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Introduction

This thesis investigates the Hidden-Markov-Switching Quantile Regression model, a hybrid
approach that combines quantile regression and Hidden Markov models.

Quantile regression is a statistical method for modeling conditional quantile functions.
In contrast to the emphasis of classical least-squares regression on the conditional mean,
quantile regression provides an approach to exploring the impact of covariates estimates to
various quantiles of the response variable distribution, providing insights into conditional
relationships, particularly valuable in fields like economics and finance. Economic variables
often depend on the prevailing economic state, making Hidden Markov Models (HMMs)
suitable for capturing changing dependencies. HMM assumes that the regime transition of
our observed data is a finite-state Markov chain, that is an unobserved process characterized
by the hidden state variables St. By integrating these models, we aim to achieve a better
understanding of both conditional variation and hidden dynamics in the data.

We consider a model where the response variable depends linearly on the predictors, but
the coefficients of such linear model depend, in turn, on an underlying finite-state, hid-
den Markov chain St. The theory of HMMs can thus be applied to our framework. In
particular, parameter estimation is performed through the Expectation-Maximization al-
gorithm (EM), alternating between computing the expectation of the log-likelihood of the
model with respect to the estimated distribution of the hidden states, and maximizing the
log-likelihood with respect to the model parameters.

For data with homogeneous frequency, the maximization step of the quantile regression
side is carried out through linear quantile regression. However in the case of multifre-
quency data, over-parametrization is encountered and in order to overcome this problem,
we introduce a reparametrization of the linear coefficient in the form of Almon exponential
polynomials. Due to the now nonlinear nature of the optimization, Adam and the Nelder-
Mead algorithm are chosen to solve the maximization step of parameter fitting: Adam
is a stochastic-gradient-based optimization algorithm, that computes individual adaptive
learning rates for different parameters; Nelder-Mead is a direct search method algorithm
that iteratively generates a sequence of simplices to approximate an optimal point.

Another challenge inherent in such models lies in their sensitivity to the initialization
point during estimation. To tackle this issue, we adopted the following strategy: an initial
state partition is chosen using one of the initialisation strategies given at the end of this
paragraph; the initial probability of the Markov model is then computed based on this
partition, and the transition matrix elements are calculated as proportions of transitions.
Concerning the initial parameters related to the Laplace distribution, quantile regression is
performed separately to the observations in each hidden state. In order to obtain the initial
state partition, we propose three methods: a random initialization, which computes several
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possibilities and selects the best-performing one based on likelihood after a small number of
steps of EM; a clustering-based approach using the k-means algorithm; and a data-driven
technique where we leverage information on recessions to initialize our economic models.

Additionally, we discuss and implement various statistical tests to assess the model’s ro-
bustness and reliability. These tests rely on a particular function of the prediction of
the quantiles, the Hit(β0)t function, whose conditional expectation given any information
known at t− 1 must be 0. We evaluate the efficacy of the tests using simulated data and
delineate the requisite conditions under which the tests are applicable.

We then perform a simulation study to investigate the behaviour of the proposed model
where we present results from the estimation of quantiles of GDP for both the EU area
and the US.

Finally, we extend our model by incorporating a quantile autoregressive (QAR) structure
on the response variable, allowing for dependence on past quantiles along with the hidden
regime transitions. Within this extended framework assumptions, we prove the consistency
of the quantile regression estimates.

This work has been developed in collaboration with the European Central Bank, which
provided the data and economic insights about the work. The ideas of this thesis are
thought to be helpful in gaining a better understanding of the relationship that interest
rates decided by the ECB may have on the economic situation.

Acknowledgements

I would like to express my gratitude to Max Lampe for providing the data and its invaluable
support and guidance throughout this project. Additionally, I would like to express my
sincere appreciation to my supervisor, Professor Agazzi, whose assistance and insights were
crucial for the completion of this thesis.



Chapter 1

Quantile Regression

The classical theory of linear models is essentially a theory for models of conditional ex-
pectations. However, conditional mean might not be a satisfactory end in itself, even for
statistical analysis of a single sample. Measures of spread, skewness, kurtosis as well as
boxplots, histograms, and more sophisticated density estimation are all frequently em-
ployed to gain further insight. A way to go beyond these models is provided by quantile
regression, that may represent a comprehensive approach to the statistical analysis of lin-
ear and nonlinear response models. Quantile regression supplements the exclusive focus
of least squares based methods on the estimation of conditional mean functions with a
general technique for estimating families of conditional quantile functions. This greatly
expands the flexibility of both parametric and nonparametric regression methods, and has
found multiple applications in the field of econometrics and finance. This chapter builds on
the work of [1], which provides a detailed discussion on quantile regression. For a deeper
exploration of regularization techniques, we recommend referring to [2].

1.1 Definition of quantile regression

Definition 1.1.1. Let X be a real valued random variable with cumulative distribution
function F (x) = P (X ≤ x). The quantile at level τ is given by

QX(τ) = inf {x|F (x) ≥ τ} (1.1.1)

While this is the usual definition of quantile, one can see this as the solution of an opti-
mization problem. We firstly define the loss function:

ρτ (u) = u(τ − 1(u<0)) = u
(
(τ − 1)1(u<0) + τ1(u≥0)

)
(1.1.2)

Which is a function of the form:

7



8 CHAPTER 1. QUANTILE REGRESSION

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 0.9

Figure 1.1: plot of the ρτ function for different choices of τ

Then given a random variable X our claim is that the quantile at level τ is the given by
the solution x̂ of the following optimization problem:

argmin
x∈[0,1]

E [ρτ (X − x)] (1.1.3)

In order to show the relation between x̂ and the actual τ -th quantile of X (which we
suppose to exist), we compute the derivative of the loss with respect to x̂. Thus we have

(1− τ)
∫ x̂

−∞
dF (x) + τ

∫ ∞

x̂
dF (x) = F (x̂)− τ = 0 (1.1.4)

We observe that any element of {x : F (x) = τ} minimizes the expected loss, thus in
practical application its smallest element must be chosen to adhere to the convention that
the empirical quantile function be left-continuous.

In applications, where we have to manage real data, this is applied using the empirical
cumulative distribution. Suppose we have a sample of size n, {Xi}ni=1, then its empirical
cumulative distribution function is defined as:

Fn(x) =
1

n

n∑
i=1

1{Xi≤x} (1.1.5)

and thus the expected loss with the actual data becomes:

1

n

n∑
i=1

ρτ (xi − x) (1.1.6)

where xi are the observed values of Xi for i = 1, . . . , n.

We can now formulate quantile regression starting from this formulation. Given some
input variable {xi}ni=1 and some output variable {yi}ni=1, performing a quantile regression
at level τ means solving the following optimization problem:

min
β∈Rp

1

n

n∑
i=1

ρτ (yi − ξ(xi, β)) (1.1.7)

where ξ(x, β) represents some class of functions parameterized by β ∈ Rp for some p ∈ N.
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In this framework what we are trying to learn is the τ -th conditional (w.r.t. X) quantile
function of Y defined as

QY (τ |X) = inf{y : P (Y ≤ y|X) ≥ τ} (1.1.8)

A special case of quantile regression is when the function ξ(xi, β) is linear of the form Xβ,
where we assume we incorporated the intercept through adding a column of ones to the
data X.

Thus the problem can be reformulated as a problem of linear programming and it’s pos-
sible to solve it through the known algorithms such as the simplex method. With some
calculation one can deduce the following expression for such optimization problem:

min
(β,u,v)∈Rp×R2n

+

{τ1nu+ (1− τ)1nv|Wβ + u− v = y} (1.1.9)

,

where 1n, is the vector of all 1’s and length n, and W is the matrix whose columns consist
of all the different realizations of the X data.

1.2 Properties

Some interesting properties specific to the linear quantile regression, are the so-called
equivariance properties. Their usefulness stands in how they help model interpretation, as
they encode some relationships between changes in data and changes in regression estimates

Theorem 1.2.1. Let A be a p × p nonsingular matrix, γ ∈ Rp, and a > 0. In order to
highlight the relationship with the underlying variables, let’s call β̂(τ ; y,W ), the solution of
problem 1.1.7. Then for any τ ∈ [0, 1],

1. β̂(τ ; ay,W ) = aβ̂(τ ; y,W )

2. β̂(τ ;−ay,W ) = −aβ̂(1− τ ; y,W )

3. β̂(τ ; y +Wγ,W ) = β̂(τ ; y,W ) + γ

4. β̂(τ ; y,WA) = A−1β̂(τ ; y,W )

Proof. The proof relies on the known properties of the solutions for linear programming
problems.

Going back to the more general framework, we now observe that another equivariance
property holds, one much stronger than those already discussed. Let h be a nondecreasing
function on R. Then, for any random variable Y ,

Qh(Y )(τ) = h(QY (τ)) (1.2.1)

that is, the quantiles of the transformed random variable h(Y ) are transformed quantiles
of the original Y .

This follows immediately from the elementary fact that, for any monotone h,

P (Y ≤ y) = P (h(Y ) ≤ h(y)) (1.2.2)
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We highlight that the mean of standard linear regression does not share this property:

E [h(Y )] ̸= h(E[Y ]) (1.2.3)

except for affine h or other exceptional circumstances.

This translates into an easier interpretation, when we train our model not directly on Y
but on some monotonic transformation h(Y ) of the data. Thus, thanks to the equivariance
property, one can straight think of h−1(xβ) as an estimate of the conditional quantile of
Y given X.

A useful application of this property consists in dealing with censored data.

Let y∗i denote a latent (unobservable) variable assumed to be generated from the linear
model

y∗i = xiβ + ui (1.2.4)

for i = 1, ..., n,, where {ui} is independently and identically distributed (iid) from a distri-
bution function F with density f . Censoring, consists in not observing the y∗i -s directly,
but instead we see:

yi = max{0, y∗i } (1.2.5)

the equivariance of the quantiles to monotone transformations implies a fairly simple ex-
pression for the conditional quantile functions of the response, yi , in model 1.2.4

Qyi(τ |xi) = max{0, xiβ + F−1
u (τ)}. (1.2.6)

We observe that it is also straightforward to accommodate observation-specific censoring
from the right and left.

Another useful property that is derived from the monotone equivariance is in terms of
the interpretation of the coefficients of the regression. We have that in standard linear
regression and quantile regression the following equalities hold respectively:

∂E [Y |X = x]

∂xj
= βj (1.2.7)

∂QY (τ |X = x)

∂xj
= βj (1.2.8)

.

However, only in the framework of quantile regression, if we assume that instead

Qh(Y ) (τ |X = x) = x⊺β

the following equality is also true:

∂QY (τ |X = x)

∂xj
=
∂h−1(x⊺β)

∂xj
(1.2.9)

This grants an easier interpretation of those models where what we see is a monotone
function of our variable interest. However we stress also that interpreting coefficients of
linear quantile regression is generally a harder task than those of standard linear regression.
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1.3 Regularization

There are two reasons why we are often not satisfied with results of our regression:

• The first is prediction accuracy: having too many features may decrease the quality
of our prediction, leading to overfitting, or in other words making our model learn
the noise instead of the structure of the data

• The second reason is interpretation. With a large number of predictors, we often
would like to determine a smaller subset that exhibit the strongest effects. In order
to get the “big picture,” we are willing to sacrifice some of the small details.

A way to tackle this problem is through Shrinkage, that is to fit a model containing all
predictors using a technique that constrains or regularizes the coefficient estimates, or
equivalently, that shrinks the coefficient estimates towards zero.

The most natural way to do so is to use lasso. Lasso is defined as:

min
β∈Rp

1

n

n∑
i=1

ρτ (yi − β′xi + β0))− α||β′||1 (1.3.1)

Where β = (β0, β
′), and β0 is the intercept of the regression. In fact we have that for

τ = 1/2 this estimator can be computed with a simple data augmentation device and for
τ ̸= 1/2 the situation is just slightly more complicated since we want asymmetric weighting
of the residual term and symmetric weighting of the penalty term. The key property of
lasso is that it acts more like a model selection penalty, shrinking β coefficients all the way
to their 0 coordinates when α is sufficiently large. For this reason we say that the lasso
yields sparse models, that is it involves only a subset of the variables.
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Chapter 2

Hidden Markov Models

A hidden Markov model (HMM) is a statistical framework used to describe observable
events that are influenced by internal, unobservable factors. An HMM comprises two in-
terconnected stochastic processes: a series of hidden states forming a Markov chain, and
a corresponding series of observable variables whose distribution is determined by these
hidden states. Due to their ability to model hidden states influencing observable sequences,
HMMs have diverse applications in various fields. A prominent example is speech recog-
nition. where, the HMMs help identify the sequence of hidden states (phonemes) that
underlie the spoken word (observable sequence) based on the audio signal. Another appli-
cation is found in bioinformatics where they are used to analyze DNA sequences to identify
gene structures. In finance and econometrics, HMMs have also been extensively employed
for regime detection tasks. This chapter is a reelaboration of the presentation of hidden
Markov models provided in[3] with some computational insights recovered from [4].

2.1 Definitions and notations

Definition 2.1.1. (Transition Kernel). Let (S,S) and (Y,Y) be two measurable spaces.
A transition kernel from (S,S) to (Y,Y) is a function Q : S× Y → [0,∞] that satisfies:

(i) for all x ∈ S, Q(s, ·) is a positive measure on (Y,Y);

(ii) for all A ∈ Y, the function x 7→ Q(s,A) is measurable.

(iii) Q(s, Y ) = 1 for all s ∈ S

If S = Y for all s ∈ S, then Q will be referred to as a Markov transition kernel on (S,S).

A transition kernel Q is said to admit a density with respect to the positive measure µ on
Y if there exists a non-negative function q : S × Y → [0,∞], measurable with respect to
the product σ-field S ⊗ Y, such that

Q(s,A) =

∫
A
q(s, y)µ(dy), A ∈ Y

The function q is then referred to as a transition density function. When S and Y are
countable sets it is customary to write Q(s, y) as a shorthand notation for Q(s, {y}), and
Q is generally referred to as a transition matrix (whether or not S and Y are finite sets).

13



14 CHAPTER 2. HIDDEN MARKOV MODELS

If Q is an (unnormalized) Markov transition kernel on (X,X ), its iterates are defined
inductively by

Q0(x, ·) = δx for x ∈ X,
Qk = QQk−1 for k ≥ 1.

These iterates satisfy the Chapman-Kolmogorov equation: Qn+m = QnQm for all n,m ≥ 0.
That is, for all x ∈ X and A ∈ X ,∫

Qn+m(x,A) dx =

∫
Qn(x, dy)Qm(y,A). (2.1.1)

If Q admits a density q with respect to the measure µ on (X,X ), then for all n ≥ 2, the
kernel Qn is also absolutely continuous with respect to µ. The corresponding transition
density is

qn(x, y) =

∫
q(x, x1) · · · q(xn−1, y)µ(dx1) · · ·µ(dxn−1). (2.1.2)

Definition 2.1.2 (stochastic process). Let (Ω,F ,P) be a probability space and let (X,X )
be a measurable space. An X-valued (discrete index) stochastic process {Xn}n≥0 is a
collection of X-valued random variables. A filtration of (Ω,F) is a non-decreasing sequence
{Fn}n≥0 of sub- σ-fields of F . A filtered space is a triple (Ω,F ,F), where F is a filtration;
(Ω,F ,F,P) is called a filtered probability space. For any filtration F = {Fn}n≥0, we
denote by F∞ = ∨∞n=0Fn the σ-field generated by F or, in other words, the minimal σ-field
containing F. A stochastic process {Xn}n≥0 is adapted to F = {Fn}n≥0, or simply F-
adapted, if Xn is Fn-measurable for all n ≥ 0 The natural filtration of a process {Xn}n≥0,
denoted by FX =

{
FX
n

}
n≥0

, is the smallest filtration with respect to which {Xn} is
adapted.

Definition 2.1.3. (Markov Chain). Let (Ω,F ,F,P) be a filtered probability space and let
Q be a Markov transition kernel on a measurable space (X, X ). An X-valued stochastic
process {Xk}k≥0 is said to be a Markov chain under P, with respect to the filtration F and
with transition kernel Q, if it is F-adapted and for all k ≥ 0 and A ∈ X ,

P (Xk+1 ∈ A | Fk) = Q (Xk, A)

The distribution of X0 is called the initial distribution of the chain, and X is called the
state space.

Definition 2.1.4 (Stationary Process). A stochastic process {Xk} is said to be stationary
(under P ) if its finite-dimensional distributions are translation invariant, that is, if for all
k, n ≥ 1 and all n1, . . . , nk, the distribution of the random vector (Xn1+n, . . . , Xnk+n) does
not depend on n

2.2 Hidden Markov Models

Given a time series {yt}Tt=0 ≡ yT0 we would like to exploit the structure of discrete Markov
chains to model its distribution as a process Y T

0 . One common practice is to assume a
hidden process ST

0 that determines the distribution of the Yt variables, and to assume that
such process is a Markov chain, with a finite number of states.
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Definition 2.2.1 (HMM). Let (Yt, St)∞t=0 be a discrete-time stochastic process such that,
for each t ∈ N, St ∈ S ≡ {0, . . . , k} is the unobservable state and Yt ∈ Y ⊆ Rh, for some
h ∈ N, is the observable state. A Hidden Markov Model is a statistical model such that
for each t ∈ N, the conditional distribution of Yt, given Y t−1

0 and St
0, depends only on St,

and the conditional distribution of St, given Y t−1
0 and St−1

0 , depends only on St−1, so that

Yt |
(
Y t−1
0 , St

0

)
∼ Pθ∗ (St, ·)

St |
(
Y t−1
0 , St−1

0

)
∼ Qθ∗ (St−1, ·)

(2.2.1)

where θ∗ = (π∗, A∗, β∗) ∈ Rk ×Rk×k ×Rd×k are the defining parameters of the model. In
particular for i, j = 1...k:

• π∗i = P̄ π
∗ (S0 = i) are called the starting probabilities

• a∗ij = Qθ∗(St−1 = j, St = i) are the entries of the transition matrix

• β∗i ∈ Rd are the parameters that define the distribution of Pθ(St = i, Yt), also
called the emission distribution

where A = (ai,j)
k
i,j=1, β = (β1, . . . , βk) and P̄ π

∗ denote the probability distribution over
(Yt, St)

∞
t=−∞.

Finally it is often assumed that, for each s ∈ S, Pθ∗(s, ·) admits a density fθ∗(s, ·) ≡ f( ·
;β∗s ) with respect to some σ-finite measure µ on Y. Thus β∗ will be the parameters defining
such density.

