ K(C) : divf +D ≥ 0}

and by h0(D) its dimension.

Proposition 1.2. Let ω be a regular differential form on C. There is a natural way to
associate to ω a divisor KC such that any other choice of differential form yields a linearly
equivalent divisor. The equivalence of class of KC is known as the canonical class of C.

Definition 1.3. Let C be a curve and KC a divisor in its canonical class. The (geometric)
genus1 of C is defined to be h0(KC).

Theorem 1.4 (Riemann-Roch). Let C be a curve of genus g, D any divisor on C and KC

a representative of the canonical class. Then

h0(D)− h0(KC −D) = degD − g + 1.

1This is a rather ‘cheap’ definition - one should instead work with the arithmetic genus h1(OC), but
discussing this would lead us too far astray.
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Proof. The standard proof uses sheaf cohomology and may be found in any suitably advanced
text in algebraic geometry. For an alternative proof devised by Tate involving a clever analysis
of the adèle ring of the function field of C see [Tat68].

The importance of this theorem cannot be overstated. As one of its many consequences,
setting D = KC above yields

Corollary 1.5. degKC = 2g − 2.

1.2 Elliptic curves and the group law
We now come to defining the central object of our study:

Definition 1.6. An elliptic curve over K is a curve E/K of genus 1 together with a distin-
guished point O ∈ E(K).

Remark 1.7. It is important to include some K-point O in the data of the elliptic curve, even
though we shall see that it does not actually matter which specific point is chosen. The reason
for doing so is that, as an abstract curve, E might be defined over K without possessing a
single K-rational point, and we do not wish to consider such a curve as being an elliptic curve
over K.
The reader might be wondering what is so special about genus 1. There are many ways to
spin this tale, but a simple way to shed some light is as follows. Mathematicians of the past
became interested in the geometry of curves while trying to solve equations like x3 + y3 = z3

or x4 + y4 = z2 over various number systems, most notably the rationals. The simplest
case, that of quadratic equations, is easy to handle: either there are no solutions, or finding
one solution allows one to produce all the others via a straightforward geometric procedure.
Indeed, choosing one smooth point and drawing lines through it, it is not difficult to show that
each such line intersects the curve at exactly two points (possibly counted with multiplicity).
Thus, varying the angle, we get a projective line’s worth of points on the curve - we have just
shown that all nonsingular conics have genus 0. The next simplest case is that of (smooth)
plane cubics. An analogous projection argument shows

Theorem 1.8 (Genus-Degree Formula). Let C be a smooth plane curve of degree n and genus
g. Then

g =
(n− 1)(n− 2)

2

Therefore our cubic has genus 1. While we cannot simply use the knowledge of one point
to find all the others, we can use two points to find a third, since the generic line intersects
the curve in three points (once more, care must be taken to make this vague statement
formally correct). The keen reader may have noted that such a ‘two in, one out’ procedure is
reminiscent of a group law – and indeed, we will soon see how a suitable modification equips
the cubic with the structure of an abelian group defined purely using geometry. This structure
is, among curves, entirely peculiar to the realm of genus 1, and is the chief reason why it is
so worthwile studying.
Before turning to the construction of the group law, we need to find suitable models for the
so-far abstract elliptic curves. Strictly speaking, they are not necessary to show the existence
of the group structure on the curve; however, they allow the addition of two points to be
described concretely as well as unlocking other theoretical results that shall be discussed
later. We have stated above that any smooth plane cubic is a genus 1 curve, so that selecting
one of its K-points makes it into an elliptic curve. Somewhat remarkably, the converse also
holds: every elliptic curve may be written as a plane cubic in a special form.
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Theorem 1.9 (Existence of the Weierstraß form). Any elliptic curve (E/K, O) is isomorphic
over K to the projective completion of the affine curve given by an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

with the isomorphism sending O to the unique point at infinity of the latter curve. Moreover
if charK 6= 2 the equation may be taken to be of the form

y2 = x3 + b2x
2 + b4x+ b6 (1.2)

and if furthermore charK 6= 3 the equation may be taken to be of the form

y2 = x3 + c4x+ c6. (1.3)

Proof sketch. Using Theorem 1.4 we compute

h0(mO) = m

In particular no function on E has a single simple pole at O. This implies that there exist
functions x and y whose pole divisors are 2(O) and 3(O) respectively. Now the divisor 3(O)
is very ample, so it gives an embedding E ↪→ P2K. On the other hand, we can easily produce
seven elements of the six-dimensional space H0(6O), namely y2, xy, y, x3, x2, x and 1. By
dimension count there must be a linear dependence among them, which cuts out the desired
equation for the embedding in the plane. The reduction to the two simpler forms is elementary
algebraic manipulation.

We are now ready to illustrate the group structure on an elliptic curve.

Construction 1.10. Let E/K be an elliptic curve embedded as a smooth cubic in the plane
(possibly, but not necessarily, in Weierstraß form) with distinguished point O. Define a map

m : E(K)× E(K) −→ E(K)

as follows: let P,Q be not necessarily distinct points on E. There is a unique line in the
plane whose intersection with the curve is given, as a divisor, by (P ) + (Q) + (R) where R is
some third point on E, possibly coinciding with P or Q. We can identify this line as ‘the line
through P and Q’ with the caveat that when P = Q it should be taken to mean ‘the tangent
line to the curve at P ’. The same procedure is now applied with R and O in place of P and
Q, yielding a new point S. Finally, we set

P +Q
def
= m(P,Q) = S.

For later purposes we also denote by

i : E(K) −→ E(K)

the map given by the second step in the previous definition, that is, by sending P to the third
point on the line through P and O.

It is clear that the above operation is commutative. With more work, one establishes the
following

Theorem 1.11.

1. (E, +) is an abelian group whose identity element is O and with inverses given by i.
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2. m and i are morphisms of varieties, making E into an algebraic group.

3. The structure of algebraic group is independent of the choice of identity point and
embedding, in the sense that another choice for these data yields isomorphic groups (via
an algebraic isomorphism).

Remark 1.12. For any field extension L/K and any P,Q ∈ E(L) the line through them admits
a parametric equation with coefficients in L by high-school algebra. Substituting this equation
into the equation for E gives a cubic polynomial with coefficients in L, two of whose roots
– corresponding to P and Q – are known to lie in L. Therefore the third intersection point
also belongs to E(L). A similar argument shows the same to be true in the limit case P = Q.
This implies that E(L) is a subgroup of E(L), a fact that will turn out to be important later.
Let us delve a little deeper into the last statement of the above theorem. Defining addition
in terms of intersections with lines is somewhat unsatisfactory - it requires fixing a plane
embedding of E even though a posteriori said choice makes no difference. One would hope
for an intrinsic construction depending solely on the abstract geometry of E.