St−1 St St+1

Yt−1 Yt Yt+1

A AA A

Pθ∗ Pθ∗ Pθ∗

Figure 2.1: Visual representation of a HMM

A fundamental issue in hidden Markov modeling is: given a fully specified model and
some observations y0, . . . , yn , what can be said about the corresponding unobserved state
sequence s0, . . . , sn ? More specifically, we shall be concerned with the evaluation of the
conditional distributions of the state at index k, sk , given the observations y0, . . . , yn , a
task that is generally referred to as smoothing.

Before dwelling into the computations, we fix the following notation. We will refer to
p(X = x, Y = y), and p(X = x|Y = y) as the joint and the conditional densities with
respect to some reference measure µ, of the random variables X and Y , evaluated at
some points x, y. To make the notation more compact, given the sequences of hidden
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states sn0 , and observed variables yn0 , we will write p(sjk, y
m
h ) and p(sjk|y

m
h ), when meaning

p(Sj
k = sjk|Y

m
h = ymh ) and p(Sj

k = sjk|Y
m
h = ymh ) respectively.

We first define what are the inference problems that we are interested in before deriving
the basic results that form the core of the techniques discussed in the following section.

Definition 2.2.2 (Smoothing, Filtering, Prediction). The problems that we are aiming to
solve can all be formulated as the the problem of computing a specific conditional density
of the hidden states given the sequence, with respect to the product of reference measures
of the transition kernel Pθ, for each element of the sequence:

• Filtering: is the computation of p(sn|yn0 ), for n ≥ 0;

• Smoothing is the computation of p(sk|yn0 ), for n ≥ k ≥ 0;

• Prediction: is the computation of p(sn+p|yn0 ), for n, p ≥ 0.

Smoothing can thus be interpreted now as the problem of computing the distribution of a
past state. Filtering is then computing the distribution of the present state. Prediction is
finally computing the distribution of a future state .

In order to derive explicit algorithms to compute these quantities we first notice that for
j > 0, the conditional density of Sj given Y n

0 = yn0 is proportional to the joint density of
Sj and Y n

0 :

p(Sj |Y n
0 = yn0 ) ∝ p(Sj , Y n

0 = yn0 ) (2.2.2)

Second we recall that we assumed S to be finite thus the following property holds:∑
s∈S

p(Sj = s|Y n
0 = yn0 ) = 1 (2.2.3)

Thus we can now just focus on the computation of p(sj , yn0 ) for sj ∈ S , and then we will
only need to normalize the results to retrieve p(sj |yn0 ).

2.3 Algorithms for the inference problems

All the classical inference problems are computationally straightforward since the distri-
bution is singly-connected, an can be solved in linear time using some so-called message
passing algorithms.

Filtering

We concentrate first on the problem of filtering. The key observation is that through
marginalization we can rewrite p(sj , yn0 ) as:

p(sj , y
n
0 ) =

∑
sj−1∈S

f(yn, β
∗
sj )Qθ∗(sj−1, sj)p(sj−1, y

n−1
0 ) (2.3.1)

We now define:
αt(s) = p(St = s, Y t

0 = yt0) (2.3.2)
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where
α0(s) = p(S0 = s, Y0 = y0) = f(y0, β

∗
s )π(s) (2.3.3)

We observe that marginalizing in the same way as in the previous equation we can derive
a recursive equation for the αt as:

αt(s) =
∑
s′∈S

f(yt, β
∗
s )Qθ∗(s

′, s)αt−1(s
′) (2.3.4)

we can rewrite as well the equation for the filtering problem as:

p(Sn = s, Y n
0 = yn0 ) =

∑
s′∈S

f(yn, β∗s)Qθ(s
′, s)αn−1(s

′) (2.3.5)

Thus in order to solve the filtering problem, one only needs to compute the values of αt(s)
for every s in S, and t ≤ n through the recursion, and normalize the result.

Smoothing

For the smoothing problem instead we observe that thanks to the dependence structure of
the model, the distribution p(Sk, Y n

0 ) can be written as :

p(sk, y
n
0 ) = p(sk, y

k
0 )p(y

n
k+1|sk) ≡ αk(sk)βk(sk) (2.3.6)

This simple splitting of the multiple integration in 2.3.6 constitutes the forward-backward
decomposition.

We observe that also βt(s) satisfies a recursion given by:

βt(s) =
∑
s′S

f(yt, s)Qθ(s, s
′)βt+1(s

′) (2.3.7)

And βn is naturally defined to be 1. Thus one can compute p(sk|yn0 ) as:

p (sk | y1:n) ≡ γ (sk) =
α (sk)β (sk)∑

sk∈S α (sk)β (sk)
(2.3.8)

Together the α− β recursions are called the Forward-Backward algorithm.

Most likely joint state

One problem related to smoothing is given by finding the most likely path sn0 of p (sn0 | yn0 ),
also known as Viterbi alignment.

p (sn1 , y
n
1 ) =

∏
t

f
(
yt, β

∗
st

)
Qθ∗ (st−1, st)

The problem can be easily solved, by exploiting the properties of αt(s) and βt(s) by means
of dynamic programming. In fact if we consider the problem of maximizing only the
probability of the last state, given any past sequence of states, we get:
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max
sT

T∏
t=1

p (yt | st) p (st | st−1) =

{
T−1∏
t=1

p (yt | st) p (st | st−1)

}
max
sT

p (yT | sT ) p (sT | sT−1)︸ ︷︷ ︸
µ(sT−1)

µ (sT−1) depends thus, only from the penultimate timestep. We can continue in this
manner, defining the recursion

µ (st−1) = max
st

p (yt | st) p (st | st−1)µ (st) , 2 ≤ t ≤ T

with µ (sT ) = 1. This means that the effect of maximising over h2, . . . , sT is compressed
into µ (s1) so that the most likely state s∗1 is given by

s∗1 = argmax
s1

p (y1 | s1) p (s1)µ (s1)

Once computed, backtracking gives

s∗t = argmax
st

p (yt | st) p
(
st | s∗t−1

)
µ (st)

This way of solving the most likely hidden state problem, is also called Viterbi algorithm.

Prediction

The p-step ahead predictive distribution is finally given by

p (st+p | y1:t) =
∑

st+p,...,st

p (st+p | st+p−1) . . . p (st+1 | st) p (st+1 | st) p (st | y1:t)

That is for any given yn0 ∈ Yn+1 , the p-step predictive distribution may be obtained by
marginalization of the joint distribution with respect to all variables sk except the last
one (the one with index k = n + p). Chapman-Kolmogorov equations are applied in
order to compute the distribution until present time, where the remaining term represents
a smoothing problem that is solved with the algorithm that we derived in the previous
sections.

2.4 Estimation of Parameters and EM

Given that the state variables are hidden, the likelihood of the model will be a function of
only the observable variables, computed through marginalization, by exploiting the past
dependence properties of the model.

Definition 2.4.1 (Likelihood). The likelihood of the observations is the probability density
function of Y0, Y1, . . . , Yn with respect to µn defined, for all (y0, . . . , yn) ∈ Yn+1, by

Lθ,n (yn0 ) =
∑

(s1,...,sn)∈Sn
π(s0)Pθ(s0, y0)

n∏
t=1

Qθ(st−1, st)Pθ(st, yt) (2.4.1)
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In addition,

ℓθ,n (y
n
0 )

def
= logLθπ,T (y0, . . . , yn)

is referred to as the log-likelihood function.

We want to estimate the true parameter of our model given a sequence of observation,
by means of the maximum likelihood method. However maximizing directly the quantity
ℓθ,n, might be hard due to the presence of the summation inside the logarithm. One
common method to tackle this problem is through the use of the Expectation Maximization
algorithm.

Let’s define the complete likelihood as the likelihood assuming that we observed the hidden
states:

Lcmp
θ,n (sn0 , y

n
0 ) = Qθ(s0, s1)Pθ(s0, y0)

n∏
t=1

Qθ(st−1, st)Pθ(st, yt) (2.4.2)

We observe that we can interpret the quantities that we defined as Lθ,n (yn0 ) = p(yn0 |θ) and
Lcmp
θ,n (sn0 , y

n
0 ) = p(sn0 , y

n
0 |θ)

Then Expectation maximisation algorithm is:

Algorithm 1 EM algorithm
initialize: θ0

• E-Step: Given the current estimate of the model parameters θ(t), compute

Q(θ|θ(t)) ≡ ES0n|Y n
0 ,θ(t) [log p(Y

n
0 , S

n
0 |θ)].

• M-Step: Find the new estimate of the model parameters

θ(t+1) = argmax
θ
Q(t+1)(θ|θ(t)).

where Q(t+1)(θ|θ(t)) is often referred to as the intermediate quantity of EM algorithm.

The key observation to understand the role of the intermediate quantity is that since
p(yn0 , s

n
0 |θ) = p(sn0 |yn0 , θ)p(yn0 , |θ), then for any choice of parameters θ, then taking the

expectation with respect to the variable Sn
0 |Y n

0 , θ
(t), we get:

Lθ,n (sn0 , yn0 ) =
∑

sn0∈Sn
log p(yn0 , s

n
0 |θ)p(sn0 |yn0 , θ(t))−

∑
sn0∈Sn

log p(sn0 |yn0 , θ)p(sn0 |yn0 , θ(t))

(2.4.3)

≡ Q(θ|θ(t))−H(θ|θ(t)) (2.4.4)

We now observe thatH(θ|θ(t))−H(θ(t)|θ(t)) is the Kullback-Leiber divergence of p(sn0 |yn0 , θ)
with respect to p(sn0 |yn0 , θ(t)) and thus is always ≤ 0.

We can thus conclude that
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Lθ,n (sn0 , yn0 )− Lθ(t),n (s
n
0 , y

n
0 )Q(t+1)(θ|θ(t)) ≥ Q(θ|θ(t) −Q(θ(t)|θ(t) (2.4.5)

We now explicitate the relationship that connects our parameters θ∗ and the Likelihood
2.4.1, in order to make the step of the algorithm more explicit in our framework:

Lπ,T (yT0 , sT0 ) =
∑

(s1,...,sT )∈Sn
π∗i p

(
y;β∗s1

)
·

T∏
t=1

a∗st−1,stp
(
y;β∗st

)
(2.4.6)

And the complete likelihood:

Lcomp
π,T (yT0 , s

T
0 ) =

k∏
i=0

[π∗i p (y;β
∗
i )]

zi,1 ·
T∏
t=1

·
k∏

j,i=1

[a∗i,j ]
zj,t·zi,t−1

[
p
(
y;β∗j

)]zj,t (2.4.7)

where

zi,t =

{
1 if st = i

0 otherwise
(2.4.8)

So the complete log-likelihood is:

ℓcomp
θ,n (yn0 ) =

C∑
i=1

zi,1log(πi) +
T∑
t=2

C∑
j,i=1

zj,t · zi,t−1logAji +
T∑
t=1

C∑
j=1

zj,tlog(fj(yt;βj)) (2.4.9)

Let’s consider now the E-step of EM algorithm. Given that the only random variables
inside the complete likelihood are the zi’s then taking the expectation is equivalent to
compute the following:

γt(i) := Eθ[zi,t] = P θ(st = i|Y ) γt,t−1(j, i) := Eθ[zj,t · zi,t−1] = P θ(st = j, st−1 = i|Y )
(2.4.10)

which we recall can be computed in linear time using the forward-backward algorithm that
we introduced previously.

On the other hand M-step we have to find θ̄ that provides the maximum likelihood, given
the γt(i) and γt,t−1(j, i):

θ̄ = argmin
θ

C∑
i=1

γ1(i)log(πi) +

T∑
t=2

C∑
j,i=1

γt,t−1(j, i)log(Aji) +

T∑
t=1

C∑
j=1

zj,tlog(fj(xt, βj))

(2.4.11)
Thus we can look at each parameter separately:
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π̄ =argmin
π

{
C∑
i=1

γ1(i) · log(πi)

∣∣∣∣∣
C∑
i=1

πi = 1

}
(2.4.12)

Ā =argmin
A


T∑
t=1

C∑
j,i=1

γt,t−1(j, i) · log(Aji)

∣∣∣∣∣∣
C∑

j=1

Ai,j = 1 for i = 1, . . . , C

 (2.4.13)

β̄ =argmin
β

T∑
t=1

C∑
j=1

γt(i) · log(fj(xt, βj)) (2.4.14)

So π̄ and Ā can be easily computed by standard methods such as Lagrange multipliers,
while the computation of the maximum of the emissions is an optimization problem that
depends on the expression of the density.
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Chapter 3

Our model

In this section we combine hidden Markov models and quantile regression by following the
same approach as [5]. There are several caveats to pay attention to and we will address
most of them. Finally in every section we provide the code that was written to implement
the model.

3.1 Combining quantile regression and HMM

Let yt, t = 1, . . . , T denote a real-value observation and xt, t = 1, . . . , T , be our covariates.
Let’s denote with St the state of a finite-state semi-Markov chain, defined on the state space
{1, ..., k, ...,K} at time t. A Markov switching quantile regression model is a particular kind
of Hidden Markov model where quantile regression is embedded in its emission distribution.
Let τ be the quantile that we are trying to predict. Then we assume the following model
on the data:

yt = βk(τ)xt + ϵt(τ) (3.1.1)

with βk(τ) being a vector of state-specific regression coefficients, xt = (1, xt) and ϵt(τ) is
the error term whose τ quantile conditional to {x1, . . . , xt} equals zero.

Then we code quantile regression inside the HMM by means of a particular form of the
Asymmetric Laplace distribution:

fQR(y|β, σ, x, τ) =
τ(1− τ)

σ
exp

(
−ρτ

(
y − βTx

σ

))
(3.1.2)

where:

ρτ (v) =

{
τv for v ≥ 0

(τ − 1)v for v < 0
(3.1.3)

23
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and

fQR(y|β, σ, x) is the PDF distribution,
τ is the quantile,
β if the vector of the coefficient of the regression,
x is a vector that represent the covariates
σ is a scale parameter.

The main reason to pick such a distribution is to compute, during the maximization step,
the following maximum:

max
β∈Rp

−
n∑

i=1

ρτ (yi − ξ(xi, β)) (3.1.4)

Observe that this formulation is equivalent to computing the maximum likelihood estimator
under the following model for the response variable:

yt = βxt + ut (3.1.5)

where ut is a asymmetric Laplace variable with density:

f(u|β, σ, τ) = τ(1− τ)
σ

exp
(
−ρτ

(u
σ

))
(3.1.6)

The HMM was implemented using the hmmlearn library [6] of Python. This library allowed
to exploit all the algorithms already implemented inside the library with the only thing
left to manage being the new probability distribution function. The asymmetric Laplace
distribution was already implemented in Python, though in a different formulation, its
probability density function is defined as follows:

fAL(y;µ, κ, λ) =
1

λ(κ+ κ−1)
exp

(
ϕκ

(
y − µ
λ

))
(3.1.7)

where:

ϕκ (x) =

{
−xκ for x ≥ 0

x/κ for x < 0
(3.1.8)

and

fAL(x;µ, σ, λ) is the PDF of the asymmetric Laplace distribution,
κ controls the asymmetry of the distribution,
µ is the location parameter (median),
λ is the scale parameter (spread).

The parameter κ determines whether the distribution is left-skewed (κ > 1) or right-skewed
(0 < λ < 1). When κ = 1, it reduces to the standard Laplace distribution.
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With some easy calculations, we get the same distribution as fQR if:

κ =

√
τ

1− τ
(3.1.9)

σ = λ
√
τ(1− τ) (3.1.10)

βx

σ
=
µ

λ
(3.1.11)

We already highlighted that the betas will be calculated during the maximization step
through quantile regression, and κ is already completely determined by the quantile.

We are left with σ that is calculated as follows:

1

T

T∑
t=1

C∑
j=1

γt(k) · (ρτ (yt − βk(τ)x∗t ) (3.1.12)

We now show how we implemented the functions. After defining the QRHMM subclass we
wrote the following methods:

Example of code
[ ]: def _compute_likelihood(self, X):

'''Compute the likelihood of observations given the model␣
↪→parameters.

Args:
X (np.array): Input data matrix

Returns:
np.array: Matrix of likelihoods for each observation and␣

↪→component.
'''

# Initialize an empty matrix to store the likelihoods
probs = np.empty((len(X), self.n_components))
# Iterate over each component
for c in range(self.n_components):

# Compute the likelihood for each observation
probs[:, c] = np.array([al.pdf(X[:,0], self.k[q], loc=self.

↪→betas_[c,0,q]+np.matmul(self.betas_[c, 1:,q], (X[:, 1:]).T) ,␣
↪→scale=self.scale_[q]) for q in range(len(self.quantile))]).prod(0)

return probs
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Example of code
[ ]: def _compute_log_likelihood(self, X):

'''Compute the loglikelihood of observations given the model␣
↪→parameters.

Args:
X (np.array): Input data matrix

Returns:
np.array: Matrix of likelihoods for each observation and␣

↪→component.'''
# Initialize an empty matrix to store the loglikelihoods

logprobs = np.empty((len(X), self.n_components))
# Iterate over each component

for c in range(self.n_components):
# Compute the loglikelihood for each observation
logprobs[:, c] = np.array([al.logpdf(X[:,0], self.k[q],␣

↪→loc=self.betas_[c, 0,q]+np.matmul(self.betas_[c, 1:,q], (X[:, 1:]).T) ␣
↪→, scale=self.scale_[q]) for q in range(len(self.quantile))]).sum(0)

return logprobs

Example of code
[ ]: def compute_betas(self, y, X, weights):

"""
Compute quantile regression coefficients (betas) for each regime␣

↪→according to self.type_of_reg
and saves the respective quantile regression model for each regime

Parameters:
- y (np.array): The target variable for regression.
- X (np.array): The matrix of features.
- weights (array-like): Posterior probabilities for each regime.

Returns:
- betas (np.array): Regression coefficients for each regime.

"""
# Initialize an array to store regression coefficients for each␣

↪→regime and quantile
betas = np.zeros([self.n_components, self.n_features, len(self.