Construction 1.13. Let (E,O) be as usual. Given points P,Q on E consider the divisor
D = (P ) + (Q) − (O) of degree 1. By Theorem 1.4 there is, up to a scalar factor, a unique
rational f such that divf +D ≥ 0. Counting degrees, we see that the left hand side must be
an effective divisor of degree 1, i.e. a point R of E. We define the result of P +Q to be R.

Checking that the two provided constructions result in the same group structure amounts to
proving

Proposition 1.14. The map

E −→ Pic0(E)

P 7−→ [(P )− (O)]

is a group isomorphism.

The inverse morphism is given by a procedure analogous to our second construction above.
Remark 1.15. With more technology it is possible to describe the group law even more con-
cisely. The choice of a point O ∈ E(K) gives rise to the Jacobian embedding

E ↪−→ Jac(E)

Since the genus of E equals dim Jac(E) = 1 the embedding is in fact an isomorphism of
varieties, enabling us to transport the addition back to the original curve. This also explains
Remark 1.7: while the Jacobian itself is defined over the same field as E, the embedding may
not be. We shall not pursue this approach further because defining Jacobians over arbitrary
fields is rather cumbersome.
Henceforth we shall suppress explicit mention of O unless required. We will also take the
liberty to denote the identity point of any elliptic curve by O wherever doing so does not
cause confusion.

1.3 Isogenies
One of the overarching themes in mathematics is that a good theory should be built up by
identifying suitable objects and natural maps between them. We have seen that elliptic curves
possess a dual nature of geometric and algebraic objects, so we are motivated to investigate
the corresponding types of map:
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Definition 1.16. An isogeny between two elliptic curves E1, E2 is a map

E1 −→ E2

which is simultaneously a morphism of varieties and groups.
We say that E1 is isogenous to E2 if there exists a nonconstant isogeny from E1 to E2.

It follows from the general theory of curves that an isogeny is either constant or surjective,
and in the latter case all its fibres are finite of size bounded by its degree.
It is a remarkable fact that the definition of an isogeny is equivalent to a seemingly much
weaker property:

Theorem 1.17. Any morphism of varieties between elliptic curves mapping the identity to
the identity is an isogeny

Proof idea. The core of the proof is to establish the following commutative diagram:

E1 Pic0(E1)

E2 Pic0(E2)

∼

ϕ ϕ∗

∼

where the map on the right is given by functoriality of Pic0.

We have decided to highlight the commutative square above because it will be useful in the
future and also for its conceptual significance. Another functorial correspondence which is
crucial for our development is that given by function fields:

Theorem 1.18 (Curve-Field correspondence). Let K be a field. The functor K(·) sending a
curve C/K to its field K(C) of rational functions with coefficients in K is a (contravariant)
equivalence between the categories of curves over K and field extensions2 L of K of transcen-
dence degree 1 such that K is algebraically closed in L. If a map φ : C1 → C2 is nonconstant
(so as to have a well-defined degree) its degree equals the field-theoretic degree of the extension
K(C2)/φ

∗K(C1)

This motivates the following

Definition 1.19. If the field extension corresponding to an isogeny φ : E1 → E2 has a certain
property (e.g. is separable, finite, Galois…) we say φ has the same property.

In particular great care will have to be placed in dealing with separability; because it is
a phenomenon exclusive to positive characteristic it does not arise in the classical theory of
curves over C (or, what amounts to the same thing, algebraically closed fields of characteristic
zero). Therefore we will have to modify some results to account for this, and always be wary
of the applicability of a line of thought guided by characteristic zero intuition. As an example,
the well-known Riemann-Hurwitz formula only holds in the general setting for separable maps
of curves.
A useful criterion for detecting separability is the following. Recall that, by Theorem 1.4,
degKE = 0 for an elliptic curve E. Using explicit charts (such as the ones given by a
Weierstraß equation) one can show more: in fact, for a nonzero regular differential form ω
(which is unique up to a scalar factor), divω = 0. From this fact it is not hard to deduce

2Caveat: we must include the 0 morphism of rings as a valid map of K-fields to account for constant
morphisms of curves
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Proposition 1.20. For a point P on E denote by τP the translation-by-P map, i.e.
Q 7−→ Q+ P . Then

τP
∗ω = ω

In the light of the above proposition we will sometimes refer to ω as an invariant differential
form. The interplay between forms and isogenies is now summarised by

Theorem 1.21. Let ω′ and ω be invariant differential forms on E′ and E respectively. Also,
let φ : E′ −→ E be an isogeny.

1. φ∗ω = aω′ for some a ∈ K. This yields a map φ 7−→ aϕ.

2. If ψ : E′ −→ E is another isogeny then

aϕ+ψ = aϕ + aψ.

3. φ is separable if and only if aϕ 6= 0.

Before moving on we mention a technical statement that will be needed at a later stage,
namely, the existence of quotients by finite subgroups.

Theorem 1.22. Let E/K be an elliptic curve and H ⊂ E(K) a finite subgroup. There exist
an elliptic curve E′/K, unique up to isomorphism, and a separable isogeny φ : E −→ E′ such
that kerφ = H.

1.4 Dual isogenies and endomorphisms
So far we have considered the covariant mapping as in Theorem 1.17. However an isogeny
also induces a map in the opposite direction

E2 Pic0(E2) Pic0(E1) E1
∼ ϕ∗ ∼

given by pullback of divisors. The composite map φ̂ has, a priori, no reason to be more than
a map of sets. Surprisingly, much more is true:

Theorem 1.23. Let φ : E1 −→ E2 be a nonconstant isogeny.

1. The map φ̂ is an isogeny satisfying

φ ◦ φ̂ = φ̂ ◦ φ = [degφ]

and it is uniquely determined by this property.

2. If ψ : E2 −→ E3 is another isogeny then

φ̂ ◦ ψ = ψ̂ ◦ φ̂.

3. If ψ : E1 −→ E2 is another isogeny then

φ̂+ ψ = φ̂+ ψ̂.

4. deg φ̂ = degφ and ̂̂φ = φ. Furthermore, for an integer m, [̂m] = [m], therefore
deg [m] = m2
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Definition 1.24. We call φ̂ the dual isogeny of φ. We also set 0̂ = 0 as a matter of convention.