↪→quantile)])

# Iterate through each regime
for j in range(self.n_components):

for q in range(len(self.quantile)):

# Use QuantileRegressor for linear quantile regression
if(self.type_of_reg=='linear'):

qr = QuantileRegressor(quantile=self.quantile[q],␣
↪→alpha=self.alpha,solver='highs')
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quant_reg_result = qr.fit( X, y,␣
↪→sample_weight=weights[:,j])

betas[j,0,q]=quant_reg_result.intercept_
betas[j,1:,q]=quant_reg_result.coef_
self.qrmodel[j]= qr

...
return betas

We remark that we omitted the other options for "type_ of_ reg" as they are going to be
defined in the following chapter that deals with multifrequency data.

Example of code
[ ]: def compute_scale(self, y, X, weights):

'''Compute the scale parameter of the asymmetric Laplace␣
↪→distribution formulation of quantile regression.

Args:
y (np.array): Target variables.
X (np.array): Feature matrix.
weights (np.array): Weights for each element in the loss function.

Returns:
np.array: Scale parameter for each quantile in the asymmetric␣

↪→Laplace distribution formulation of quantile regression.
'''

# Initialize an array to store the scale parameter
scale_=np.zeros(len(self.quantile))
for q in range(len(self.quantile)):

# Calculate the estimation of the quantile
aux= np.tile(self.betas_[:,0,q], (len(y),1)).T + np.

↪→matmul(self.betas_[:, 1:,q], (X).T)
# Compute the quantile loss
aux_2=rho(np.tile(y, (self.n_components,1))-aux, self.

↪→quantile[q])
# Calculate the scale parameter using weighted residuals
scale_[q]= np.sum(np.multiply(aux_2, weights.T)) / ((len(y))␣

↪→*((1-self.quantile[q])*self.quantile[q])**0.5)
return scale_

3.2 Initialization

A non trivial problem found in training hidden Markov models, is sensitivity to changes
in initial conditions of Expectation Maximization. This was evident during preliminary
tests, where we noticed that our model choice of regimes could be particularly sensitive to
initialisation, leading not only to a shift in interpretation of the hidden classes but also to a
completely different set of parameters of our regression model. Not of lesser importance is
also the issue of the speed of convergence: points closer to the optimum, will also amount
to less iterations of the EM algorithm. Due to these issues, initialization becomes a crucial
step in the algorithm and we developed multiple methods to tackle the problem.
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First, we highlight the general strategy that we adopted for initializing the parameter of
the EM algorithm:

• the first step consist of getting an initial state partition (St)
T
t=0 of our data, through

a method of our choice.

• In this step we only fix the parameters of the hidden Markov chain. From the
partition (St)

T
t=0 is then computed the empirical probability of each state. This will

be the way we initialise π. In order to get the parameters of the transition matrixA we
use again our initial state partition and compute the empirical transition probabilities

• the remaining parameters, the ones of the emission distributions, are then computed
through the maximisation step of the expectation maximisation algorithm

Random approach

One first natural way to obtain a state partition is through a random approach following
[5]. The algorithm performs the classification as follows:

• following a uniform distribution in the number of hidden states, each observation is
classified

• then all the parameters of the model are retrieved through a step of maximization

• finally 2 rounds of EM are performed using the current parameter as initialization
and a likelihood score is computed

The algorithm is repeated a number of times and the initialization is thus given by the
parameters that retrieved the highest score at the end of the second step of the procedure.

Example of code
[ ]: def rand_init(self,X, lengths=None):

'''Initialize model parameters using a random labeling approach.

Args:
X (np.array): Input data matrix.

Returns:
None

'''

# Extract the target variable from the input data
y=X[:,0]

# Iterate through multiple random initializations and select the␣
↪→best model

models=[]
for j in range(100):

if (j%100==0):
print(j)

# Initialize transition matrix and starting probabilities␣
↪→based on random labels
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predictions=np.random.randint(0,self.n_components,y.shape[0],␣
↪→)

self.transmat_ = self.get_trans_emp( predictions)
self.startprob_ = self.get_start_emp( predictions)

...

#Initialize the betas with the empirical results, the␣
↪→posteriors are 1 for the correct label and zeros otherwise

pred_mat = np.zeros((len(predictions), self.n_components))
for j in range(self.n_components):

pred_mat[:, j] = (predictions == j)

self.betas_= self.compute_betas(X[:,0],X[:,1:], pred_mat)

self.scale_= self.compute_scale(X[:,0],X[:,1:], pred_mat)

# Fit the model for a small number of steps and store it␣
↪→along with its score

model=self.init_fit(X,lengths)
models.append([model, model.score(X)])

# Select the model with the highest likelihood score
max_model= max(models, key=lambda x: x[1])

# Update the model parameters with the best model
self.startprob_= max_model[0].startprob_
self.transmat_= max_model[0].transmat_
self.betas_= max_model[0].betas_
self.scale_= max_model[0].scale_

Example of code
[ ]: def init_fit(self, X, lengths=None):

'''Fit the model parameters using the Expectation-Maximization␣
↪→(EM) algorithm for 2 steps.

Args:
X (np.array): Input data matrix with shape.
lengths ( optional): variable inherited from the baseHMM class,␣

↪→it will only be None.

Returns:
self: Updated model instance after fitting.

'''

# If lengths are not provided, use the entire dataset as a single␣
↪→segment

if lengths is None:
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lengths = np.asarray([X.shape[0]])

# Check the validity of the model and reset the monitor
self._check()
self.monitor_._reset()

# Iterate through the Expectation-Maximization (EM) algorithm␣
↪→steps

for iter in range(2):
# Perform the E-step and compute the current log probability

stats, curr_logprob = self._do_estep(X, lengths)

# Compute the lower bound before updating model parameters
lower_bound = self._compute_lower_bound(curr_logprob)

# Update model parameters in the M-step
self._do_mstep(stats)

# Check for convergence based on the monitor
if self.monitor_.converged:

break

# Warn if some rows of transmat_ have zero sum
if (self.transmat_.sum(axis=1) == 0).any():

_log.warning("Some rows of transmat_ have zero sum␣
↪→because no "

"transition from the state was ever observed.
↪→")

return self

Although the initial concept seemed promising, real-world implementation revealed signif-
icant performance issues as the approach was computationally expensive.

k-means

The second approach that we implemented is based on the usage of a clustering algorithm
performed on the (yt)

T
t=0 variables. One first observation is that performing clustering

on the whole dataset (xt, yt)
T
t=0 is also possible, but might be both computationally more

expensive and possibly be susceptible to the curse of dimensionality for very wide datasets.
To perform this task we chose k-means due to its simplicity and computational efficiency.

The k-means is clustering algorithm based on solving an optimization problem objective
function. In k-means the data is partitioned into disjoint sets C1, . . . , Ck where each Ci

is represented by a centroidµi . It is assumed that the input set Y is embedded in some
larger metric space (Y ′, d) (so that Y ⊆ Y ′ ) and centroids are members of Y ′. The k-means
objective function measures the squared distance between each point in Y to the centroid
of its cluster. The centroid of Ci is defined to be:
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µi(Ci) = argmin
µ∈X ′

∑
x∈Ci

d(x, µ)2 (3.2.1)

Then, the k-means objective is

Gk-means((X, d), (C1, . . . , Ck)) =

k∑
i=1

∑
x∈Ci

d(x, µi(Ci))
2 (3.2.2)

Finding the optimal k-means solution is often computationally infeasible (the problem is
NP-hard), thus the following iterative procedure is referred as the k-means algorithm:

Algorithm 2 k-means
input: X ⊂ Rn; Number of clusters k
initialize: Randomly choose initial centroids µ1, . . . ,µk

repeat until convergence:
• ∀i ∈ [k] set Ci =

{
x ∈ X : i = argminj

∥∥x− µj

∥∥}
(break ties in some arbitrary manner)

• ∀i ∈ [k] update µi =
1
|ci|
∑

x∈Ci
x

The implementation of the k-means algorithm was already present in Python, in the library
sklearn.cluster as the function Kmeans. Preliminary tests showed little difference between
this approach and the random one in terms of convergence of the EM algorithm. However
k-means was significantly faster, and was the main algorithm that was used whenever no
more data was known.

Data driven approach

The final approach is derived simply by incorporating external information into the model
through a state partition. For example, when dealing with economic data, the state parti-
tion can be given by a vector of 0 and 1, that represent if at a specific point in time economy
was either or not in a recession state. In theory, this approach is the most effective, pro-
vided that the correct variable is utilized. It may lead to a more robust initialization for
the model and, simultaneously, provide us with a reference variable to compare the model’s
results and facilitate their interpretation. Assuming this variable exists, this method will
always be the preferred choice for training our models.

3.3 Quantile prediction

After fitting the Markov switching quantile regression model, one naturally wishes to be
able to use the model to compute quantile estimates, especially in order to perform tests
to assess the performance of the model. For this purpose we developed two strategies that
depend on the assumptions on present knowledge.

If we assume that we know the whole sequence of observable variables and want to provide
the model estimates of the quantiles of past data, then our approach consists in using the
data and Viterbi algorithm to compute the most likely sequence of hidden states and from
that perform the prediction using the fitted coefficients for each hidden state.
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Example of code
[ ]: def insample_predict(self, Y ,X):

"""
Predict the quantile of Y given X, utilizing Y to guess the regime␣

↪→probabilities and performing regression based on the selected regime.

Parameters:
- Y (np.array): The target variable for which the quantile is to be␣

↪→predicted.
- X (np.array): The features used to predict the quantile of Y.

Returns:
- predictions (np.array): Predicted quantiles for each observation in␣

↪→Y."""

t=X.shape[0]
data=np.concatenate((Y.reshape(-1,1), X),axis=1)

predictions=np.zeros(t)
state_prob=self.predict_proba(data)

for j in range(t):
predictions[j] = state_prob[j,0]*(np.dot(X[j,:], self.

↪→betas_[0,1:,0]) + self.betas_[0,0,0])+state_prob[j,1]*(np.dot(X[j,:],␣
↪→self.betas_[1,1:,0]) + self.betas_[1,0,0])

return predictions

If instead we are interested in predicting the p future-lagged quantile while being at time
t in the present, the approach is different: first we perform a p-step prediction for the
hidden state. Once we compute the distribution of st+p, we select the hidden state s that
is the most likely and then we use quantile regression coefficients for state s to compute
the estimate for the quantile. Assuming we always want to perform just a p future lagged
estimate, in order to compute the k + p future estimate, we can now assume to know all
the information up until time t + k + p. This embodies real life situations, where one
has information at a certain moment in time and wants to know how lagged information
influences future outcomes.
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Example of code
[ ]:

def time_horiz_predict(self, past_sequence, X, Y, time_offset=1):
"""

Predict the future lags (quantiles of the target variable)␣
↪→conditioned on the features for the given past sequence by guessing␣
↪→the regime first and then performing the prediction using the␣
↪→quantile linear regression framework of the found regime. To retrieve␣
↪→the regime we us all past information (Y included) to estimate␣
↪→the probability vector of the regimes at lag "timeoffset" with respect␣
↪→to the time of the prediction, using the Hidden Markov␣
↪→model framework. Then we multiply it by the transition matrix and we␣
↪→picked the regime that has maximum probability.

Parameters:
- past_sequence (np.array): The past sequence of observations, the␣

↪→first column is the target variable.
- X (np.array): The known features for which future lags are to be␣

↪→predicted.
- Y (np.array): The target variable for which the quantile is to be␣

↪→predicted.
- time_offset(int): lag between last information used for the␣

↪→prediction and the time of the prediction

Returns:
- predictions (np.array): Predicted future lags for each row in X.

Achtung! This function differs from running the whole model untile␣
↪→time t. When computing the state probabilities

for the past_sequence, we also include information about the target␣
↪→variable. From then we keep adding future information to the␣
↪→past_sequence

to make future predictions.

"""
k=X.shape[0]
predictions=np.zeros((k))
new_past_sequence=past_sequence
time_offset_transmat=np.linalg.matrix_power(self.transmat_,␣

↪→time_offset)
states=[]
for j in range(k):

prob=np.matmul(self.
↪→predict_proba(new_past_sequence)[-time_offset], time_offset_transmat)

states.append(np.argmax(prob))
predictions[j]=np.matmul(self.betas_[states[-1],1:,0], X[j,:].

↪→T)+self.betas_[states[-1],0,0]
new_past_sequence=np.vstack((past_sequence, np.

↪→concatenate((Y[:j].reshape(-1,1), X[:j,]),axis=1) ))

return predictions, np.array(states)
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Chapter 4

Multifrequency

One common occurrence when dealing with economical data, is that the dataset contains
many variables that are sampled at different frequencies, such as daily, weekly, monthly or
quarterly. This translates into a choice for the researcher. On the one hand, the variables
that are available at high frequency contain potentially valuable information. On the
other hand, the researcher cannot use this high frequency information directly if some of
the variables are available at a lower frequency, because most time series regressions involve
data sampled at the same interval. The common solution in such cases is to "pre-filter”
the data so that the all the variables are available at the same frequency. In this section
we present another way of dealing with the problem with MIDAS ( MIxed Data Sampling
regression) and apply it to our Markov switching quantile regression model. By using this
method we will no longer be able to formulate quantile regression as a linear programming
optimization problem and for this reason we will introduce two alternative optimization
algorithms: Adam and Nelder-Mead.

4.1 MIDAS

When dealing with time series regression, a situation that is often encountered is to have
relevant information as high frequency data, while the variable of interest is sampled at
a lower frequency. Suppose we have a stream of data Yt, t ∈ N sampled at some fixed
frequency. Suppose also that we have another stream of data X

(m)
t that is sampled m

times faster, that is in the interval of time [t, t+ 1) there are exactly m observation of X
that were collected, at intervals of length 1

m . Simple linear MIDAS regression presents as
follows:

Yt = β0 + β1B
(
L

1
m

)
X

(m)
t−1 + ϵt (4.1.1)

where ϵt is an error term and B(x) =
∑K

j=0B(j)xj is a polynomial of degree K, whose
weights sum to one (this condition is imposed because we added the parameter β1). L

1
m

is the lag operator defined as:
L

1
mX

(m)
t = X

(m)

t− j
m

(4.1.2)

We observe how this framework naturally extends to our quantile regression problem by
simply assuming that ϵt’s distribution has quantile at level τ equal to 0. Then generalization
for more X-s sampled at multiple time frequencies is straightforward.

35
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The assumption is for B to be of finite order, however, even if the number of parameters
B(j) ’s in the polynomial B(L1/m) is finite, it might be quite large. To capture daily
fluctuations in the process over the last, say, 6 months, we would need to estimate 6× 22,
or 132 B(k) parameters (assuming 22 trading days a month). To account for daily data
over the last year, we would need approximately 264 parameters. It becomes rapidly clear
that one must impose some structure upon the bk ’s in order to get sensible results.

Often what is done is to aggregate the data at higher frequency in order to reduce all data
to the same frequency, and then fitting a standard regression model on the pre-filtered data.
This practice can be interpreted as imposing some structure on the polynomial B(x), thus
MIDAS can be considered a generalization of this common practice.

Let’s write B(x) = B(x; θ) =
∑K

j=0B (j, θ)xj in order to highlight the dependence of the
polynomial from learned parameters. One common way to tackle the parameter prolif-
eration issue and impose some structure on the B(x; θ) is the following as suggested by
[7]:

B (j, θ) =
eθ1j+···+θQjQ∑K
k=1 e

θ1k+···+θQkQ
(4.1.3)

which we call the ”Exponential Almon Lag,” since it is related to “Almon Lags” that are
popular in the distributed lag literature. The function B(j; θ) is known to be quite flexible
and can take various shapes with only a few parameters.

Let’s consider the case of Q = 2. Then we have:

B (j, θ) =
eθ1j+θ2j2∑K
k=1 e

θ1k+θ2k2
(4.1.4)

Even though we are dealing with just two parameters it’s possible to express a wide variety
of functions.
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Figure 4.1: Plot of exponential almon lag functions for different values of θ1 and θ2

First, it is easy to see that for θ1 = θ2 = 0, we have equal weights (this case is not
plotted). Then we can produce a wide variety of decreasing of increasing functions with
peaks that can drastically change position according to the considered lag. This behavior
then determines how many lags are included in regression. We observe that since the
parameters are estimated from the data, once the functional form of B(k; θ) is specified,
the lag length selection is purely data driven.

4.2 Almon optimization

We introduced exponential Almon polynomials to exploit the MIDAS framework without
falling into an overparametrized regime. However the relationship that bonds the quantile
loss together with the parameters of the model is now more complicated than the one with
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the linear coefficients and optimization can no longer be performed with linear program-
ming. For this reason we resort to iterative optimization algorithms, that, starting from
a initial point, update their estimates of the optimum point until a certain condition is
satisfied. We considered two algorithms: a gradient base one, Adam [8] and a euristic one,
Nelder-Mead [9]. Below we introduce the main features of these algorithms.

4.2.1 Adam

Stochastic gradient-based optimization is of core practical importance in many fields of
science and engineering. If the function is differentiable w.r.t. its parameters, gradient
descent is a relatively efficient optimization method, since the computation of first-order
partial derivatives w.r.t. all the parameters is of the same computational complexity as
just evaluating the function.

Often, objective are composed of a sum of subfunctions evaluated at different subsamples
of data; in this case optimization can be made more efficient by taking gradient steps w.r.t.
individual subfunctions, i.e. Stochastic Gradient Descent (SGD).

A possible extension of SGD is given by Adam, an algorithm for first-order gradient-
based optimization of stochastic objective functions, based on adaptive estimates of lower-
order moments, a method for efficient stochastic optimization that only requires first-order
gradients with little memory requirements. The method computes individual adaptive
learning rates for different parameters from estimates of first and second moments of the
gradients.

The name Adam is derived from adaptive moment estimation, and is well suited for prob-
lems that are large in terms of data and/or parameters. We now give a description of the
algorithm.

Let f(θ) be a stochastic objective function that is differentiable w.r.t. parameters θ. We
are interested in minimizing the expected value of this function, E[f(θ)] w.r.t. its pa-
rameters θ. With f1(θ), . . . , fT (θ) we denote the realisations of the stochastic function at
subsequent timesteps 1, . . . , T . The stochasticity might come from the evaluation at ran-
dom subsamples (minibatches) of datapoints. With gt = ∇θft(θ) we denote the gradient,
i.e. the vector of partial derivatives of ft, w.r.t θ evaluated at timestep t. Adam algorithm
is then defined as follows:
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Algorithm 3 Adam
Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
1: m0 ← 0 ▷ Initialize 1st moment vector
2: v0 ← 0 ▷ Initialize 2nd moment vector
3: t← 0 ▷ Initialize timestep
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θft(θt−1) ▷ Get stochastic gradients
7: mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
8: vt ← β2 · yt−1 + (1− β2) · g2t ▷ Update biased second raw moment estimate
9: m̂t ← mt

1−βt
1

▷ Compute bias-corrected first moment estimate
10: v̂t ← vt

1−βt
2

▷ Compute bias-corrected first moment estimate

11: θt ← θt−1 − α · m̂t√
vt+ϵ ▷ Update parameters

12: end while
13: return θt (resulting parameters)

The algorithm updates exponential moving averages of the gradient (mt) and the squared
gradient (yt) where the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates
of these moving averages.

A possible interpretation of the ratio m̂t/
√
v̂t, is that it plays the role of assessing how

much we trust that the direction m̂t corresponds to the direction of the true gradient:
a greater ratio corresponds to a greater uncertainty about whether the direction of mt

corresponds to the direction of the true gradient. We observe that this property is not
affected by scaling of the objective function, since the effective stepsize is invariant to the
scale of the gradients; rescaling the gradients g with factor c will scale m̂t with a factor c
and v̂t with a factor c2, which cancel out: (c · m̂t) /

(√
c2 · v̂t

)
= m̂t/

√
v̂t.

The moving averages themselves are estimates of the 1st moment (the mean) and the 2nd

moment (of the gradient). However, these moving averages are initialized as (vectors of) 0
’s, leading to moment estimates that are biased towards zero, especially during the initial
timesteps, and especially when the decay rates are small (i.e. the β s are close to 1).

This initialization bias can be easily counteracted, resulting in bias-corrected estimates m̂t

and v̂t. Let g be the gradient of the stochastic objective f , then the algorithm computes
the second moment estimate as:

yt = (1− β2)
t∑

i=1

βt−i
2 · g2i (4.2.1)

Taking expectations of the left-hand and right-hand sides :
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E [yt] = E

[
(1− β2)

t∑
i=1

βt−i
2 · g2i

]

= E
[
g2t
]
· (1− β2)

t∑
i=1

βt−i
2 + ζ

= E
[
g2t
]
·
(
1− βt2

)
+ ζ

where ζ = 0 if the true second moment E
[
g2i
]

is stationary; otherwise ζ can be kept small
since the exponential decay rate β1 can (and should) be chosen such that the exponential
moving average assigns small weights to gradients too far in the past. What is left is the
term

(
1− βt2

)
which is caused by initializing the running average with zeros. In algorithm

1 we therefore divide by this term to correct the initialization bias. The derivation for the
first moment estimate is completely analogous.

In order to apply the algorithm to our problem of maximising the ρτ loss with linear
linear coefficients parameterised by Almon exponential polynomials, we used the Adam
implementation already present in the torch.optim library [10] . In order to be able to
exploit the function, we defined the optimization problem in a sequential fashion using the
torch modules and torch.tensors, as if we were programming a neural network.

Example of code
[ ]: class InterceptModule(nn.Module):

''' auxiliary nn.module for computing a trainable intercept given␣
↪→some data

Attributes:
self.weights: value of the intercept

Methods:
forward(self, x):

returns the value of the intercept as the prediction of a␣
↪→linear model'''

def __init__(self):
super(InterceptModule, self).__init__()
self.weights = nn.Parameter(torch.zeros(1))

def forward(self, x):
return self.weights

Example of code
[ ]:

class MatrixVectorMultiplyLayer(nn.Module):
'''Auxiliary module for almon specificied linear model: multiplies a␣

↪→matrix with vectors of trainable parameters
Attributes:
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self.input_dim (int) : dimension of the vector of trainable␣
↪→parameters

self.weights (tensor.torch) : vector of trainable parameters
'''
def __init__(self, input_dim):

super(MatrixVectorMultiplyLayer, self).__init__()
self.input_dim=input_dim
self.weights = nn.Parameter(torch.zeros(1,self.input_dim,␣

↪→dtype=torch.double) )

'''Performs the forward pass computation on the input.
Args:

x(torch.tensor) : the matrix that multiplies the weights

Returns:
torch.tensor: return the product of the x with the vector of␣

↪→trainable parameters
"""'''

def forward(self, x):
output=torch.matmul( self.weights, x)

return output

Example of code
[ ]: class almon_coeff_SGD(nn.Module): #compute almon coeff and multiply them␣

↪→with the data
'''Auxiliary module for almon specificied linear model: multiplies␣

↪→the proportion given by the exponential almon polynomials to the␣
↪→corresponding data and sums the output

Attributes:
n (int) : number of coefficients to compute
power(int): degree of the almon polynomial
power_matrix(tensor.torch): auxiliary matrix with entries the␣

↪→powers until power of the integers until n
theta(torch.tensor): parameters of the almon polynomials'''

def __init__(self, n, power, pow_mat):
'''Initializes the custom layer.

Args:
n (int) : number of coefficients to compute
power(int): degree of the almon polynomial
power_matrix(tensor.torch): auxiliary matrix with entries the␣

↪→powers of the integers
'''
super(almon_coeff_SGD, self).__init__()
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self.n = n
self.power = power
self.power_matrix=pow_mat[0:power,0:n ]
self.theta =MatrixVectorMultiplyLayer(power)

def forward(self, x):
'''Performs the forward pass computation on the input.

Args:
x(torch.tensor) : data points

Returns:
torch.tensor: returns the sum of the proportion given by the␣

↪→exponential almon polynomials multiplied the corresponding data
'''

alm_coeff=nn.functional.softmax(self.theta( self.power_matrix), ␣
↪→dim=1)

output=x*alm_coeff
output=output.sum(dim=1,keepdim=True)

return output

Example of code
[ ]: class almon_reg(nn.Module):

'''Module that computes the prediction for a linear model that allows␣
↪→almon specificied coefficients for some variables:

Attributes:
lags (list of int) : number of consecutive data that represent␣

↪→lags of the inputs variables
power(list of int): degree of the almon polynomial for each input␣

↪→variable
pow_mat(tensor.torch): auxiliary matrix with entries the powers␣

↪→of the integers
alm_bool (list of bool) : for each lagged feature True if the␣

↪→variable is trained with exp almon coefficients (if False they will be␣
↪→linear)

layers(nn.ModuleList): list of modules containing all the␣
↪→parameters of the model'''

def __init__(self, lags, alm_bool, power, pow_mat):
'''Initializes the custom layer.

Args:
lags (list of int) : number of consecutive data that␣

↪→represent lags of the inputs variables
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alm_bool (list of bool) : for each lagged feature True if the␣
↪→variable is trained with exp almon coefficients (if False they will be␣
↪→linear)

power(list of int): degree of the almon polynomial for each␣
↪→variable

pow_mat(tensor.torch): auxiliary matrix with entries the␣
↪→powers of the integers

'''
super(almon_reg, self).__init__()
self.lags = lags
self.pow_mat=pow_mat
self.alm_bool=alm_bool
self.power=power

# Create a list of layers
self.layers = nn.ModuleList()
j=0
for (d,b,k) in zip(lags, alm_bool, power):

if b==True:
self.layers.append(almon_coeff_SGD(d,k, self.pow_mat))
j=j+1

else: self.layers.append(nn.Linear(d,1, bias=False).double())

n=sum(self.alm_bool) #if there are no almon specified linear␣
↪→coefficient use the intercept module to ad an intercept to the model

if n > 0:
self.final_linear = nn.Linear(n, 1).double()

else: self.final_linear =InterceptModule()

def forward(self, x):
'''Performs the forward pass computation on the input.

Args:
x(torch.tensor) : data points

Returns:
torch.tensor: return the prediction of the model given the␣

↪→features x
'''
# Split the input into chunks
input_chunks = np.split(x, np.cumsum(self.lags), axis=1)

alm_output_chunks = []
lin_output_chunks =[]
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# Process each chunk through a separate linear layer
for chunk, linear_layer, b in zip(input_chunks, self.layers, self.

↪→alm_bool):
if b: alm_output_chunks.append(linear_layer(chunk))
else: lin_output_chunks.append(linear_layer(chunk))

# Concatenate the outputs from all linear and alm layers

if alm_output_chunks:
output_alm = torch.cat(alm_output_chunks, dim=1)

else: output_alm = torch.tensor([0])

if len(lin_output_chunks)>0:
output_lin= torch.stack(lin_output_chunks, dim=0)

else:
output_lin=torch.zeros(2, requires_grad=False)

output=self.final_linear(output_alm)+torch.sum(output_lin, dim=0)

return output

Example of code
[ ]: def compute_betas(self, y, X, weights):

"""
Compute quantile regression coefficients (betas) for each regime␣

↪→according to self.type_of_reg
and saves the respective quantile regression model for each regime

Parameters:
- y (np.array): The target variable for regression.
- X (np.array): The matrix of features.
- weights (array-like): Posterior probabilities for each regime.

Returns:
- betas (np.array): Regression coefficients for each regime.

"""
# Initialize an array to store regression coefficients for each␣

↪→regime and quantile
betas = np.zeros([self.n_components, self.n_features, len(self.

↪→quantile)])

# Iterate through each regime
for j in range(self.n_components):

for q in range(len(self.quantile)):
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...

elif(self.type_of_reg=='almon_SGD'):
# Use stochastic gradient descent for Almon quantile␣

↪→regression
model=self.almon_QR_SGD( y=y,X= X, posterior=weights[:

↪→,j], lr=self.lr)
self.tensor_init[j]=model.state_dict()

#convert our values into linear parameters for the␣
↪→data

quant_reg_result=self.almon_to_linear_SGD(model)
betas[j,:,q]=quant_reg_result
self.qrmodel[j]= model

return betas

Example of code
[ ]: def almon_QR_SGD(self, y, X, posterior, init_tensor=None, lr=0.01):

''' Fit a quantile linear regression model allowing exp almon␣
↪→parametrisation of coefficients, optimised with Adam optimiser.

The model allows for L1 regularization.
Args:

y(np.array) : target variables
X(np.array) = feature matrix
init_tensor (torch.Tensor): optional initial tensor for model␣

↪→weights.
weights(np.array): posterior probabilities that act as weights␣

↪→for each element of y in the quantile loss
lr (float): Learning rate for the Adam optimizer (default is 0.

↪→01).

returns:
(almon_reg) : fitted model

'''
#quantile regression performed through almon exp coefficients
#relies on the assumption that a feature can either affect␣

↪→positevely or negatively the return variable for all lags
torch.manual_seed(self.rnd)
# Create an instance of the model and define a quantile␣

↪→regression loss function
model = almon_reg(lags=self.lags, alm_bool=self.alm_bool,␣

↪→power=self.alm_power, pow_mat=self.pow_mat)
loss_fn = rho_loss(tau=self.quantile[0])
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# Define a Lasso regularization loss
lasso_loss = CustomLassoLoss(alpha=self.alpha,␣

↪→target_layer='final_linear.weight')

# Initialize the Adam optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)

# Convert data to PyTorch tensors
input_data = torch.tensor(X)
target_data = torch.tensor(y)
weights_arr=torch.tensor(posterior)

# Load the initial tensor if provided and not restarting
if (init_tensor is not None) and not self.restart:

model.load_state_dict(init_tensor)

# Create a custom dataset and data loader for data and weights
dataset = MyDataset(input_data,torch.unsqueeze( target_data,1),␣

↪→torch.unsqueeze(weights_arr,1))
batch_size=input_data.size()[0]//self.nbatch
dataloader = DataLoader(dataset, batch_size=batch_size,␣

↪→shuffle=True)

# Training loop
model.train()
for epoch in range(self.epochs):

for inputs, targets, weights in dataloader:
# Zero the gradients

optimizer.zero_grad()

# Forward pass
predictions = model(inputs)

# Compute the quantile regression loss + alpha *␣
↪→Lasso loss weighted by the sum of the weights

loss = loss_fn(predictions, targets,weights) +torch.
↪→sum(weights)*lasso_loss(model)

# Backpropagation
loss.backward()

# Update the model's parameters using Adam optimizer
optimizer.step()

return model
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4.2.2 Nelder-Mead

The Nelder-Mead simplex algorithm is a widely used direct search method for solving the
unconstrained optimization problem

min f(x) (4.2.2)

where f : Rn → R is the objective function and n the dimension. A simplex is a geometric
figure in n dimensions forming the the convex hull of n+ 1 vertices. We denote a simplex
with vertices x1,x1, . . . ,xn+1 by ∆.

The Nelder-Mead method iteratively generates a sequence of simplices to approximate an
optimal point of f(x). At each iteration, the vertices {xj}n+1

j=1 of the simplex are ordered
according to the objective function values

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1)

We refer to x1 as the best vertex, and to xn+1 as the worst vertex. If several vertices have
the same objective values, consistent tie-breaking rules are required for the method to be
well-defined.

The algorithm employs four primary operations: reflection, expansion, contraction, and
shrinkage, each linked to a scalar parameter: α (reflection), β (expansion), γ (contraction),
and δ (shrink). The values of these parameters satisfy α > 0, β > 1, 0 < γ < 1, and
0 < δ < 1. In a common implementation of the Nelder-Mead method the parameters are
chosen to be

{α, β, γ, δ} = {1, 2, 1/2, 1/2}

Let x be the centroid of the n vertices with smallest f . Then

x =
1

n

n∑
i=1

xi

We now outline the Nelder-Mead method:
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Algorithm 4 Nelder mead
• 1 Sort. Evaluate f at the n+1 vertices of ∆ and sort the vertices so that (1.2) holds.

• 2 Reflection. Compute the reflection point xr from

xr = x+ α (x− xn+1)

Evaluate fr = f (xr). If f1 ≤ fr < fn, replace xn+1 with xr.

• 3 Expansion. If fr < f1 then compute the expansion point xe from

xe = x+ β (xr − x)

and evaluate fe = f (xe). If fe < fr, replace xn+1 with xe; otherwise replace xn+1

with xr.

• 4 Outside Contraction. If fn ≤ fr < fn+1, compute the outside contraction point

xoc = x+ γ (xr − x)

and evaluate foc = f (xoc). If foc ≤ fr, replace xn+1 with xoc; otherwise go to step
6.

• 5 Inside Contraction. If fr ≥ fn+1, compute the inside contraction point xic from

xic = x− γ (xr − x)

and evaluate fic = f (xic). If fic < fn+1, replace xn+1 with xic; otherwise, go to
step 6.

• 6 Shrink. For 2 ≤ i ≤ n+ 1, define

xi = x1 + δ (xi − x1)

While the Nelder-Mead method might not always reach a critical point of F , it consistently
demonstrates strong performance and remains widely favored as one of the main direct
search methods.

In our code Nelder-Mead algorithm was already implemented in the library
scipy.optimize.minimize, and since it deals with numpy functions we had to build the com-
putation of the prediction through Almon polynomials, now working with numpy.arrays.

Example of code
[ ]:

def almon_coeff(theta,data, n, power, pow_mat):
"""

Calculate single coefficients using exp Almon polynomial␣
↪→parametrization multiplied with the data and summed.
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Args:
theta (np.array): Parameters of the Almon polynomial.
data (np.array): Feature matrix.
n (int): Number of consecutive columns representing lags in the␣

↪→input variables.
power (int): degree of the almon plynonmial.
pow_mat (np.array): Auxiliary matrix with powers of integers␣

↪→needed for the calculation of Almon polynomials.

Returns:
np.array: Almon coefficients for each lag of the variable␣

↪→multiplied by the data and summed.
"""

power_matrix=pow_mat[0:n,0:power ]
alm_pol = np.matmul(power_matrix, theta)
alm_exp = softmax(alm_pol)
return np.matmul( data, alm_exp)

Example of code
[ ]: def almon_QR(coeff, data, y, lags, alm_bool, power, pow_mat, tau,␣

↪→weights, alpha=0):
''' given the parameters, returns the weighted quantile loss with␣

↪→lasso of the linear regression with exp almon parametrisation of␣
↪→coefficients

Args:
coeff (np.array): parameters of the predictor made of almon␣

↪→polynomials and pure lienar coefficients
data(np.array) = feature matrix
y(np.array) : target variables
lags (list of int) : number of consecutive columns that␣

↪→represent lags of the inputs variables present in data
alm_bool (list of bool) : for each lagged feature True if the␣

↪→variable is trained with exp almon coefficients (if False they will be␣
↪→linear)

power (lis of int) : number of parameters for each varaiable␣
↪→that is trained with almon (needs a placeholder for the purely linear␣
↪→ones)

pow_mat(np.array): auxiliary matrix with powers of integers␣
↪→needed for calculation of almon polynomials

tau (float): quantile parameter for the QR
weights(np.array): an array of weights for each element of y in␣

↪→the quantile loss
alpha(float): parameter of the lasso regularization

returns:
float: quantile loss of the calculated regression
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'''
theta_len=sum(power)

#divide the model parameters and data in chunks according to the␣
↪→data variables and powers

theta_chunks = np.split(coeff[:theta_len], np.cumsum(power)[:-1],␣
↪→axis=0)

data_chunks = np.split(data, np.cumsum(lags)[:-1], axis=1)
output_chunks = []
lasso_lin=[]

#compute the outputs of each variable according to their␣
↪→parametrisation

for (d,b,k,t_chunk, d_chunk) in zip(lags, alm_bool, power,␣
↪→theta_chunks, data_chunks):

if b==True:

output_chunks.append(almon_coeff(t_chunk, d_chunk, d, k,␣
↪→pow_mat))

else:
output_chunks.append(np.matmul(d_chunk, t_chunk))
lasso_lin.append(abs(t_chunk).sum())

#multiply by a linear coefficient to the almon speciefied variables
j=0
for c in coeff[theta_len:-1]:

if alm_bool[j]==True:
output_chunks[j]=c*output_chunks[j]

j=j+1
output=np.column_stack(output_chunks)

#calculate the regularised loss
loss= rho(y-(np.sum(output, axis=1)+coeff[-1]), tau)
return np.dot(loss,weights)+weights.

↪→sum()*alpha*(sum(coeff[theta_len:-1])+sum(lasso_lin))

Example of code
[ ]: def compute_betas(self, y, X, weights):

"""
Compute quantile regression coefficients (betas) for each regime␣

↪→according to self.type_of_reg
and saves the respective quantile regression model for each regime

Parameters:
- y (np.array): The target variable for regression.
- X (np.array): The matrix of features.
- weights (array-like): Posterior probabilities for each regime.
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Returns:
- betas (np.array): Regression coefficients for each regime.