Corollary 1.25. If E1 is isogenous to E2 then E2 is also isogenous to E1. Thus isogeny is
an equivalence relation (reflexivity and transitivity being obvious), and we shall from now on
simply say E1 and E2 are isogenous.

Remark 1.26. The emergence of the dual isogeny feels somewhat out of the blue in our
elementary tractation. For an adequate explanation in terms of the Picard scheme and the
theory of duality for abelian varieties see [Mum08]

Theorem 1.23 is a powerful computational tool. Indeed, it tells us that the degree function
behaves in some sense like a positive definite quadratic form, since the pairing

〈φ, ψ〉 = deg(φ+ ψ)− deg(φ)− deg(ψ) = ψ̂ ◦ φ+ φ̂ ◦ ψ

is bilinear. It also imposes a strong restriction on the possible isomorphism type of the
endomorphism ring of an elliptic curve, to which we now turn.
We consider the set End(E) of isogenies from E to itself. It possesses a ring structure given
by pointwise addition on the curve and composition. The theorem may then be recast by
saying that this ring is endowed with an antihomomorphism ·̂ to itself which is an involution
and gives rise to a positive definite pairing as above. Such a map is analogous to conjugation
in Cayley-Dickson algebras. Indeed, its existence implies that End(E) falls into three possible
cases:

Theorem 1.27. The endomorphism ring of E is, up to isomorphism, one of the following:

• Z

• An order (i.e. subring of maximal rank) in an imaginary quadratic number field

• An order in a quaternion Q-algebra

In characteristic zero the last case never occurs, for theorem Theorem 1.21 provides an injec-
tion End(E) ↪−→ K. In the next chapter we will be able to say more about its occurrence in
characteristic p.
To conclude this section we discuss an important computation concerning the multiplication-
by-m endomorphisms. Leveraging Theorem 1.23 it is possible to refine the result deg[m] = m2

to give a description of its kernel, the m-torsion subgroup E[m]
def
= E(K)[m].

Proposition 1.28.

1. If (m, charK) = 1 then E[m] ' Z/mZ× Z/mZ

2. If charK = p then one of the following occurs:

• E[pk] = 0 ∀k

• E[pk] = Z/pkZ ∀k

It will turn out that the dichotomy for p-primary torsion is intimately connected to the
structure of End(E).
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1.5 Isomorphism and the j-invariant
Whenever a new category C is introduced, one is naturally led to investigate the classification
problem for that category: when are two objects in C isomorphic? Is it possible to find
reasonably simple invariants for these objects? In algebraic and arithmetic geometry, these
problems are usually far from tractable. However, for elliptic curves over a field K, there does
exist a remarkably explicit complete invariant, at least for isomorphism over K. We state the
result for curves in ‘short’ Weierstraß form simply for convenience – there is a corresponding
statement valid for all elliptic curves.

Theorem 1.29. Let E be the projective completion of the affine curve

y2 = x3 +Ax+B.

Then E is nonsingular if and only if the discriminant

∆ = −16(4A3 + 27B2)

is nonzero. In this case E is an elliptic curve (by placing O at the point at infinity) and the
quantity

j = −1728
(4A)3

∆
,

known as the j-invariant of E, does not depend on the choice of Weierstraß equation for E.
Moreover, two elliptic curves are isomorphic over K if and only if their j-invariants are equal.

Remark 1.30. In general, over a non algebraically closed field K, two elliptic curves with the
same j-invariant may not be isomorphic over K itself.
We may thus view j as a function from the set of K-isomorphism classes of elliptic curves
over K to K. It will prove useful later to know that this function is surjective:

Proposition 1.31. Let t ∈ K. If t 6= 0, 1728 the equation

y2 + xy = x3 − 36

t− 1728
x− 1

t− 1728

defines an elliptic curve having j-invariant t.
Otherwise, one of the following two equations (depending on charK) has the desired property:

y2 + y = x3 ∆ = −27 j = 0

y = x3 + x ∆ = −64 j = 1728



CHAPTER 2
Elliptic Curves over Finite Fields

2.1 The Frobenius and supersingularity
Consider a finite field Fq, with q = pk a prime power. It is well-known that in characteristic
p the map x 7−→ xp is a field homomorphism; moreover, the construction of the finite fields
implies that each finite extension K/Fq is Galois with cyclic Galois group generated by the
q-th power map. This map is commonly referred to as the Frobenius automorphism, or simply
the Frobenius. Let now X be a variety defined over Fq. The Frobenius naturally acts on the
set of points X(Fq) coordinate-wise. It is also straightforward to show that the resulting map
is in fact a morphism of varieties. In the special case of elliptic curves we can be more precise:

Proposition 2.1. Let E be an elliptic curve over Fq. The map induced by the Frobenius

f : E −→ E

is a purely inseparable isogeny of degree q.

We shall follow the literature standard and also call the above map Frobenius, taking care to
make it as clear as possible which type we are referring to.
The Frobenius on an elliptic curve E encodes many of its arithmetic properties. We shall see
that it is the main player in the proof of our main theorem. First, however, we return to the
discussion initiated in the previous chapter.

Theorem 2.2. Let E/K be an elliptic curve with charK = p. The following are equivalent:

1. End(E) is an order in a quaternion algebra.

2. E[p] = 0

3. f̂ is (purely) inseparable

4. [p] is purely inseparable and j(E) ∈ Fp2

Definition 2.3. An elliptic curve with the above properties is said to be supersingular.
Otherwise, it is ordinary.

Remark 2.4. The last statement in the equivalence implies that for fixed p there are only
finitely many supersingular elliptic curves in characteristic p up to isomorphism (over the
algebraic closure). It is then an interesting endeavour to write down the complete list of
j-invariants of supersingular curves for a given prime p. They may be described as the roots

13
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of the so-called Atkin polynomials with deep ties to the theory of modular forms which will
not be pursued here; see [KZ98] for an overview of the topic.

Excluding the supersingular case, the remaining elliptic curves in positive characteristic have
a commutative endomorphism ring. It turns out that in the case we shall be concerned with,
that of curves over Fp, it is never trivial.

Proposition 2.5. If the curve E/Fp is ordinary End(E) is strictly larger than Z.

Idea of Proof. The main observation is that for an ordinary curve the Frobenius cannot be
an integer.