"""
# Initialize an array to store regression coefficients for each␣

↪→regime and quantile
betas = np.zeros([self.n_components, self.n_features, len(self.

↪→quantile)])

# Iterate through each regime
for j in range(self.n_components):

for q in range(len(self.quantile)):

...

elif(self.type_of_reg=='almon'):
# Use Nelder-Mead optimization for Almon quantile␣

↪→regression
result=minimize(almon_QR, self.initial_guess[j],␣

↪→args=( X, y, self.lags, self.alm_bool, self.alm_power,
self.pow_mat, self.quantile[q], weights[:,j], self.

↪→alpha), method='Nelder-Mead', tol=1e-16)
if not self.restart:

self.initial_guess[j]=result.x

#convert our values into linear parameters for the␣
↪→data

quant_reg_result=almon_to_linear(result.x,␣
↪→alm_bool=self.alm_bool, lags=self.lags, power=self.alm_power,␣
↪→pow_mat=self.pow_mat)

betas[j,:,q]=quant_reg_result
self.qrmodel[j]= result

...

return betas

4.3 Handling multifrequency data

In order to fit a multifrequency quantile regression model, a dataset is needed. However
data are often given in a timeseries format, where each datapoint for each variable is
placed in a row that represent the time when that specific variable was sampled. For this
reason a tool to convert this dataset to a dataset useful for regression tasks is needed. The
function that was developed is quite straightforward: given a time series dataframe, an
output variable and a list of features, possibly sampled at different timesteps, the number
of their past lags to be put in a row and the time difference between the output variable
and the most recent lag of the covariates, return a matrix that contains a column with the
outputs and other columns with all the covariates and their respective lags. The code is
quite simple too, however it is able to handle many different data frequencies such as daily
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weekly, monthly and quarterly.

The followings are auxiliary variables, necessary to adjust the date that we are working
with, since weekly or monthly shifts in data may occur in days such as weekend or holiday,
or shifting the date by one month may not end up in the last day of the month.

Example of code
[ ]:

def is_weekend(date):
''' Check if the day of the week is Saturday (5) or Sunday (6)
Args:

date (datetime)
Returns:

bool: True if the day is either a Saturday or a Sunday, False␣
↪→otherwise'''

day_of_week = date.weekday()

return day_of_week >=5

Example of code
[ ]: def begin_date(date, n):

''' given a date go forward exactly n weekdays and return the␣
↪→correspoonding date in a weekday

Args:
date (datetime) : starting date
n (int) : minimum number of days to advance

returns:
datetime: The resulting first weekday date after moving forward at␣

↪→least n days

'''
weeks=n//5
new_date=date+relativedelta(days=weeks*7)
new_date=new_date+relativedelta(days=n%5)
if (is_weekend(new_date)):

new_date=new_date+relativedelta(days=2) #either saturday or␣
↪→sunday means that the day that was meant was two days later

return new_date

Example of code
[ ]: def end_date(date, n): #given a date go backward exactly n weekdays and␣

↪→return the correspoonding date in a weekday
''' given a date go backward exactly n weekdays and return the␣

↪→correspoonding date in a weekday
Args:

date (datetime) : starting date
n (int) : minimum number of days to go backward in time

returns:
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datetime: The resulting first weekday date after moving backward at␣
↪→least n days

'''
weeks=n//5
new_date=date-relativedelta(days=weeks*7)
new_date=new_date-relativedelta(days=n%5)
if (is_weekend(new_date)):

new_date=new_date-relativedelta(days=2) #either saturday or␣
↪→sunday means that the day that was meant was two days before

return new_date

Example of code
[ ]: def is_friday(date):

''' Check if the day of the week is Friday (4)
Args:

date (datetime)
returns:

bool True if the date is a friday False otherwise '''

day_of_week = date.weekday()
return day_of_week ==4

Example of code
[ ]: def date_shift_plus(date, shift):

''' Add the date with a relativedelta (shift) and adjustes the date␣
↪→according to the shift:

when it is a weekend if shifted by one day or
when it is not friday if the shift is 7 days or
when it is not the last day of the month if it is shifted by one or␣

↪→more months

Args:
date (datetime): starting date
shift (relativedelta) : time period to shift date into the future

returns:
datetime: the shifted date adjusted acoording to the kind of␣

↪→shift'''

new_date=date+shift
if(new_date+shift<new_date+relativedelta(days=7)):

while(is_weekend(new_date)): #avoid weekends
new_date=new_date+relativedelta(days=1)

if new_date+shift==new_date+relativedelta(days=7):
while not is_friday(new_date) :
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#if the Y are sampled weekly start regression at the first␣
↪→following friday

new_date= new_date+relativedelta(days=1)

if(new_date+shift>=new_date+relativedelta(months=1)):
#added because it may happen that when getting one month into the␣

↪→future it may not to be the last day of the month
new_date=next_last(new_date)

return new_date

Example of code
[ ]: def date_shift_minus(date, shift):

''' subtract the date with a relativedelta (shift) and adjustes the␣
↪→date according to the shift:

when it is a weekend if shifted by one day or
when it is not friday if the shift is 7 days or
when it is not the last day of the month if it is shifted by one or␣

↪→more months

Args:
date (datetime): starting date
shift (relativedelta) : time period to shift date into the past

returns:
datetime: the shifted date adjusted acoording to the kind of␣

↪→shift'''

new_date=date-shift
if(new_date+shift<new_date+relativedelta(days=7)):

while(is_weekend(new_date)): #avoid weekends
new_date=new_date-relativedelta(days=1)

if new_date+shift==new_date+relativedelta(days=7):
while not is_friday(new_date) :

#if the Y are sampled weekly start regression at the first␣
↪→following friday

new_date= new_date-relativedelta(days=1)

if(new_date+shift>=new_date+relativedelta(months=1)):
#added because it may happen that when getting one month into the␣

↪→past, it may not to be the last day of the month
new_date=next_last(new_date)

return new_date
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Example of code
[ ]: def next_last(date):

''' given a date find the first next date which is at the end of the␣
↪→month,

if the date is already the last keeps the original one
Args:

date (datetime): starting date
returns:

datetime: the last date of the month of date'''
new_date=date+relativedelta(months=1)
year = new_date.year
month = new_date.month
new_date = datetime.datetime(year, month, 1)
return new_date-relativedelta(days=1)

Then the following is the main function that allows us to build a dataset for regression. The
function first computes the first date for the return variable, such that we have enough past
data on the other variables to perform regression according to the lags that we considered.
Then for each feature, their oldest lag that is going to be inserted in the dataset is retrieved.
Then the function proceeds to go forward in time collecting all the needed lags of such
variables. This procedure is repeated for each feature and after running all the features,
the function simply shifts the return variable by one lag into the future, and the features
are again computed starting from that date. At the end of the code we also perform a
simple quantile regression on the newly built dataset.

Example of code
[ ]: def easy_quant_midas(data, Y_label, Y_freq, X_labels, X_freq, past_m,␣

↪→quantile=0.5, aplha=0, time_offset=1):
''' convert a multivariate time series dataset, into a dataset to be␣

↪→used for regression, and performs quantile regression on the dataset.
Args:
data(pd.dataframe): timeseries dataframe
Y_label(string) : name of the output variable
Y_freq (relativedelta): frequency at which the output data is sampled␣

↪→(either 7 days or 1 month)
X_label(list of string) :the names of the imput variables
X_freq (list of relativedelta): frequency at which each of the imput␣

↪→data is sampled (euqally or more frequently than Y, the output␣
↪→variable)

past_m (list of int): lags of each of the inputs to be inserted in␣
↪→each row the dataset

quantile (float): quantile parameter for the quantile regression
alpha (float): coefficient of the L1 regularization of the quantile␣

↪→regression
time_offset(int): time_offset*Y_freq is the time difference between␣

↪→the Y we are estimating and the most recent lag of the features X

returns:
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quant_reg_result(class QuantileRegressor)= fitted lieanr quantile␣
↪→regressor model

X(np.array)= matrix of the features
Y(np.array) = array of the output data
index(list of datetime)= dates corresponding to the Y in the␣

↪→return dataset'''

X = []
Y = []
index=[]
shift_time=time_offset*Y_freq

# Find the first Y date in which there are enough past variables to␣
↪→do the regression for every X_label

start_time=[]
for (time, m) in zip(X_freq, past_m):

if (time==relativedelta(days=1)):
start_time.append(begin_date(data.index[0]+shift_time, m))

else:
start_time.append(data.index[0]+shift_time+m*time)

run_date=max(start_time)

# Start regression at the first following non-weekend day if Y is␣
↪→sampled daily

while((run_date+Y_freq<run_date+relativedelta(days=7)) and␣
↪→(is_weekend(run_date))): #the comparison is computed in this way␣
↪→beacuse there is no < or > for relativedata class objects

run_date= run_date+relativedelta(days=1)

# Start regression at the first following Friday if Y is sampled␣
↪→weekly

while((run_date+Y_freq==run_date+relativedelta(days=7)) and (not␣
↪→is_friday(run_date))):

run_date= run_date+relativedelta(days=1)

# Find the first feasible month if Y is sampled quarterly
if (run_date+Y_freq==run_date+relativedelta(months=3)):

while((run_date.month%3) != 1):
run_date= run_date+relativedelta(months=1)

# Start regression at the first following 1 of the month if Y is␣
↪→sampled more than monthly

if (run_date+Y_freq>=run_date+relativedelta(months=1)):
run_date=next_last(run_date)
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end_time=data.index[-1]

while(run_date <= end_time):

if pd.isnull(data.loc[run_date][Y_label]):
raise RuntimeError(Y_label+" , the response variable is␣

↪→null in date " + str(run_date))

row = np.array([])
feat_date= run_date-shift_time
for regr in zip(X_labels, X_freq, past_m): #! the dates are␣

↪→ordered from the farthest to the closest to the Y date for every label␣
↪→

# Collect data in the past from the time offset␣
↪→selected

label=regr[0]
freq=regr[1]
m=regr[2]
aux_date=date_shift_minus(feat_date+freq, freq)␣

↪→#trick to go back to the first feasable date

for j in range(m):

new_aux_date=aux_date

while pd.isnull(data.loc[new_aux_date]␣
↪→[label] ):

# Replace any data that is null by␣
↪→looking further in the past

␣
↪→new_aux_date=date_shift_minus(new_aux_date,freq)

aux_date=date_shift_minus(aux_date, freq)

row= np.append( row, data.loc [new_aux_date]␣
↪→[label])
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if not np.any(np.isnan(row)):
X.append(row)
Y.append(data.loc[run_date][Y_label])
index.append(run_date)

run_date=date_shift_plus(run_date,Y_freq)

X = np.array(X)
Y = np.array(Y)

# Create a linear quantile regressor model
quant_reg_result=[]
qr = QuantileRegressor(quantile=quantile, alpha=0,solver='highs')
quant_reg_result = qr.fit(X, Y)
y_pred = quant_reg_result.predict(X)

return [quant_reg_result, X,Y, index]



Chapter 5

Testing quantile models

Assessing the validity of quantile regression estimates given by a model is a non trivial
problem as quantiles are not observable. Therefore the analysis has to rely upon the study
of the behaviour of the violations in order to test its validity, that is the study of the
instances where the observed value exceeds the predicted quantile. A model is hence valid
if the violation process satisfies some theoretical hypothesis. On this basis we present three
tests that aim to address this problem. When performing estimation of quantiles, there
are three universal points that arise :

• The power of backtesting tests, crucial for identifying model validity, tends to be low,
especially in small samples.

• Backtesting methodologies should be model-free to ensure applicability across differ-
ent models.

• Estimation risk must be accounted for, as the risk of estimation error present in the
estimates of the parameters pollutes quantile forecasts.

While the second condition is satisfied by our tests we will discuss the other issues in the
last section of this chapter.

5.1 Framework

Consider the following general statistical model:

yt = f (yt−1,xt−1, . . . , y1,x1;β0) + ϵtθ ≡ ft(β0) + ϵt,τ , t = 1, . . . , T, (5.1.1)

where f1(β) is some given initial condition, xt is a vector of exogenous or predetermined
variables, Ft = [yt−1,xt−1, . . . , y1,x1, f1(β)] is the information set available at time t, and
for every t = 1, . . . , T , ϵt,τ is a random variable for which we assume Qϵt,τ (τ |Ft) = 0.

Then we have that
Pr [yt < ft (β0) |Ft] = τ ∀t = 1, . . . , T (5.1.2)

This is equivalent to requiring that {I (yt < ft (β0))}Tt=1, the violation process satisfies the
property:

E[It|Ft−1] = τ (5.1.3)

59
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It can be verified that this condition implies that the sequence of indicator functions is a
sequence of Bernoulli iid random variabales, with parameter τ . Hence a property that
any quantile estimate should satisfy is that of providing a filter to transform a (possibly)
serially correlated and heteroskedastic time series into a serially independent sequence of
indicator functions.

Indeed let’s remark separately that the process {I (yt < ft (β0))}Tt=1 ≡ {It}
T
t=1 satisfies the

following two hypotheses:

• The Unconditional coverage (UC thereafter) hypothesis: the probability of the ob-
served yt exceeding the quantile forecast must be equal to:

Pr [It = 1] = E[It] = τ. (5.1.4)

• The independence hypothesis: violations observed at two different dates must be
distributed independently. In other words, past violations should not be informative
about current and future violations.

The UC hypothesis is a straightforward one. Indeed, if the frequency of violations observed
over T periods is significantly lower (respectively higher) than the quantile (also called cov-
erage rate) τ then the model overestimates (respectively underestimates) the true quantile.
However, the UC hypothesis shades no light on the possible dependence of violations.

Therefore, the independence property of violations is an essential one, because it is related
to the ability of a quantile model to accurately model the higher-order dynamics of returns.
In fact, a model which does not satisfy the independence property can lead to clustering
of violations (for a given period) even if it has the correct average number of violations.
Consequently, there must be no dependence in the violations variable.

Thus a first natural way to test the validity of the forecast model with parameter β, is to
check whether the sequence {I (yt < ft (β))}Tt=1 ≡ {It}

T
t=1 is iid.

However while these kind of tests can detect the presence of serial correlation in the se-
quence of indicator functions {It}Tt=1, this is still only a necessary but not sufficient con-
dition to assess the performance of a quantile model. Indeed, it is not difficult to generate
a sequence of independent {It}Tt=1 from a given sequence of {yt}Tt=1: it suffices to define a
sequence of independent random variables {zt}Tt=1, such that

zt =

{
1 with probability τ
−1 with probability (1− τ)

(5.1.5)

Then setting ft (β) = Kzt, for K large, will be a sequence of random variables, that can
deceive our tests.

Notice, however, that once zt is observed, the probability of exceeding the quantile is
known to be almost 0 or 1 . Thus the unconditional probabilities are correct and serially
uncorrelated, but the conditional probabilities given the quantile are not. This example
is an extreme case of quantile measurement error. Any noise introduced into the quantile
estimate will change the conditional probability of overestimating the present quantile
given the estimate itself.

Therefore, just testing for the iid condition has no power against this form of misspecifi-
cation. Now, with the goal of building a test that can deal with this situation we define:
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Hitt ≡ Hitt
(
β0
)
≡ I

(
yt < ft

(
β0
))
− τ

The Hitt function assumes value (1 − τ) every time yt is less than the quantile and −τ
otherwise. Clearly, we have:

E [Hitt] = 0.

Furthermore, from the definition of the quantile function, the conditional expectation of
Hitt given any information known at t− 1 must also be 0 .

In particular, Hitt must be uncorrelated with its own lagged values and with ft (β), and
must have expected value equal to 0 . If Hitt satisfies these moment conditions, then there
will be no autocorrelation in the hits, no measurement error as in 5.1.5, and the correct
fraction of exceptions.

5.2 Preliminary definitions

Before defining the first two tests let’s briefly introduce the Wald test. Further reference
can be found for example in [11]

Let’s consider a statistical model with parameter δ0 ∈ Rd, and let’s call δ̂n ∈ Rd, n ∈ N a
sequence of estimators satisfying the following central limit theorem:

n1/2(δ̂n − δ0)→d N(0, I−1(δ0)) (5.2.1)

where I(δ0) is the Fisher information matrix of δ0.

We consider testing hypotheses about δ of the form

H0 : δ0 = δ

versus
H1 : δ0 ̸= δ.

We note that if δ0 is a vector of regression coefficients and δ = 0, this is a test about the
significance of corresponding covariates.

Then a commonly used test statistics for testing our hypothesis is the Wald statistic:

n(δ̂n − δ)′I(δ)(δ̂n − δ)

which measures the weighted distance between the unrestricted estimate δ̂n of δ0 and its
hypothetical value δ under H0. Alternatively, I(δ0) may be replaced by any consistent
estimator V (δ̂n) of the variance of δn. The test rejects the hypothesis at significance level
α when

n(δ̂n − δ)′I(δ0)(δ̂n − δ) > χ2
1−α,d (5.2.2)

where χ2
1−α,d is the quantile at level α of the chi-squared distribution with d degrees of

freedom.
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We now define the linear regression model. Given a dataset (yt, xt) ∈ R×Rd for t = 1, . . . , n
where yi will be the return variables and xt the features or covariates, we consider the model

yt = δT0 xt + ϵt (5.2.3)

where δ0 ∈ Rd and ϵtnt=1 is a sequence random variables that represent the error terms that
are assumed to have all mean zero and limited variance. We define the OLS estimator δ̂n
as:

δ̂n = argmin
δ∈Rd

n∑
t=1

|yt − δTxi|2 (5.2.4)

or more compactly:

δ̂n = (X⊤X)−1X⊤y (5.2.5)

where X is the matrix whose t-th column is xi, and y is the vector whose t-th component
is yt. One can thus express the variance of δ̂n as:

V (δ̂n) = V
(
(X⊤X)−1X⊤y

)
= (X⊤X)−1X⊤ΣX(X⊤X)−1 (5.2.6)

where where Σ represents the covariance matrix of the error terms.

5.3 Our tests

5.3.1 Unconditional Coverage and joint dynamic quantile test

Given a sequence of Hit(β̂)nt=0, for β̂ an estimator of β0, the first tests we introduce are
based on the following linear regression models:

Hitt(β̂) = δuc + ϵuct (5.3.1)

Hitt(β̂) = δjdq + µjdq Hitt−1(β̂) + ϵjdqt (5.3.2)

We define δ̂ucn , and (δ̂jdqn , µ̂jdqn ) as the OLS estimator of 5.3.1 and 5.3.2 respectively.