This fact will be exploited in the next chapter when we choose which endomorphisms to lift
to positive characteristic.

2.2 The Tate Module and the Main Theorem
Recall that for any integer m which is nonzero in K the group E[m] is a free Z/mZ-module
of rank 2 equipped with a linear action of the absolute Galois group ΓK . We wish to ex-
tract information about the curve from this representation; however, the presence of torsion
introduces pathological behaviour that obscures the view. To ‘rectify’ the representation to
characteristic zero we mimic the construction of the p-adic integers by taking limits:

Definition 2.6. Fix an elliptic curve E/K and a prime ` 6= charK (if K has characteristic
zero this condition is of course vacuous). The `-adic Tate module Tℓ(E) of E is defined to be
the limit of the diagram

E[`] E[`2] E[`3] · · ··ℓ ·ℓ ·ℓ

It is clear from the definition, together with Proposition 1.28, that Tℓ(E) is a free Zℓ-module
of rank two, so that upon fixing a basis Tℓ(E) ' Z2

ℓ . The Galois actions on the various E[`k]
are compatible with multiplication by `, therefore the Tate module inherits an action of ΓK
by Zℓ-linear automorphisms. Moreover, formation of the Tate module is functorial. Given
an isogeny φ : E1 −→ E2 we have φ

(
E1[`

k]
)
⊂ E2[`

k], and passing to the limit we obtain an
induced linear map

φℓ : Tℓ(E1) −→ Tℓ(E2)

Although it would appear that we lose a lot of information when we pass from isogenies to
linear maps, the functor Tℓ is actually faithful. In fact we are even free to base change on the
left hand side whilst retaining injectivity:

Proposition 2.7. For any pair of elliptic curves E1, E2/K the map

Hom(E1, E2)⊗ Zℓ −→ Hom(Tℓ(E1), Tℓ(E2))

is injective.

In full generality, this is all one can say. However, for particular fields of arithmetic interest
stronger results are available. In the case of finite fields this is our main theorem, which
we are now ready to state. For a finite extension K/Fq, denote by the subscript K those
isogenies/linear maps which are defined over K or, equivalently, equivariant with respect to
the absolute Galois group of K. Then we have the following
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Theorem 2.8 (Tate Isogeny Theorem, [Tat66]). For E1, E2 and K as above the map

HomK(E1, E2)⊗ Zℓ −→ HomK(Tℓ(E1), Tℓ(E2))

is an isomorphism.

The rest of this work will be devoted to the proof of this statement. As an application, we
will it use to prove a fact which deserves a standalone status both for its surprising content
and for its connection to another profound and beautiful branch of number theory.

Theorem 2.9 (Slogan). Two elliptic curves over Fq are isogenous if and only if they have
the same number of Fq-rational points.

We urge the reader to pause and ponder the non-trivial nature of both implications of the
theorem we have just stated. On one hand, isogenies are in general not one-to-one, so preserv-
ing the number of points on the base field is all but guaranteed; on the other, the comparison
of a simple numerical invariant should produce an isogeny out of thin air. Theorem 2.9 is a
testament to the fruitful idea that point counting in finite field geometry is a very powerful
tool, much more than we could possibly hope to convey here.

2.3 Computing the trace of the Frobenius
Construction 2.10. Fix an integer m such that (m, charK) = 1. Let P,Q be m-torsion
points on E. The degree 0 divisor

m ((Q)− (O))

sums to O, so by Proposition 1.14 it is the divisor of a function f . We compute

div(f ◦ [m]) = m

 ∑
mS=Q

(S)−
∑

mR=O

(R)

 = m

 ∑
R∈E[m]

(S +R)− (R)


for an arbitrary S such that mS = Q. Again using Proposition 1.14, the divisor inside the
parentheses is principal, for S ∈ E[m2] and there are m2 terms being summed. Thus there
exists a function g such that

div(gm) = div(f ◦ [m]).

The ratio
gm

f ◦ [m]

is then constant, so up to changing our choice of either f or g we may suppose it to be 1.
Now consider the function

g(X + P )

g(X)
.

As X ranges over E we always find

g(X + P )m

g(X)m
=
f(mX +mP )

f(mX)
= 1.

The image of this function is then contained in the finite set µm of m-th roots of unity; in
particular, it must be constant. We set em(P,Q) to be equal to its constant value, obtaining
a well-defined map

em : E[m]× E[m] −→ µm

Definition 2.11. The map constructed above is known as the Weil pairing on E[m]
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The name is justified by

Theorem 2.12. The Weil pairing enjoys the following properties:

1. It is bilinear, alternating and nondegenerate.

2. It is Galois-equivariant.

3. It is compatible with multiplication, in the sense that

em(nP,Q) = emn(P,Q)

for all P ∈ E[mn], Q ∈ E[m].

4. For any isogeny φ : E1 −→ E2 the adjoint of φ with respect to em is φ̂, i.e.

em(φ(P ), Q) = em(P, φ̂(Q))

for all P ∈ E1[m], Q ∈ E2[m].

Compatibility with multiplication ensures that we may take limits as before and extend the
pairing to an `-adic Weil pairing on Tℓ(E), denoted simply e(·, ·).
A word of caution – even though we write the operation on the range of the Weil pairing
multiplicatively (because it is inherited from the µℓk ’s), it corresponds to addition under
the isomorphism with Zℓ. We are now in the position to establish the first half of theorem
Theorem 2.9. First, we connect the degree of an endomorphism and the determinant of the
associated linear mapping:

Proposition 2.13. Let φ ∈ End(E). Then degφ = detφℓ

Proof. After fixing a basis (v1, v2) of Tℓ(E) it is enough to put together all we know about
dual isogenies and the Weil pairing to compute

e(v1, v2)
degϕ =

= e([degφ]v1, v2) = e(φ̂ℓ(φℓ(v1)), v2) = e(φℓ(v1), φℓ(v2)) =

= e(v1, v2)
detϕℓ

Because the pairing is nondegenerate and takes values in Zℓ the exponents must be equal.

The key idea is to now apply this formula to a well-chosen endomorphism.

Proof of the ‘only-if’ statement in Theorem 2.9. Suppose φ : E1 −→ E2 is an isogeny be-
tween elliptic curves defined over Fq with Frobenius endomorphisms f1, f2 respectively.
The diagram

E1 E2

E1 E2

ϕ

f1 f2

ϕ

commutes – φ, being an algebraic map, is locally defined by polynomial functions which
are compatible with the Frobenius action. Furthermore, φℓ admits an inverse up to a scalar
factor, namely φ̂ℓ. Thus, possibly after extending coefficients to Qℓ, φℓ is a linear isomorphism
between Tℓ(E1) and Tℓ(E2) conjugating the Frobenius on the first curve to that on the second
one. In particular, (f1)ℓ and (f2)ℓ have the same trace and determinant. The latter is easily
computed:

det(fi)ℓ = deg fi = q
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The trace of the Frobenius may also be recovered from a determinant by evaluating the
characteristic polynomial at 1:

det(1− fi)ℓ = 1− tr(fi)ℓ + det(fi)ℓ = q + 1− tr(fi)ℓ

On the other hand, 1 − fi is separable by Theorem 1.21: fixing an invariant form ω and
recalling that the Frobenius is purely inseparable we obtain (1− fi)

∗ω = 1∗ω = ω. Hence,

det(1− fi)ℓ = deg(1− fi) = # ker(1− fi).

But the points killed by 1−fi are precisely the points fixed by the Frobenius, i.e. the Fq-rational
points of Ei. Therefore we have just shown

#E1(Fq) = q + 1− tr(f1)ℓ = q + 1− tr(f2)ℓ = #E2(Fq)

which was the claim.

2.4 Reduction
We now begin setting the stage for the proof of the isogeny theorem as well as the ‘if’ statement
in the corollary. In classical number theory one commonly looks at diophantine equations
modulo a certain prime to establish nontrivial properties like the existence or type of its
solutions. This idea carries over to the realm of geometry: if a variety is cut out from
projective space by polynomials with coefficients in Z we may consider the same equations in
Fp to get a corresponding variety in characteristic p. More generally, the coefficients may be
taken in the ring of integers of a local or global field. Since for any prime ideal p it is always
possible to multiply an equation with coefficients in the fraction field by a suitable element
in order to make it p-integral, this condition is not restrictive. Moreover, since we will be
working one prime at a time, we shall follow Silverman and assume our field to be local (hence
complete). We now define what it means to reduce a point P ∈ X(K) for a projective variety
X over the local field K with residue field Fp. Suppose that X ⊂ Pn and P has homogenous
coordinates [x0, . . . , xn]. Letting k = min v(xi) and choosing a uniformiser π for K we see that
[πkx0, . . . , π

kxn] is another representative of P with the property that all the entries are in the
ring of integers OK but not all of them lie in the maximal ideal p = (π). Thus it is possible to
consider the point P̃ ∈ Pn(Fp) with coordinates obtained by simply considering the previous
ones modulo p. Clearly, P̃ depends only on P , since a different choice of uniformiser differs
by a unit and projective changes of coordinates are compatible with reduction. Furthermore,
P̃ continues to satisfy the same equations P did, and therefore belongs to X̃(Fp).
Although the map Pn(K) −→ Pn(Fp) is surjective, the same is not true for an arbitrary variety
even if we allow field extensions. For example, consider the zero set of xp + p in P1(Qp). The
corresponding locus in P1(Fp) is the single point 0 (with multiplicity p); however, the equation
xp+ p ≡ 0 mod p2 has no solutions with x ≡ 0 mod p. The issue is that the characteristic-p
point is nonsmooth. For smooth points it is possible to achieve a ‘lift’ using Hensel’s celebrated
lemma.

Lemma 2.14 (Hensel). Let K be a complete non-Archimedean field with ring of integers
R and residue field F . For any polynomial f ∈ R[x] and any simple root α̃ ∈ F of the
corresponding reduced polynomial f̃ there exists a unique root α ∈ K of f that reduces to α̃.

Proof. The proof is a standard approximation argument; see, for example, [Neu99].

Remark 2.15. The assumption of simpleness on the root should be seen geometrically as the
assertion that α is a smooth point of the 0-dimensional scheme given by the zero locus of f̃ .
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Using 2.14 it is possible to show surjectivity of reduction for smooth points on plane projective
curves (or, more generally, hypersurfaces) which is the case that interests us.

Proposition 2.16. Let C ⊂ P2 be a plane curve over K and P̃ a smooth point of C̃. Then
there exists a point P of C that reduces to P̃ .

Proof. Let C be given by a homogenous polynomial F ∈ R[X,Y, Z] whose coefficients are not
all 0 modulo p. The condition that P̃ be smooth translates to the nonvanishing of at least
one of the partial derivatives of F̃ at P̃ ; without loss of generality, suppose that ∂F̃

∂X (P̃ ) 6= 0.
Choosing arbitrary lifts for the Y and Z coordinates of P̃ and substituting them in F , we
obtain a polynomial in one variable having a simple root modulo p at the X coordinate of
P̃ . Finally, we apply Hensel’s lemma to it obtaining the X-coordinate of a point P satisfying
the claim (this is indeed a well-defined projective point: not all its coordinates are zero since
they are already valid in the residue field)

We shall also refer to the above statement as ‘Hensel’s Lemma’, being a generalisation of it.
We have described what it means to reduce a projective variety modulo a prime. There is
an entirely analogous description of reduction for morphisms. To avoid descending too much
into technicalities, the reader is encouraged to trust that morphisms, being algebraic maps,
are compatible enough with reduction that the procedure cannot go ‘too awry’. In particular,
reducing an elliptic curve yields a curve that is not necessarily smooth, but its smooth points
nevertheless carry an algebraic group structure defined by the very same construction as for
the original curve. In any case, we shall always be considering curves which are also smooth
over the residue field. When this holds we say that the curve has good reduction, and that
it has bad reduction otherwise. We shall not explore the rich theory of reduction for elliptic
curves further (see Silverman for further details); however, we state and prove one last result
for later use.
Because the multiplication map on E is algebraic, the condition nP = 0 for a point P 6= O
may be phrased by imposing that the coordinates of P be roots of a certain polynomial.
Concretely, for a curve in Weierstraß form, these are known as division polynomials and are
denoted by ψn. It is possible to show that the degree of ψn is n2−1

2 for odd n and n2

2 − 1 for
even n.

Proposition 2.17. Let E/K be an elliptic curve with good reduction at p. Then for any
integer n relatively prime to charF the reduction map restricted to E[n] is injective.