We now call the Unconditional Coverage (UC)test as the Wald test with null hypothesis
δuc = 0 applied in model 5.3.1 to the δucn estimator. The name is self-explanatory, with
this test we are trying to verify the unconditional coverage property. That means that we
are aiming not to reject the null hypothesis

Similarly, we refer to the Joint Dynamic Quantile (JDQ) test as the Wald test with null
hypothesis (δjdq, µjdq) = (0, 0) applied in model 5.3.2 to the (δjdqn , µjdqn ) estimator. With
this test instead we are aiming to verify the independence of the Hitt variable with respect
to its past lag, by showing lack of correlation. Again we are aiming not to reject the null
hypothesis.

In order to being able to compute the statistics we now need only to define our estimator
for the covariance matrices of our parameters. A common assumption, especially when
dealing with economic variables, is heteroskedasticity of the errors, that is the variance
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of the error terms may change through time. Another common assumption is to assume
the error variables to be autocorrelated. For this reason both V (δ̂ucn ) and V ((δ̂jdqn , µ̂jdqn ))
were estimated using the heteroskedasticity and autocorrelation robust standard estimator
proposed in [12], also known as the Newey–West estimator:

XTΣX =
1

T

T∑
t=1

e2txtx
T
t +

1

T

L∑
ℓ=1

T∑
t=ℓ+1

wℓetet−ℓ(xtx
T
t−ℓ + xt−ℓx

T
t ) (5.3.3)

(5.3.4)

where wℓ = 1 − ℓ
L+1 , L is the number of past lags for which we assume autocorrelation,

X represent the covariates of the linear regression, and et are the residuals, the difference
between the return variable and its prediction at time t. In order to perform our tests we
assume only one lag of autocorrelation.

Example of code
[ ]:

def uc_and_jdq_test(Y,quant_pred_Y, q, alpha=0.05, time_offset=0):
"""

Conducts unconditional coverage and joint dynamic quantile tests.

Parameters:
- Y (np.ndarray): Observations
- quant_pred_Y (np.ndarray): Prediction of quantile
- q (float): Quantile
- alpha (float): Threshold for rejecting the null hypothesis (default␣

↪→is 0.05)
- time_offset (int): if Y is calculated as time increments of another␣

↪→quantity, reprents
the number of Y lags of Y that separates the values used to␣

↪→compute the increments

Returns:
- p_value_1 (float): P-value of the unconditional coverage test
- p_value_2 (float or None): P-value of the joint dynamic quantile␣

↪→test (or None if an error occurs)
"""

#Compute the Hits
H=(Y<quant_pred_Y).astype(np.float64)-q

# Create a constant term and fit an OLS model
X = sm.add_constant(np.ones_like(H))
model_1 = sm.OLS(H, X).fit(cov_type='HAC', cov_kwds={'maxlags':1,␣

↪→'use_correction':True})

# Extract the delta parameter and perform hypothesis test
delta=model_1.params[0]
print(delta)
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hypothesis_test = model_1.t_test("const = 0")
p_value_1 = hypothesis_test.pvalue
print(f"P-value: {p_value_1} ", end="")

# Check if the null hypothesis is rejected based on the p-value
if p_value_1 < alpha:

print("unconditional coverage test: Reject the null hypothesis(bad␣
↪→fit)")
else:

print("unconditional coverage test: Fail to reject the null␣
↪→hypothesis(possibly good fit)")

# Create lagged data for the joint dynamic quantile test
lagged_data = np.roll(H, shift=-time_offset)
lagged_data= lagged_data[:-time_offset]
H_reg=H[:-time_offset]
print(H)
print(time_offset)
if not np.all(H_reg==H_reg[0]):

# Fit an OLS model for the joint dynamic quantile test
model_2 = sm.OLS(lagged_data, sm.add_constant(H_reg)).

↪→fit(cov_type='HAC', cov_kwds={'maxlags':time_offset, 'use_correction':
↪→True})

# Specify null hypothesis for the joint dynamic quantile test
hypothesis = '(const= 0, x1 = 0)' # Null hypothesis: intercept and␣

↪→slope are both zero

# Print the p-value for the joint dynamic quantile test
p_value_2= model_2.wald_test(hypothesis,scalar=True).pvalue
print(f"P-value: {p_value_2} ", end="")

# Check if the null hypothesis is rejected based on the p-value
if p_value_2 < alpha:

print("joint dynamic quantile test: Reject the null␣
↪→hypothesis(bad fit)")

else:
print("joint dynamic quantile test: Fail to reject the null␣

↪→hypothesis(possibly good fit)")
return p_value_1, p_value_2

else:
print("Error: joint dynamic quantile test: Reject the null␣

↪→hypothesis(bad fit) (all H are the same)")
return p_value_1, 0
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5.3.2 DQ test

With the preceding tests we only performed inference on the properties of unconditional
coverage and independence. Thus we are not yet able to detect the misspecification of
5.1.5. Using the properties that we deduced from the Hit(β0))t-variables, a natural way to
set up a test as done in [13] is the following. Given again a sequence of {Hitt(β̂)}Tt=1 is to
check whether the test statistic:

T−1/2X⊤(β̂)Hit(β̂) (5.3.5)

is significantly different from 0 , where Xt(β̂), t ∈ {1, . . . , T}, the typical row of X(β̂) (pos-

sibly depending on β̂) is a q-vector measurable Ft and Hit(β̂) ≡
[
Hit1(β̂), . . . ,HitT (β̂)

]′
.

Essentially what we are doing is to check multiple correlations of the Hit variables with
the past information.

To derive the out-of-sample DQ test, let TR denote the number of training observations
and let NR denote the number of test observations. We will make explicit the depen-
dence of the relevant variables on the number of observations, using appropriate sub-
scripts. Let’s define the q-vector measurable Fn, Xn

(
β̂TR

)
, for n = TR + 1, . . . , TR +

NR, as the typical row of X
(
β̂TR

)
, possibly depending on β̂TR

, and Hit
(
β̂TR

)
≡[

HitTR+1

(
β̂TR

)
, . . . ,HitTR+NR

(
β̂TR

)]⊤
.

With the following theorem, under the hypothesis of consistency of the estimator β̂ and
some technical assumptions, we show that the statistics for the DQ-test indeed converges
in distribution to a normal Gaussian variable. The validity of the result relies heavily on
the assumption

lim
R→∞

NR/TR = 0

which connects the size of the training set with the size of the test set. Given that the result
is asymptotic it is not entirely clear how one would need to replicate this condition with
a finite sample. For this reason in the following chapters we will explore some simulations
to better understand its behavior.

Theorem 5.3.1 (Out-of-sample dynamic quantile test). Assume that:

• Conditional on all of the past information Ft, the error terms εtθ form a station-
ary process, with continuous conditional density ht (ε | Ft) ≤ N < ∞∀t, for some
constant N .

• ft(β) is differentiable and ∥∇ft(β)∥ ≤ F0 < ∞, for some constant F0,
∥∇ft(β)−∇ft(γ)∥ ≤M0∥β − γ∥ <∞ for some constants M0.

• T
−1/2
R (β̂TR

− β0) obeys the central limit theorem.

• Xt(β) is measurable Ft, ∥Xt(β)∥ ≤ W0 < ∞, for some constant W0 and there exist
∥∇Xt(β)∥ ≤ Z0, for some constant Z0

• limR→∞ TR =∞, limR→∞NR =∞, and limR→∞NR/TR = 0.

• The sequence
{
N

−1/2
R X′ (β0)Hit (β0)

}
obeys the central limit theorem.

Then:



66 CHAPTER 5. TESTING QUANTILE MODELS

DQ ≡Hit′
(
β̂TR

)
X
(
β̂TR

) [
X′
(
β̂TR

)
·X
(
β̂TR

)]−1

×X′
(
β̂TR

)
Hit′

(
β̂TR

)
/(θ(1− θ)) d∼ χ2

q as R→∞

Proof. We first approximate the discontinuous function Hitt(β̂) with a continuously differ-
entiable function, for any fixed β̂ . Define

Hit⊕t (β̂) ≡
[
1 + exp

{
c−1
T ε̂t

}]−1 − θ
≡ I∗ (ε̂t)− θ

where ε̂t ≡ yt − ft(β̂) and cT is a sequence such that limT→∞ cT = 0. Then

∇βHit
⊕
t (β̂) = c−1

T exp
{
c−1
T ε̂t

} [
1 + exp

{
c−1
T ε̂t

}]−2∇ft(β̂)
≡ kcT (ε̂t) · ∇ft(β̂).

Note that kcT (ε̂t) is the pdf of a logistic with mean 0 and parameter cT . In matrix form, we
write ∇βHit⊕(β̂) = K (ε̂t)∇f(β̂), where K (ε̂t) is a diagonal matrix with entries kcT (ε̂t).
We now prove:

T−1/2X′(β̂)Hit⊕(β̂)

= T−1/2
T∑
t=1

[
X′

t(β̂)Hit
⊕
t (β̂)

]
+ op(1)

Since we assumed ||Xt(β̂)|| ≤W0 we only need to bound
∣∣∣Hit⊕t (β̂)−Hitt (β̂)∣∣∣.

We observe that due to the consistency of β̂ we have:

∣∣∣Hit⊕t (β̂)−Hitt (β̂)∣∣∣ = ∣∣Hit⊕t (β0)−Hitt (β0)
∣∣+ op(1) (5.3.6)

Noting that I∗ (|εtθ|) = 1− I∗ (− |εtθ|), we have, for each t,

∣∣Hit⊕t (β0)−Hitt (β0)
∣∣

≤ I∗ (|εtθ|)
[
I
(
|εtθ| ≥ T−d

)
+ I

(
|εtθ| < T−d

)]
≡ Ct +Dt

where d is a positive number greater than 1/2, such that limT→∞ cTT
d = 0. Therefore
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T−1/2
T∑
t=1

∥∥Xt (β0)
[
Hit⊕t (β0)−Hitt (β0)

]∥∥
≤ T−1/2W0

T∑
t=1

·
∣∣Hit⊕t (β0)−Hitt (β0)

∣∣
≤ T−1/2W0

T∑
t=1

· (Ct +Dt) ,

where Ct ≡ I∗ (|εtθ|) · I
(
|εtθ| ≥ T−d

)
and Dt ≡ I∗ (|εtθ|). I

(
|εtθ| < T−d

)
.

Noting that I∗ (|εtθ|) is decreasing in |εtθ|, we have Ct ≤ I∗
(
T−d

)
. Therefore,

T−1/2
T∑
t=1

Ct ≤ T 1/2W0

[
1 + exp

(
c−1
T T−d

)]−1 T→∞−−−−→ 0.

For Dt, note that Dt ≤ I
(
|εtθ| < T−d

)
, because I∗ (|εtθ|) is bounded between 0 and 1 .

Therefore, for any ξ > 0,

T−1/2W0

T∑
t=1

Pr (Dt > ξ)

≤ T−1/2ξ−1W0

T∑
t=1

E

[∫ T−d

−T−d

st (λ | Ωt) dλ

]

≤ T−1/2ξ−1W0

T∑
t=1

·2T−dN

= 2ξ−1W0NT
−d+1/2 T→∞−−−−→ 0.

We now apply the mean value expansion to the continuous approximation,

N
−1/2
R X′

(
β̂TR

)
Hit⊕

(
β̂TR

)
=

N
−1/2
R

{
X′ (β0)Hit⊕ (β0)

+
[
∇X (β∗)Hit⊕ (β∗) +X (β∗)K (ε∗t )∇f (β∗)

] (
β̂TR
− β0

)}
,

where β∗ lies between β̂ and β.

We rewrite:

lim
R→∞

N
−1/2
R X′

(
β̂TR

)
Hit⊕

(
β̂TR

)
= lim

R→∞

{
N

−1/2
R X′ (β)Hit⊕ (β)

+

(
NR

TR

)1/2

× 1

NR

[
∇X (β∗)Hit⊕ (β∗) +X (β∗)K (ε∗t )∇f (β∗)]T

1/2
R

(
β̂TR
− β

)}
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We now focus on proving that there exists a constant C such that for any R large enough:

1

NR

[
∇X (β∗)Hit⊕ (β∗) +X (β∗)K (ε∗t )∇f (β∗)

]
≤ C (5.3.7)

Again due to consistency this is equivalent to prove:

1

NR

[
∇X (β0)Hit⊕ (β0) +X (β0)K (εtθ)∇f (β0)

]
≤ C (5.3.8)

The first term is bounded since ||∇Xt(β
∗)|| ≤ Z0, for any t.

For the second term lets consider H the diagonal matrix with typical entry ht(0|Ft). We
observe that by hypothesis N−1

R

[
X′ (β0

)
H∇f

(
β0
)]

is also bounded. So we need to prove
that

N−1
R [K (εtθ)−H] = op(1)

We write
N−1

R [K (εtθ)−H]

= N−1
R

NR∑
t=1

[
kcNR

(εtθ)− E
(
kcNR

(εtθ) | Ωt

)]
+N−1

R

NR∑
t=1

[E (kcNR
(εtθ) | Ft)− ht (0 | Ft)]

First, we show that the expected value of kCNR
(εtθ), given Ft, converges to ht (0 | Ft). Let

k(u) ≡ eu [1 + eu]−2. Then

E
[
kcNR

(εtθ) | Ft

]
=

∫ ∞

−∞
k(u)ht (ucNR

| Ft) du

=

∫ ∞

−∞
k(u)

[
ht (0 | Ft) + s′t (0 | Ft)ucNR

+ o (cNR
)
]
du

= ht (0 | Ft) + o (cNR
)

where in the first equality we performed a change of variables, in the second we applied
the Taylor expansion to ht (ucNR

| Ft) around 0 , and the last equality comes from the fact
that k(u) is a density function with first moment equal to 0 .

Next, we need to show that

N−1
R

NR∑
t=1

[
kcNR

(εtθ)− E
(
kcNR

(εtθ) | Ft

)]
X′

t

(
β0
)
∇ft

(
β0
)
= op(1). (5.3.9)

We observe that it has 0 expectation. We prove that its variance converges to 0 , then the
result follows from the application of the Chebyshev inequality.
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E
[
[kcT (εtθ)− E (kcT (εtθ) | Ft)]

2 | Ft

]
=E

[
kcT (εtθ)

2 | Ft

]
− E [kcT (εtθ) | Ft]

2

=

∫ ∞

−∞
kcT (λ)

2h (λ | Ft) dλ− h (0 | Ft)
2 + o (cT )

=c−1
T

∫ ∞

−∞
k(u)2h (ucT | Ft) du− h (0 | Ft)

2 + o (cT )

≤1/4c−1
T

∫ ∞

−∞
k(u)

[
h (0 | Ft) + h′ (0 | Ft)ucT + o (cT )

]
du

− h (0 | Ft)
2 + o (cT )

≤1/4c−1
T [h (0 | Ft) + o (cT )]− h (0 | Ft)

2 + o (cT )

=O
(
c−1
T

)
.

Finally since by hypothesis NR
TR
→R 0 then we conclude:

lim
R→∞

N
−1/2
R X′

(
β̂TR

)
Hit⊕

(
β̂TR

)
= lim

R→∞
N

−1/2
R X′ (β0)Hit⊕ (β0) = lim

R→∞
N

−1/2
R X′ (β0)Hit′ (β0)

where the last equality can be proven in the same way that we proved the first step of the
proof. The result then follows from the assumption on N−1/2

R X′ (β0)Hit′ (β0).
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Example of code
[ ]: def outofsample_DQ_test(Y,quant_pred_Y, X, q, alpha=0.05):

"""
Conducts an out-of-sample DQ test for quantile regression.

Parameters:
- Y (np.ndarray): Observations
- quant_pred_Y (np.ndarray): Prediction of quantile
- X (np.ndarray): Vector of q variables measurable at time t (past␣

↪→return values for quantile regression)
- q (float): Quantile
- alpha (float): Threshold for rejecting the null hypothesis (default␣

↪→is 0.05)

Returns:
- value (float): Chi-squared statistic
- p_value (float): P-value of the test
"""

T,p=X.shape

# Calculate the Hit variable
H=(Y<quant_pred_Y).astype(np.float64)-q

aux_mat=X.T@H
# Check if X.T @ X matrix is invertible

if np.linalg.det(X.T@X) == 0:
print('grad_f'+str(X.T@X))
print('D is not invertible')
return

# Calculate the test statistic value
value= aux_mat.T @ np.linalg.solve(X.T@X ,aux_mat )/(q*(1-q))
print(value)

# Calculate the p-value using the chi-squared distribution
p_value = 1 - stats.chi2.cdf(value, p)
print(f"P-value: {p_value} ", end="")

# Check if the null hypothesis is rejected based on the p-value
if p_value < alpha:

print("Outofsample test: Reject the null hypothesis(bad fit)")
else:

print("Outofsample test: Fail to reject the null␣
↪→hypothesis(possibly good fit)")
return p_value

One final remark about the implementation of this test concerns the choice of the columns
of X. One can effectively choose almost any data that is available, however results can be
very different. Following the suggestion of [14] we always pick the past lags of yt as the
columns of our filtration matrix.
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5.4 Final remarks

The assumption on the first test might look a little bit unrealistic since we assuming a
linear model on discrete variables of only two possible outcomes. We explore a little more
the theoretical properties.

Let’s now consider a common simpler linear regression model:

yi = xiδ
T + ϵi

now ϵi are iid normal Gaussian variables centered in 0 and with variance σ2..

In this framework the Wald statistic to use to test whether δ = 0 through the OLS estimator
assumes the form of:

(δ̂⊤n − 0)I(0)−1(δ̂ − 0) =
Y ⊤X(X⊤X)−1X⊤Y

σ2

Where Y and X are the vectors formed by the observed x and y respectively. Being in an
exponential model, the estimates are correct and we indeed converge to a χ2(k) variable
under the hypothesis. We also remark that it is not necessary to know σ as it can be
estimated from the data as the mean squared error of the model under the null hypothesis.

If we apply this instance of Wald test to our framework with the Hitt(β̂)Tt=1 sequence,
where we assess past lag correlation, we get:

HIT⊤
t HITt−1(HIT

⊤
t−1HITt−1)

−1HIT⊤
t−1HITt

σ2

Where HITt−i is the vector of of Hiti(β̂)-s starting at time 1−i and ending at time T−1+i
. Since σ2 is unknown needs to be estimated under the null hypothesis. However the null
hypothesis is β = 0 σ2 it will simply correspond to the variance of the Hitt variable,
τ(1− τ).