Proof. First, note that since n is nonzero in F it is a fortiori nonzero in K. Therefore by
Proposition 1.28 both E[n] and Ẽ[n] have cardinality equal to n2. Moreover, the above
discussion implies that the image of E[n] under the reduction map lands in Ẽ[n]. Therefore
showing injectivity is equivalent to showing surjectivity. This is accomplished by means of
Hensel’s lemma applied to ψn. We shall work with the ‘short’ Weierstraß form for the sake
of ease, but the argument works in general with a little more care. For odd n the nonzero
n-torsion points fall into pairs with matching x-coordinate and opposite y-coordinate. Since
degψn = n2−1

2 all the roots must be simple, and they can be lifted using Lemma 2.14. We
then invoke Hensel again on each of these to find the corresponding values for y, using the
smoothness of E. The case of n even is identical, but one must first take care to exclude the
2-torsion points. These are easily accounted for, since they are precisely the points making y
vanish.

Remark 2.18. A more conceptual proof of Proposition 2.17 is given in Silverman. One first
establishes the exact sequence

0 −→ E0(K) −→ E(K) −→ Ẽns(F ) −→ 0
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and then shows the first term to be isomorphic to a certain formal group over the maximal
ideal p. The theory of formal groups then informs us that such objects do not have torsion
of order prime to the characteristic of the base field, proving the claim.





CHAPTER 3
Complex Elliptic Curves and Lifting

To finish the proof of the main results, we require an input from the analytic point of view
of the theory of elliptic curves: using a theorem of Deuring ([Deu41]), we pass from positive
to zero characteristic where establishing the existence of the required maps is much more
tractable. In turn, the proof of said theorem hinges on a certain integrality result which we
prove by means of the (basic) theory of modular forms.

3.1 Uniformisation of elliptic curves
Let us first describe the general situation for complex elliptic curves. Any smooth projective
curve defined over C may be viewed as a complex analytic manifold of dimension one, that is,
as a Riemann surface. This is in fact the historical origin of the algebraic theory we have been
using so far. Another source of Riemann surfaces of (topological) genus one is supplied by
one-dimensional complex tori, i.e. quotients C/Λ with Λ a lattice (full-rank discrete subgroup)
inside C. It is well-known that any such lattice is homothetic to one of the form Z + τZ for
some complex τ in the upper-half plane H. Moreover, whenever two such lattices generated
by τ and τ ′ are homothetic, the two values are related by a Möbius transformation of the

form τ ′ = aτ+b
cτ+d with the corresponding matrix

(
a b

c d

)
belonging to the modular group

Γ = SL2(Z). We shall return to this group in the next section.
We are thus led to investigate three seemingly different kinds of objects: elliptic curves,
complex tori and complex lattices. It turns out that these three kinds of objects are essentially
one and the same. More precisely, the following holds:

Theorem 3.1 (Uniformisation Theorem). The following categories are equivalent:

• Complex elliptic curves with isogenies as morphisms

• One dimensional complex tori C/Λ (for some lattice Λ ⊂ C) with pointed holomorphic
maps as morphisms

• Homothety classes of lattices Λ ⊂ C, where a morphism Λ1 −→ Λ2 is given by a matrix
A ∈M2(Z) with nonzero determinant such that A(Λ2) ∼ Λ1

Under this equivalence, the degree of an isogeny corresponds to the absolute value of the
determinant of the associated matrix.

21
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Moreover, there exists a holomorphic function j : H −→ C such that for an elliptic curve E
and any lattice Z+ τZ in the corresponding homothety class one has

j(E) = j(τ).

For a proof we refer the reader to [Sil94]. The function j appearing in the statement above
is but the first link between elliptic curves and modular forms, a very small part of which we
will recall now.

3.2 Modular functions and the modular polynomial
In the previous section we were led to consider the modular group Γ and its action on the
upper-half plane given by Möbius transformations. It is then natural to define the following
class of functions:

Definition 3.2. A modular function for Γ is a meromorphic Γ-invariant function which is
meromorphic at infinity, namely, such that the behaviour of f(z) as I(z) −→ ∞ is that of a
singularity of finite order.

The analytic function j, given by Theorem 3.1, is an example of a holomorphic modular
function. As it turns out, it is essentially the only one.

Proposition 3.3. The set of holomorphic modular functions is precisely C[j], the polynomial
functions in j.

This is but the first of many extraordinary properties of this function, which we cannot
discuss here. We shall however need another fact about j for the upcoming proof. Being
Γ-invariant, it is in particular 1-periodic; it therefore admits a Fourier expansion in terms of
q = e2πiz. Using the more general theory of modular forms (see, for example, [Sil94] or the
classic [Shi94]) one carries out a standard computation, leading to

Proposition 3.4. The Fourier expansion of j is of the form

j(z) =
1

q
+

∞∑
k=0

ckq
k

where the ck are integers.

Theorem 3.5. For any n > 0 there esists a nonzero polynomial Fn ∈ Z[x, y] such that for any
isogeny E1 −→ E2 of degree n between elliptic curves over C we have Fn(j(E1), j(E2)) = 0.

Proof. We reproduce the argument presented in [Sil94]; non-analytic proofs of the theorem,
which generalise to different fields, also exist but require more advanced tools.
Recall that, under the dictionary of Theorem 3.1, elliptic curves and isogenies correspond,
respectively, to homothety classes of lattices and orbits of 2-by-2 integral nonsingular matrices
under the action of the modular group. Furthermore, it is not hard to show that

Sn =

{(
a b

0 d

)
: ad = n, 0 ≤ b < d

}

is a set of representatives for the right action of Γ on the matrices having determinant n.

Indeed, for any such matrix
(
a b

c d

)
with c 6= 0 we write −a

c = s
r in lowest terms and find
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integers p, q such that ps− qr = 1 using Euclidean division. Then(
p q

r s

)(
a b

c d

)
=

(
∗ ∗
0 ∗

)
,

so we may suppose that c = 0. By acting further with a matrix of the form(
1 k

0 1

)(
a b

0 d

)
=

(
a b+ kd

0 d

)
we can bring b in the range [0, d− 1]. If two elements of Sn are equivalent we have(

a b

0 d

)
=

(
p q

r s

)(
a′ b′

0 d′

)
.

Expanding the product one finds that r = 0, a = pa′, d = sd′, and equating psa′d′ = ad =
n = a′d′ we obtain p = s = ±1. We may choose the positive sign up to possibly multiplying
by −I. Finally, the top-right entry yields b ≡ b′ mod d and since they are both between 0
and d− 1 we conclude that b = b′.
The conclusion of the theorem is thus established if we can show that the expression

Fn =
∏
α∈Sn

(X − j ◦ α)

is actually a polynomial in j and X with integer coefficients. This is accomplished in a number
of steps.
First, expanding Fn =

∑
amX

m, we wish to show that each of the am is a Γ-invariant
holomorphic function on the upper-half plane. Let γ ∈ Γ. For each α ∈ Sn we have det(αγ) =
n, and since Sn is a right coset there exists a unique δα ∈ Γ such that δααγ is again an element
of Sn. Furthermore, as α ranges over the whole Sn, so does δααγ. Therefore

Fn ◦ γ =
∏
α∈Sn

(X − j ◦ αγ) =
∏
α∈Sn

(X − j ◦ δ−1
α δααγ) =

=
∏
α∈Sn

(X − j ◦ δααγ) =
∏
α∈Sn

(X − j ◦ α) = Fn.

In particular, the coefficients am are Γ-invariant. We now analyse their behaviour at infin-
ity. Being 1-periodic holomorphic functions, the am also admit a Fourier expansion. Using

Proposition 3.4 we find for α =

(
a b

0 d

)

j ◦ α = e−2πi az+b
d +

∑
k≥0

cke
2kπiaz+b

d ,

so for a suitably large integer N we have j ◦ α = o(q−N ) as q −→ 0. Since each sm is a
symmetric function in the j ◦α’s, the same is true for it. We have just shown that, for all m,
sm is a holomorphic Γ-invariant function which is meromorphic at infinity, i.e. a holomorphic
modular function. These are completely characterised by Proposition 3.3 – they are precisely
the polynomial functions C[j].
Next, let us look more closely at the Fourier coefficients of sm. If we denote by ζ the distin-
guished n-th root of unity e 2πi

n and observe that

e2πi
az+b

d = ζabq
a2

n
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the expansion above for j◦α may be rewritten as an expansion in powers of q 1
n with coefficients

in Z[ζ]. Thus, the Fourier coefficients of each sm also lie in Z[ζ]. We claim that in fact these
coefficients lie in Z. To see this, let G be the group Gal(Q(ζ)/Q) ' (Z/nZ)×. Under this
isomorphism the action of G is specified by σ(ζ) = ζr(σ), with r(σ) relatively prime to n. If
we apply σ coefficient-wise to the expansion of j ◦α and compare with the original we obtain

σ

(
j ◦

(
a b

0 d

))
= j ◦

(
a r(σ)b

0 d

)
.

Note that, as b runs through a set of representatives for the residue classes modulo d, so does
r(σ)b. Moreover, we are free to change the top-right entry of α by a multiple of d without
affecting j ◦α by multiplying on the left by a suitable element of Γ as we did above. It follows
that the action of G permutes the various j ◦ α, and since each sm is a symmetric function
of these it is left fixed by G. Put differently, the Fourier coefficients of sm lie in Z[ζ]G = Z.
All that is left now is to show that C[j] ∩ Z((q)) = Z[j]. Let f =

∑d
k=0 akj

k be a polynomial
in j admitting an integral Fourier expansion. We substitute the Fourier expansion of j and
look at the lowest order term, namely ad

qd
. Using the uniqueness of Fourier coefficients, this

yields ad ∈ Z. Finally, we use induction applied to f − adj
d to conclude that all the ad are

integers.

The above polynomial is sometimes referred to as the modular polynomial, though this term
is reserved by some authors to denote the factor of Fn corresponding to the isogenies with
cyclic kernel.

3.3 The lifting theorem – Completing the proof
We now turn to the main step towards the proof of Theorem 2.8.

Theorem 3.6 (Deuring Lifting Theorem). Let E be an elliptic curve over Fp and φ an
endomorphism of E. Then there exist a number field K, a prime p of K lying above p, an
elliptic curve E and an endomorphism ϕ of E both defined over K such that E and ϕ reduce
respectively to E and φ modulo p.

Proof. The following argument is taken from [Lan87], with minor corrections.1
We may suppose without loss of generality that φ be separable. If not, then φ∗ω = 0, where ω
is the invariant differential on E as usual. But then φ+ 1 is separable by Theorem 1.21, and
lifting the former is equivalent to lifting the latter. Let us choose a transcendental t ∈ C and
take Et to be an elliptic curve over C whose j-invariant is t. Composing reduction modulo
p with the evaluation map t 7→ j(E) yields a well-defined map ρ : Z[t] → Fp , which we
view as reduction modulo some prime of Z[t]. Denote by n the degree of φ. We claim that
kerφ is the image under ρ of some subgroup H ⊆ Et of order n. Write n = pks with p
not dividing s. By Proposition 2.16 and Proposition 2.17 we know reduction is injective on
s-torsion and overall surjective, so there exists a subgroup of order s which injects into kerφ.
As for the p-component of kerφ, there are two cases. If E is supersingular we are done,
for there is no p-primary torsion at all. If E is ordinary the map [pk] on E has separable
degree pk. Equivalently, the pk-th division polynomial is the pk-th power of some separable
polynomial ψ. Arguing as in the proof of Proposition 2.17, Hensel’s lemma may then be
applied twice, first to the roots of this polynomial, which are precisely the x-coordinates of
the points in E[pk], and then to the curve itself to obtain the corresponding y-coordinates,

1The proof presented in the book contains a small error; namely, the procedure described there to make
degϕ relatively prime with p breaks down when p = 2.
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giving the desired subgroup inside Et. Now consider the ring Z[t, t1, . . . , tn] where the ti ’s
are the j-invariants of elliptic curves admitting an isogeny from Et of degree n. Note that by
construction Et/H, which exists by Theorem 1.22, is such a curve. Thus, setting Es = Et/H,
we may suppose that j(Es) = s is one of the ti’s. By Theorem 3.5 the aforementioned ring is
an integral extension of Z[t]. We will denote by R its integral closure in some finite extension
K of Q(t) to be specified later. The integrality of R over Z[t] allows us to extend ρ to a
homomorphism R → Fp which we will, with a slight abuse of notation, still call ρ. We may
assume, possibly after selecting different models, that Et reduces to E since they have the
same j-invariant as curves over Fp. Thus

Ẽs ' Ẽt/H ' Ẽt ' E

or, put differently,
(p, t− s) ⊂ ker ρ.