We can now connect this simplified version of the JDQ test that was performed under some
unrealistic hypothesis and the out of sample DQ test.

In fact we notice that both statistics are calculated using the HITt variables. Furthermore,
since HITt−1 is measurable according to past filtrations our Wald test satisfies the out of
sample DQ test. The only real difference is in the fact that we use an estimated version
of the variance of Y , since we know its distribution under the null hypothesis, (assuming
that the quantile model was fitted with enough data). However the proof of the DQ test
theorem easily extends also in this case. A similar reasoning can be applied to the UC test.

We furthermore notice that we can also perform JDQ test as:

HIT⊤
t HITt−1HIT

⊤
t−1HITt

n(τ(1− τ))2

Since HIT⊤
t−1HITt−1 is n times the estimated variance of Hit(β)t−1 whose distribution is

again known. One interesting observation, is that since we know the distribution of all the
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variables at use, we can also estimate the speed of convergence to the Normal distribution
provided of the central limit theorem.

In fact we know that {Hiti(β̂)}∞i=0 under the Null hypothesis is a sequence of iid random
variable where Hit1 is −τ with probability 1 − τ and 1 − τ with probability τ . We call
Zi = HitiHiti−1 for i = 1, . . .∞ and:

Sn =
1

n

∞∑
i=1

Zi

We highlight that E[Zi] = 0. We want to prove some bounds for the following quantity:

sup
x∈R

∣∣∣∣P( √
nSn

(τ(1− τ))2
≤ x

)
− Φ(x)

∣∣∣∣ (5.4.1)

where Φ(x) is the cumulative distribution function of the standard Gaussian variable. We
observe that {Zi}∞i=1 is a stationary discrete time Markov chain, with states

[(1− τ)2,−τ(1− τ), τ2]

, transition matrix:

 τ 1− τ 0
τ/2 1/2 (1− τ)/2
0 τ 1− τ

 (5.4.2)

and starting vector of probabilities:

[
τ2 2τ(1− τ) (1− τ)2

]
(5.4.3)

With this framework there some results that extends the ones of Berry-Esseen, for example
([15]), and state that the convergence is indeed of rate O(

√
n),

The argument is even simpler in the case when the regression is performed against a
constant vector of all 1s. In that case the equivalence between Wald test and out-of-
sample DQ test still holds and the speed of convergence is guaranteed by The classical
Berry-Esseen theorem applied to the random variable Zi = Yi.

When performing multivariate regression against both multiple lags of the Hit variables
and the constant variable, the equivalence between the tests is again satisfied, without
further analysis, since, under the null hypothesis, the Fisher information matrix has non
zero elements only in the diagonal.

With little struggle one can also write the transition matrix for the regression of each of
the other lags of the Hit variables, and retrieve that indeed the convergence to the normal
distribution is again O(

√
n).



Chapter 6

Experiments

In order to assess the performance of our model, multiple experiments have been conducted.
The code was written in Python version 3.8.8, making extensive use of the library hmmlearn
[6], that provided the baseline for the model to be written. Among others sklearn was the
library that provided an already implemented method for base quantile regression, while
we used torch [10] and in particular the torch.optim implementation of Adam algorithm
and scipy.optimize for the implementation of Nelder Mead algorithm. Finally we made use
of the scipi.stats library to help the implementation of the statistical tests. Datetime was
the main library for the managing of the real data.

6.1 Preliminary experiment

The first experiment consisted in fitting the model with artificial data generated by a hmm
model.

We consider a very simple parametrization for our artificial data and set the parameters
to be:

A =

[
0.95 0.05
0.15 0.85

]
β0 =

 0
2
1

 , β1 =

 0
−3
0.5

 (6.1.1)

where the first term of the β-s is the bias term and the vector of initial probabilities is set

as π =

(
0.8
0.2

)
.

We then sampled the first state i using π and by sampling two normal random variables
x1 ∼ N (0, 1), x2 ∼ N (3, 0.5) proceeded to compute the y1 return variable as

y1 = βi ·

 1
x1
x2

+ ϵ1 i = 0, 1 (6.1.2)

where βi are some state dependent coefficients, · represents the scalar product, and ϵ1 is
an error term with distribution N (0, 0.1).

The next state is then sampled using the transition probabilities given from the i-th line
of the matrix A and after sampling the x components, y2 is generated. The process is thus

73
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repeated until our dataset of 1000 points is generated. We observe that the only thing
that relates present and past data, is thus the Markov switching part: we do not assume
autoregression of the return variable.

Given this set we fit our different models trying to predict the 0.5 quantile. We observe that
in this framework the exact parameters that we chose should be retrieved after training
our model.

We try to assess the performance of all 3 optimization algorithms that we presented, thus
for this purpose, for each we perform linear quantile regression, and optimize using linear
programming, Adam and Nelder-Mead respectively. In all the tests the initialization was
performed through k-means algorithm due to its generally faster performance with respect
to the random approach. For the Adam and Nelder-Mead we first tried performing restart
between the iteration of EM, that is at each iteration we picked the starting point of the
optimization algorithm so that it doesn’t depend of the previous iteration. The parameters
of Adam optimiser were fixed to having learning rate equal to 0.01, and number of batches
equal to 10, granting thus a minibatch size of 100.

After fitting we retrieve the following parameters:

• for linear programming optimization we got:

Alin =

[
0.950 0.050
0.150 0.850

]
βlin0 =

 −0.0792.002
0.985

 , βlin1 =

 −0.178−2.998
0.519


• for Adam, with restart, we got:

AAdamR =

[
0.951 0.049
0.148 0.852

]
βAdamR
0 =

 −0.0051.998
1.003

 , βAdamR
1 =

 −0.005−2.995
0.504


• for Adam, without restart, we got:

AAdamN =

[
0.951 0.049
0.148 0.852

]
βAdamN
0 =

 −0.0051.998
1.003

 , βAdamN
1 =

 −0.005−2.995
0.504


• for Nelder-Mead, with restart, we got:

ANMR =

[
0.957 0.043
0.129 0.871

]
βNMR
0 =

 −0.0102.001
1.004

 , βNMR
1 =

 −3.374−2.787
1.598


• for Nelder-Mead, without restart, we got:

ANMN =

[
0.951 0.049
0.148 0.852

]
βNMN
0 =

 −0.0042.002
1.002

 , βNMN
1 =

 −0.026−2.990
0.509
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We observe that the only model that does not look suitable for this task is the one that
used the Nelder-Mead optimization with restart. It seems that although all other quantities
have been predicted relatively well, the algorithm failed to retrieve the parameters related
to the second state, having βNMR

1 being completely unrelated to the real value. On the
contrary, allowing the new starting point of the maximization step of EM to be the previous
optimum point, seem to retrieve convergence to the right parameters. The opposite seems
to happen with the Adam optimization, as it seems that both the restart and not-restart
version, converged to the same optimum point.

It appears that all the optimizations apart from NMR, seem to have learned, with little
errors the true parameters of the data, thus showing that the Markov Switching Quantile
Regression model is able to capture information relative to the data, in spite of its un-
realistic assumption on the emission distribution. It also seems that although the Adam,
and Nelder-Mead algorithms might not end the maximization step in an actual maximum
of the objective function, convergence to optimum of the whole algorithm may still be
retrieved.

6.2 Real data experiments

In this section we explore the performance of the Markov Switching Quantile Regression
model with real economical data. For this section we will consider only frequency homo-
geneous data points, and consequently we will look at the performance of only the linear
quantile regression, with the linear programming algorithm.

This research leverages a dataset kindly provided by the European Central Bank (ECB) en-
compassing macroeconomic variables. The multifrquency economical variables of US used
for the experiments with the exponential Almon lag specification were instead obtained
from [16]. The data traces the economic and social conditions of the European Union and
the United States, spanning various start years. he setting in all our experiments will be
prediction of the median of yearly differences of log of GDP.

In both datasets the variables are sampled monthly, in spite of the fact GDP is usually
calculated on a quarterly base, as preliminary tests showed that by considering quarterly
variables, our dataset would end up being too small to fit our model. Thus an estimated
version of GDP using external economical variables was used in order to fill and interpolate
data during each year.

In order to perform our task and each variable was transformed to be used as yearly
differences or yearly differences of log according to the nature of such variables.

The experiments, focused on training until 2016, and using the following datapoints until
2018 perform model selection on the lasso parameter. Testing was then performed on data
from 2018 until 2020. The reason for this choice although not ideal, is caused by the lack
of data necessary for training on the one hand, but also the unpredictable and disruptive
effect that Covid 2019 had on economy on the other. If for the first reason we would
want to use as much data as possible, the data sampled from 2020 until 2022 couldn’t be
correctly predicted using our variables, leading to very poor results of our model.

In order to initialize the expectation maximization we leveraged an external variable whose
role was to represent period of normal economy or recession in the considered state.

With both datasets, we fit a 2-states quantile regression model and we apply lasso regu-
larization with a parameter chosen through the validation set according to the likelihood
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Figure 6.1: plot of yearly log differences of GDP in EU and US in our dataset

score, with the set of possible α parameter being {j10−i} for i = 1, . . . , 5 and j = 0, . . . , 9.

We now look at the results:

6.2.1 EU data

Figure 6.2: Likelihood score on the validation set for different α of lasso regularization

We notice that after some noisy scores, probably due to overfitting, the best value was
provided for α = 0.09, so we use this value to train the model on the time period until
2018. We observe how the regime identification matches with our economical intuition:
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Figure 6.3: regime detected by the model given all data until 2023

score of train set score of test set uc test jdq test DQ test
4.435 4.389 0.74 0.11 0.61

Table 6.1: normalized likelihoods and p-values for the tests

The model seem to effectively distinguish between normal and abnormal financial and
economic regimes, as evidenced by the figure. Notably, it captures major economic events
like the 2007-2008 financial crisis, the European debt crisis’s impact, and the COVID-19
pandemic.

We observe that the tests too provide encouraging results. We notice that the normalized
likelihoods appear to be similar, suggesting that the L1 regularization managed to overcome
overfitting. The tests all give acceptable p-values, thus we cannot conclude that our model
does not capture the true data distribution.

Finally we can use the model for interpretation of the role played by each variable in the
prediction of the median of future GDP:
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Figure 6.4: Coefficients of quantile regression according to regime

As we can see lasso left only a handful of variables to be relevant to our model, making
it easier for interpretation. One curious phenomenon that we observe is that we expected
to see some autoregressive behavior for lags of GDP, that in this model appear to be
obscured by other variables. We also observe that generally it appears that inflation
(HICP) affects GDP median during abnormal financial events, and they are negatively
correlated. The same happens for the price of oil (OILPUSD) and financial systemic risk
(CRSPR). These results are consistent with economic theory, as an in increase of any of
these variables is often connected with price uncertainty, one of the main negative factors
that affect economy. We observe that also the broad money variable (M3) seem to affect
GDP negatively, during periods of economical stress. This is unsurprising as it is known
that the amount of money circulating in an economy is connected with an increase in
inflation. However it seems that a different measure of the money supply, M1, is positively
correlated with GDP we can this interpret this as a phenomenon that is strictly dependent
on the current economical situation.
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6.2.2 US data

Figure 6.5: likelihood score on the validation set for different α of lasso regularization

We repeat the same experiment with the US data. Firstly we notice again that after some
noisy scores, again probably due to overfitting, the best value was provided for α = 0.07,
and we use this value to train the model on the time period until 2018. Again regime
identification matches with our economical intuition:

Figure 6.6: regime detected by the model given all data until 2023

Here we can appreciate also other major economical events that affected the US. The longer
time scale of the data allows us to identify the early 2000 recession. We also visualise the
2008 worldwide crisis. Contrary to EU that experienced another crisis in 2012, in the US
that time period is classified as non-abnormal. On the other hand 2016 is classified as
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abnormal probably due to the 2015–2016 stock market selloff. Once again we can identify
the abnormal economic state during Covid.

score of train set score of test set uc test jdq test DQ test
4.068 4.374 1 0.23 0.91

Table 6.2: normalized likelihoods and p-values for the tests

For this dataset we notice that the normalized likelihoods appear again to be similar,
though, probably due to an absence of exceptional events in the time period 2018-2020,
the score appears to be somewhat higher than the one of the training set. The tests again
all return acceptable p-values, thus we cannot conclude that our model does not capture
the true data distribution.

Again, we can use the model for interpretation of the role played by each variable in the
prediction of the median of future GDP:

Figure 6.7: Coefficients of quantile regression according to regime

Again only few variables survived the L1 regularization. However we notice that with this
set of data, the autoregressive behavior of GDP is now captured by the model in both
regimes, being actually stronger during the periods of economical distress. We retrieve
the same interpretation for inflation. We also get that an increase of interest rates for
government bond (US10YGOV and US1YGOV) seems to be correlated with an increase of
GDP during period of financial distress. We observe that instead the difference between 10
year treasury rate and the 2 year treasury rate seems to affect negatively GDP, confirming
once again known economic theory.



6.3. MULTIFREQUENCY 81

6.3 Multifrequency

In this section we explore the model, with multifrequency data, that is with variables
that can be sampled monthly, weekly or daily. As we explained in previous sections,
we performed linear quantile regression, but due to parameter proliferation, we imposed
a structure on coefficients sampled at different times of the same variable, given by the
Almon polynomials. Due to the new nature of our problem we could no longer use linear
programming and started using non linear optimization algorithms, one gradient based
in the form of the Adam algorithm and the other euristic in the form of Nelder-Mead
algorithm.

6.3.1 A simpler experiment

To assess the performance of these algorithms in the framework of expectation maximiza-
tion with real data, we considered a simplified problem first.

We considered just two variables, chosen to have significant economic meaning: USHICPX,
USCISS and together with past lags of USGDP were used to predict the median of US-
GDP. HICPX represents a measure of the inflation, while CISS represent a measure of the
systemic risk,in other words how likely is for a single event to cause widespread failure
throughout an entire system, like the financial crisis where a bank collapse could cripple
the whole economy. The models were trained on US data until 2008. We don’t expect
great predictive capabilities from such a choice of variables, but what we do expect is the
models to pick up information on the nature of the variables. We describe the economic
variables in the appendix.

First of all we trained our model using linear programming and obtained

Figure 6.8: Results for the simplified framework with linear programming optimization

As we can see the trained model effectively picks up information on the state of the economy
during the different time periods. Given that our time window if further in the past, we
now were able to classify the early 1990’s recession. Moreover the coefficient associated
with the predicting variables appear to be consistent with some aspects of the economical
interpretations of the variables: we get GDP positively self-correlated and inflation to be
negatively correlated. As far as systemic risk is concerned we can interpret our results
as the fact that in normal economical conditions, high risk isn’t likely to actually cause a
crisis.
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Seeing the performance of the linear programming algorithm we then go on and try to
fit the same model using Adam algorithm with and without restart. We also tried cross
validating the hyperparameters of the algorithm leading to a choice of:

• epochs in {10, 20, 50, 100, 1000}, where with epochs we mean the number of iterations
of Adam at each maximisation step of EM;

• learning rate in {0.01, 0.001, 0.0001}

• number of batches in {1, 2, 5, 10, 20, 50} plus the size of the whole dataset. With
these choice of parameters, 1 is thus the Gradient Descent algorithm, while the
whole dataset creates minibatches of 1 datapoint.

However a very first inspection showed failure for almost all setting of parameters in both
cases.

We observed that in very few cases the model actually recognized the presence of two
regimes, seemingly without an easily derivable criterion of choice for our hyperparameters.
For this reason we decided to discard the usage of Adam as an optimization algorithm, as
there seem not to be a safe universal choice for its parameters.

Figure 6.9: Most likely regimes for model trained with Adam with epochs=1000, learning
rate=0.0001 and number of batches = 50

We take this as a proof of the instability of using Adam for the maximisation step with
noisy data, and decide to perform no further experiment with richer datasets.

We then moved on to the Nelder Mead optimization algorithm. Given the previous results
we only performed experiments with the non-starting algorithm. We fit again the model
in the time period until end of 2008, and now we get a much more interesting classification
for the regime of the training point.
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Figure 6.10: Results for the simplified framework with NM optimization, no restart

As observed in the linear programming optimization, here too we observe that all the
financial crisis time periods are classified differently from other points, suggesting a possibly
meaningful, although noisy segmentation of the points.

However when looking at the coefficients we are again dissatisfied. This plot not only is
in contrast with what we got in the linear regression case, but also returns a result that
is in contrast with the economical sense of the variables, suggesting positive influence of
inflation to economic growth.

We then performed one final experiment allowing the linear coefficient to be parametrized
through the Almon polynomials.

Figure 6.11: Results for the simplified framework with NM optimization, no restart

As we can see in this framework we achieve the very same result of linear regression,
however we are not sure on the reason why parametrizing in such a way may have affected
improved the performance of our model. We tried to perform the experiments with the
Almon polynomial framework with the Adam optimizer too, however in this framework
the results were again uninteresting.

6.3.2 Full time period experiment

Given the positive results presented above, we fit a model with the same time split as
we did in the linear case for the full US data, but allowing for some variables to be
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sampled more frequently than monthly, using Nelder-Mead algorithm without restart and
parametrization through the Almon polynomials.

Figure 6.12: normalized likelihood score on the validation set for different α of lasso regu-
larization

We notice the results were again very noisy at the beginning, probably due to overfitting,
the best value was provided for α = 0.0001, so we use this value to train the model on the
time period until 2018. We observe again how the regime identification matches with our
economical intuition:
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Figure 6.13: regime detected by the model given all data until 2023

score of train set score of test set uc test jdq test DQ test
4.279 3.894 0.03 0.25 0.07

Table 6.3: normalized likelihoods and p-values for the tests

We observe that contrary to the linear case, the use of multifrequency data provided with
less ideal results for the scores, as the normalized likelihood on the test set appears to be
considerably lower than the one in the training set. Also the statistical tests provided less
conclusive results when compared to our previous experiments.

Again, we can use the model for interpretation of the role played by each variable in the
prediction of the median of future GDP:
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Figure 6.14: Coefficients of quantile regression according to regime

Due to our choice of the parameter of lasso more variables seem to affect the output. We
observe that generally all the variable either provide the same correlation with respect to
the output in both regime, or are just relevant in a single regime. We also notice how
it appears that in different regimes the multifrequency data seems to put more weight
in present or past information according to the regime. Due to the number of variables
that are kept in the model, we find it harder to interpret the coefficients, but, once again,
we observe the same general relationships that bind GDP growth with its past lags and
inflation (USHICP), as well as money supply (given by M2) and the different treasury
rates.
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Figure 6.15: Coefficients of quantile regression according to regime

6.4 Experiments on tests performance

Given the two issues that we mentioned in the introduction to chapter 5, we performed
some simulation to visualize both the influence of the quality of the parameters estimated
and the power of our tests.