Let q be a minimal prime of R above t− s. By Krull’s Hauptidealsatz the height of q is 1. In
particular q∩Z = ∅, otherwise there would be a chain (0) ⊂ (q) ⊂ q for some prime number q.
It follows immediately that R/q is a number field and the curves Et, Es, when reduced modulo
q, become isomorphic after possibly passing to some finite extension of said field. Quotienting
out by H therefore descends to an endomorphism

ϕ : E −→ E

whose kernel further reduces to kerφ modulo (the class of) ker ρ. This almost proves the
theorem, for ϕ̃ and φ can only differ by an automorphism of E. If Aut(E) = {[±1]} we are
done. The only curves which are left out are those of invariant 0 or 1728, where the existence
of lifts must be checked by way of direct computation.

Equipped with theorem Theorem 3.6, we are finally ready to complete the proof begun in the
previous chapter.

Proposition 3.7. If E1 and E2 have the same number of Fq-rational points then they are
Fq-isogenous.

Proof. Suppose E1, E2 are elliptic curves defined over Fq having the same number of Fq-
points. By the results of Chapter 2 this implies that the Frobenius endomorphisms f1, f2 have
the same characteristic polynomial. In particular, either both curves are ordinary or they are
supersingular. In the ordinary case we apply the lifting theorem to the pairs (Ei, fi) to obtain
elliptic curves Ei with endomorphisms fi, all defined over two number fields which we may
assume to coincide after taking composites. Since we have supposed the original curves to be
ordinary, the fi and therefore also the fi are not integers. Thus the End(Ei) are both orders
in the imaginary quadratic field K = Q(f1) = Q(f2). We now pass to the complex point of
view. Under the correspondence of theorem Theorem 3.1 the curves Ei are represented by
the homothety classes of certain lattices Λi ⊂ C. But we have just shown that these lattices
admit complex multiplication by some order in K, so up to a different choice of representative
the Λi are themselves spanned by elements of K. This implies that there exists a matrix with
integer coefficients and nonzero determinant mapping, say, Λ1 onto Λ2, which corresponds
to a nonconstant isogeny E1 −→ E2. Reducing this isogeny modulo the prime above p shows
that E1 and E2 are isogenous. The above argument must be modified in the case when the
fi are integers. This can only happen if the curves are supersingular (though the converse
is false, e.g. when q is an odd power of p). To find suitable elements to lift, we resort to
the classification of quaternion algebras over number fields ([Ser73]). Recall that such an
algebra is determined, up to isomorphism, by the set of places at which it is ramified (i.e.
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nonsplit), which is known to be finite and of even cardinality. We already know, by virtue of
Proposition 2.7, that for any supersingular elliptic curve E in characteristic p the quaternion
algebra End(E)⊗Q splits at all primes ` 6= p .If it were also split at p or infinity, then it would
be forced to be split everywhere and so be isomorphic to the matrix algebra M2(Q). But this
is impossible, for the latter has zero-divisors which End(E) lacks. We infer that End(E) is
an order in the unique quaternion algebra over Q which ramifies precisely at p and infinity.
Now, since End(E1) and End(E2) are orders in the same quaternion algebra, it is possible to
find a pair of nontrivial elements which are scalar multiples of one another and run through
the previous argument.

This is not quite Tate’s result - the isogeny we have constructed is only guaranteed to be
defined over some finite extension of the base field. The final step in the proof is to bootstrap
the previous result to yield the full strength of Theorem 2.8

Proof of surjectivity in Theorem 2.8. We shall prove a slightly weaker statement, namely,
that the isomorphism holds upon tensoring with Qℓ. This will suffice to establish Theo-
rem 2.9. Because we are now dealing with Galois modules which are vector spaces over a
field, it is enough to prove the statement for a finite extension of the base field and invoke
Galois descent to transport the isomorphism back down. To see this, recall ([GS17]) that for
a finite Galois extension L/K and an L-vector space V the main theorem of Galois descent
for vector spaces establishes an equivalence of categories between the K-forms of V and the
semilinear actions of the Galois group G on L. Therefore, if we prove the theorem for L we
may apply the functor ·G and still obtain isomorphic vector spaces by the descent theorem.
If HomK(Tℓ(E1), Tℓ(E2)) = 0 for all finite extensions K/Fq there is nothing to prove (and in
particular the two curves are not isogenous). Else, there is a nonzero map f between the Tate
modules, defined over someK with [K : Fq] = r. Observe that, since the absolute Galois group
ΓK of K is topologically generated by the qr-power Frobenius, a linear map is ΓK-equivariant
if and only if it commutes with the Frobenius. We now show that the traces of (f1)ℓ and (f2)ℓ
are the same. If f is nonsingular this follows immediately from the definition of equivariance.
Otherwise, its kernel and image are both one dimensional Galois-invariant subspaces. In other
words there exist nonzero v1 ∈ ker f , w ∈ im f such that (f1)ℓ(v1) = λv and (f2)ℓ(w) = µw
for some nonzero λ, µ ∈ Zℓ. Adjoin to v1 a linearly independent vector v2, scaled so that

f(v2) = w. The matrix of (f1)ℓ with respect to this basis takes the form
(
λ1 a

0 λ2

)
. Com-

puting µw = (f2)ℓ(f(v2)) = f((f1)ℓ(v2)) = af(v1) + λ2f(v2) = λ2w we deduce that (f1)ℓ and
(f2)ℓ share an eigenvalue. Since they have the same determinant qr, the other eigenvalues and
hence the traces also coincide.We may then apply Proposition 3.7 to find a nonzero isogeny
φ : E1 −→ E2 defined over some finite extension of K which we will, without loss of general-
ity, suppose to be K again. By the same argument we have already used, the endomorphism
rings of the two curves are isomorphic when tensored with Q. If they are both supersingular
we are immediately done, for dim HomK(Tℓ(E1), Tℓ(E2)) ≤ dim Hom(Tℓ(E1), Tℓ(E2)) = 4. If
both curves are ordinary the linear Frobenius is semisimple and using Jordan theory it is easy
to see that its commutator in M2(Qℓ) is two-dimensional. On the other hand we can produce
two linearly independent isogenies in the left hand side: φ and φ ◦ f2 cannot be scalar multi-
ples of one another. Indeed, if they were Qℓ-linearly dependent, then because of the injection
in Proposition 2.7 they would have to be already Q- and hence Z-linearly dependent. The
identity φ ◦ (m− nf2) = 0 with m, n ∈ Z implies, by comparing degrees, that nf2 = m, hence
the Frobenius is rational. On the other hand its minimal polynomial has integral coefficients,
therefore we would in fact have f2 ∈ Z which is impossible since E2 is ordinary.
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