6.4.1 Test results on artificial data

We first fix some notation: from now on {ϵt}Tt=0 will be a sequence of iid Normal variables
with mean 0 and variance 1 with the property of being also independent from any future
variable that we will introduce. We also define xtTt=1 to be a sequence of random variables
with no particular property. During the tests we will generate these variables as iid normal
random variables. In order to conduct our tests, we considered 4 kind of artificial datasets:

• the first one is defined by the following equation:

yt = xtβ
⊺ + ϵt (6.4.1)
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we observe that after generating our data we get that the ys are again a sequence of
independent variables

• the second one is similar to the first one but is autoregressive:

yt = xtβ
⊺
x + yt−1β

⊺
y + ϵt (6.4.2)

• for the third model we added a regime switching component to the first model. We
consider the process {St}Tt=0 defined as a discrete Markov chain with two states, 0
and 1, and transition matrix:

M =

[
0.95 0.05
0.15 0.85

]
(6.4.3)

we consider two arrays of real coefficients β0 and β1, and the dynamic of yt, dependent
on St will be defined in the following manner:

yt = xtβ
⊺
St

+ ϵt (6.4.4)

• the final model will add the Markov regime component to the autoregressive model.
With St defined as above the equation defining the dynamic will be:

yt = xtβ
⊺
x,St

+ yt−1β
⊺
y,St

+ ϵt (6.4.5)

From each of this statistical models we generated a dataset and performed estimation of
parameters in a fitting manner performing quantile regression. For the first two models
we performed simple linear quantile regression. For the last two we applied the Markov
switching linear quantile regression framework. For prediction in the Markov switching
linear quantile regression framework, at each time step we assumed knowledge of all the
past and predicted the probability of being in each regime at the final past time. Then we
applied the transition matrix to the probability vector and picked the most probable state
as a result. We then performed prediciton using the quantile linear regression framework
using the coefficients of the estimated regime. We remark that this means that for future
time steps we assume knowledge of all the history until the predicted time.

The results were confronted with a model whose parameters were the actual parameters
generating the sequence, and one whose parameters were chosen to be significantly different
from the true ones. Here is a table showing our choices:

true model mispecified model fitted model
purely indepen-
dent data

const=1, x=2 const=1, x=0.5 const=0.9657 x=2.0461

purely autoregres-
sive data

x=2, y=0.5 x=3, y=0.9 const=0.0063 x=2.0545 y=0.5100

Markov switching
independent data

x1=[2,1], x2=[-3,0.5] x1=[1,2], x2=[-1,0.1] const1=-0.557, x1=[2.077,1.174],
const2=0.081, x2=[-2.733,0.369]

Markov switching
autoregressive
data

[x1=2,y1=0.9],
[x2=-3,y2=0.5]

[x1=1,y1=2],
[x2=-1,y2=0.1]

[const1=0.016,x1=-2.848,y1=0.437],
[const2=-0.029, x2=1.963,y2=0.867]
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Here we have taken just one example of fitted parameters, due to the fact that they didn’t
show significant changes with different seeds.

We then performed the unconditional coverage and joint dynamic quantile, and the out-of-
sample dynamic quantile tests and verified the tests performance. The tests were performed
both with fitted models and with true parameters, in order to better understand the nature
of the success or failure of the tests. The filtration that we chose for the DQ test is composed
by the last k lags of the true return variable, where k is the number of covariates used
for the regression, thus either 2 or 3. We also tried using data starting from the present
time to invalidate the hypothesis of the outDQ test on the filtration and verify that it fails.
Furthermore we performed our tests adding a column of constants to the filtration matrix
in order to complement the information that it provides.

The "nan" entries represent a combination of model/test that wasn’t performed due to
lack of interesting information retrievable from its results.

The datasets were generated to have a sample size of 300 datapoints, similar to the real
world dataset that we have access to, while the tests were conducted on three different test
sets, the first one being of size 20000, the second one being of size 40, and the last one
being of size 200. With such test sets we expect to capture the nature of the quantile tests
that we conducted, since we recall that theorem 5.3.1 depend on the following condition
on the size of the train and test set :

Ntest

Ntrain
→ 0

when

Ntest →∞ and Ntrain →∞

At the same time for the smaller datasets we expect our test to exhibit low power.

During unreported tests we observed that there was little to no difference when performing
predictions using true true or estimated matrices or any other variables, (the predicted
states were essentially the same for the true and the estimated model) so we didn’t perform
further analysis on those parameters.

The first results that we present are the ones of the 20000 datapoints test set:
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uc 20000 jdq 20000 outDQ cor-
rect 20000

outDQ cor-
rect+const
20000

outDQ
present
20000

outDQ
present+const
20000

purely indepen-
dent data, true
model

0.138 0.327 0.453 0.272 0.000 0.000

purely indepen-
dent data, fit
model

0.002 0.004 0.000 nan nan nan

purely inde-
pendent data,
mispecified model

0.000 0.000 nan 0.000 nan nan

purely autoregres-
sive data, true
model

0.157 0.162 0.091 0.078 0.000 0.000

purely autore-
gressive data, fit
model

0.033 0.102 0.041 nan nan nan

purely autoregres-
sive data, mispec-
ified model

0.054 0.000 nan 0.000 nan nan

Markov switching
independent data,
true model

0.406 0.463 0.030 0.065 0.000 0.000

Markov switching
independent data,
fit model

0.000 0.000 0.000 nan nan nan

Markov switching
independent data,
mispecified model

0.000 0.000 nan 0.000 nan nan

Markov switching
autoregressive
data, true model

0.406 0.424 0.250 0.325 0.000 0.000

Markov switching
autoregressive
data, fit model

0.000 0.000 0.000 nan nan nan

Markov switching
autoregressive
data, mispecified
model

0.505 0.000 nan 0.000 nan nan

Table 6.4: Results for tests , sample size=20000, seed=60

The first thing that we observe is that with these many points, the very misspecified model
that we built, generally fails the tests. However even during other simulations it seems
that with this setup the UC test, might fail to reject even by the model with purposely
wrong parameters. We also notice, as expected from the theory, that for dimensions of the
test sample that far exceeds the one of the train sample, these tests clearly reject the fitted
model in most cases. Finally we note that as expected the model with the true parameters
generally performs well and better than the other instances. However, we observe that the
p-values seems to possibly get quite low, making intepretation of the results of the tests
more uncertain. Another observation is that, although the results for the DQ tests with
and without an extra column of constants differ, there seems to be no clear preference or
way to distinguish the performance of the two spefications. On the other hand the violation
of the hypothesis of the test, in the form of inclusion in the filtration of present data, seems
to consistently make the test fail. On a side note, this can also be interpreted as the use
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of past quantile estimates for future data produces undesirable results. No difference is
detected if a column of costants is added to the filtration matrix of such test.

We then show the results obtained from a test set of 40 datapoints:

uc 40 jdq 40 outDQ cor-
rect 40

outDQ
present 40

purely indepen-
dent data, true
model

1.000 0.048 0.967 0.007

purely indepen-
dent data, fit
model

0.773 0.445 0.765 0.000

purely inde-
pendent data,
mispecified model

0.001 0.000 0.004 nan

purely autoregres-
sive data, true
model

0.664 0.386 0.581 0.162

purely autore-
gressive data, fit
model

0.885 0.422 0.479 0.048

purely autoregres-
sive data, mispec-
ified model

0.039 0.000 0.000 nan

Markov switching
independent data,
true model

0.777 0.287 0.687 0.005

Markov switching
independent data,
fit model

0.569 0.320 0.271 0.001

Markov switching
independent data,
mispecified model

0.235 0.309 0.031 nan

Markov switching
autoregressive
data, true model

1.000 0.973 0.999 0.179

Markov switching
autoregressive
data, fit model

0.757 0.887 0.940 0.216

Markov switching
autoregressive
data, mispecified
model

0.768 0.586 0.419 nan

Table 6.5: Results for the uc and jdq tests , sample size=40, seed=50

As we can see with a smaller sample our results become highly more uncertain. Not only we
notice that in Markov switching models we seem not to be able to distinguish a reasonable
model from an unrelated one, but we may also seem to have our tests work when we violate
the hypothesis of the test. We observe however that as expected, the performance of the
fitted model in such regime is always recognised, even at cases when the test really manage
to distinguish the true model vs a fake one.

Adding more data seem to however to improve the results.
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uc 200 jdq 200 outDQ cor-
rect 200

outDQ
present 200

purely indepen-
dent data, true
model

0.593 0.219 0.016 0.000

purely indepen-
dent data, fit
model

0.356 0.060 0.000 nan

purely inde-
pendent data,
mispecified model

0.000 0.000 0.000 nan

purely autoregres-
sive data, true
model

0.942 0.705 0.895 0.000

purely autore-
gressive data, fit
model

0.113 0.105 0.055 0.000

purely autoregres-
sive data, mispec-
ified model

0.314 0.157 0.000 nan

Markov switching
independent data,
true model

0.645 0.054 0.016 0.000

Markov switching
independent data,
fit model

0.548 0.206 0.008 0.000

Markov switching
independent data,
mispecified model

0.000 0.000 0.000 nan

Markov switching
autoregressive
data, true model

0.176 0.167 0.277 0.000

Markov switching
autoregressive
data, fit model

0.891 0.680 0.505 0.000

Markov switching
autoregressive
data, mispecified
model

0.122 0.001 0.000 nan

Table 6.6: Results for the uc and jdq tests , sample size=200, seed=50

6.4.2 Markov chain test

In order to better understand the poor performance of our tests against some very invalid
models, we perform a final test, using the jdq framework. These tests consist in generating
a stream of data, where the variables have the same theoretical distributions of the Hitt
variables, that is they are iid bernoulli, to which we subtracted their mean. Then the
statistics of the jdq test is computed using the theoretical variance, and then confronted
against the normal distribution.

Then we repeated the same test, but instead of generating data according to the distri-
bution of the Hits, we perturbed their probability, by building a Markov chain, that has
different probabilities of landing in one of the values of HitT , that depends on the current
state in the form of: [

τ + ϵ 1− τ − ϵ
τ − ϵ 1− τ + eϵ

]
(6.4.6)

where ϵ can be positive or negative. Then the same computation as before is performed,
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using again the theoretical variance according to the previous probability. Finally we per-
formed these with multiple samples of different size, 40, 100, 200, 1000, each time generating
1000 statistics, and their results confronted. In all our tests τ was 0.5.

Our tests found, as expected a situation of greater uncertainty in the case of samples
generated by less data.

As we can observe for 40 points, the distribution of the statistics can be easily confused,
and this issue seems to be mitigated while the statistics are computed with enough data.

(a) 100, ϵ = 0 (b) 40, ϵ = 0.01 (c) 200, ϵ = −0.01

(d) 1000, ϵ = 0 (e) 1000, ϵ = 0.01 (f) 1000, ϵ = −0.01

Figure 6.16: Barplots of statistics computed from simulations confronted with the standard
Gaussian distribution
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(a) 40, ϵ = 0 (b) 100, ϵ = 0.01 (c) 200, ϵ = −0.01

(d) 40, ϵ = 0 (e) 1000, ϵ = 0.01 (f) 1000, ϵ = −0.01

Figure 6.17: QQ plots of statistics computed from simulations confronted with the standard
Gaussian distribution

Finally our conclusion is that although we got some encouraging results from our models,
lack of data prevents us to really assess the performance of our model.



Chapter 7

Extended theoretical model

In this section we present an extended theoretical model that allows both much more free-
dom for the choice of the distribution of the data, and considers autoregressive behaviour,
other than a regime switching dynamic.

7.1 Quantile autoregression

We first introduce quantile autoregression. Let {Ut} be a sequence of iid standard uniform
random variables, and consider the autoregressive process:

yt = ψ0 (Ut) + ψ1 (Ut) yt−1 (7.1.1)

where the ψj ’s are unknown functions [0, 1]→ R that we will want to estimate.

Provided that the right hand side of 7.1.1 is monotone increasing in Ut, it follows that the
τ -th conditional quantile function of yt can be written as,

Qyt (τ | yt−1) = ψ0(τ) + ψ1(τ)yt−1

or more compactly as,

Qyt (τ | Ft−1) = x⊤t ψ(τ)

where xt = (1, yt−1)
⊤, and Ft is the σ-field generated by {ys, s ≤ t}. In the above model,

the autoregressive coefficients may be τ -dependent and thus can vary over the quantiles.
We will refer to this model as the QAR(1) model.

This model extends some already known models. For example let Φ−1(τ) be the Gaussian
cumulative distribution function and let’s consider our model with θ0(τ) = σΦ−1(τ), and
θ1(τ) = θ1 is a constant in τ . This model is now the standard AR(1) model.

Monotonicity of the conditional quantile functions imposes some discipline on the
forms taken by the θ functions. This discipline essentially requires that the function
Qyt (τ | yt−1, . . . , yt−p) is monotone in τ in some relevant region Υ of (yt−1, . . . , yt−p)-
space. The correspondence between the random coefficient formulation of the QAR model
7.1.1 and the conditional quantile function formulation presupposes the monotonicity of
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the latter in τ . We note that while model 7.1.1 can, even in the absence of this monotonic-
ity, be taken as a valid data generating mechanism, in that case the link to the strictly
linear conditional quantile model is no longer valid.

7.2 Markov Switching autoregressive models

Following the work of [17], we specialize their definition in simpler framework. Let
(Yt, St)

∞
t=0 be a discrete-time stochastic process such that, for each t ∈ N, St ∈ S ≡{

s1, . . . , s|S|
}
⊂ R is the unobservable state and Yt ∈ Y ⊆ Rh, for some h ∈ N, is the

observable state. Moreover, for each t ∈ N, the conditional distribution of Yt, given Y t−1
0

and St
0, depends only on St, and the conditional distribution of St, given Y t−1

0 and St−1
0 ,

depends only on Yt−1 and St−1, so that

Yt |
(
Y t−1
0 , St

0

)
∼ P∗ (Yt−1, St, ·)

St |
(
Y t−1
0 , St−1

0

)
∼ Q∗ (Yt−1·)

with (y, s) 7→ P∗(y, s, ·) ∈ P(Y) and (s) 7→ Q∗(s, ·) ∈ P(S) denoting the true transition
probabilities. It is further assumed that, for each (y, s) ∈ Y×S, P∗(y, s, ·) admits a density
p∗(y, s, ·) with respect to some σ-finite measure on Y.

The researcher’s model is given by a family of transition probabilities (y, s) 7→ Pθ(y, s, ·) ∈
P(Y) and (y, s) 7→ Qθ(s, ·) ∈ P(S) indexed by an (unknown) parameter θ ∈ Θ ⊆ Rq, for
some q ∈ N, such that, for each θ ∈ Θ,

Yt |
(
Y t−1
0 , St

0

)
∼ Pθ (Yt−1, St, ·)

St |
(
St−1
0

)
∼ Qθ (St−1, ·)

and, for each (y, s) ∈ Y× S, Pθ(y, s, ·) admits a density pθ(y, s, ·) with respect to the same
measure used to define p∗(y, s, ·).

This framework is now similar to the one of hidden Markov models, but the addition of
the dependence of the future lag of the return variable on the present lag variable, makes
the model indeed autoregressive.

Let P̄ ν
∗ denote the true distribution over (Yt)

∞
t=0 when the distribution of (Y0, S0) is ν.

Let’s consider for any T ∈ N, the function ℓνT : YT+1 ×Θ→ R defined as:

ℓνT
(
Y T
0 , θ

)
= T−1

T∑
t=1

log pνt
(
Yt | Y t−1

0 , θ
)

where pνt
(
Yt | Y t−1

0 , θ
)

denotes the conditional density of Yt given Y t−1
0 for any θ ∈ Θ; the

latter is then defined as follows: for any t ≥ 1,

pνt
(
Yt | Y t−1

0 , θ
)
=
∑
s′∈S

∑
s∈S

pθ
(
Yt−1, s

′, Yt
)
Qθ

(
s, s′

)
δθ,νt (s)

and s 7→ δθ,νt (s) ≡ P̄ ν
θ

(
St−1 = s | Y t−1

0

)
. For each t ≥ 2 and any s ∈ S, s 7→ δθ,νt (s) satisfies

the recursion



7.2. MARKOV SWITCHING AUTOREGRESSIVE MODELS 97

δθ,νt (s) =
∑
s̃∈S

Qθ (s̃, s) pθ (Yt−2, s̃, Yt−1) δ
θ,ν
t−1(s̃)∑

s′∈S pθ (Yt−2, s′, Yt−1) δ
θ,ν
t−1 (s

′)

with s 7→ δθ,ν1 (s) =
∑

s̃∈SQθ (s̃, s) ν (s̃ | Y0), where ν(· | ·) is the conditional density corre-
sponding to ν.

For a given initial distribution ν ∈ P(Y× S) over (Y0, S0), we define our estimator as θ̂ν,T ,
where

ℓνT

(
Y T
0 , θ̂ν,T

)
≥ sup

θ∈Θ
ℓνT
(
Y T
0 , θ

)
− ηT

for some ηT ≥ 0 and ηT = o(1).

We now consider the situation where ν is a Borel probability measure on Y× S, for which
Y∞
0 is stationary and ergodic. Under this hypothesis then the process Y∞

0 , can be ex-
tended to a two-sided sequence Y∞

−∞. This hypothesis will be a consequence of our list of
assumptions.

Let H∗ : Θ→ R+ ∪ {∞} be the Kullback-Leibler information criterion θ 7→ H∗(θ), which
is given by

H∗(θ) = EP̄ ν
∗

[
log

pν∗
(
Y0 | Y −1

−∞
)

pν
(
Y0 | Y −1

−∞, θ
)]

where, for any θ ∈ Θ, pν
(
Yt | Y t−1

−∞ , θ
)

is defined as lim inf M→∞p
ν
θ

(
Yt | Y t−1

−M

)
;

pν∗
(
Yt | Y t−1

−∞
)

is defined analogously. Under the assumptions stated in the theorems
pν
(
Y0 | Y −1

−∞, θ
)

will also correspond to the conditional density of Y0 given Y −1
−∞ induced

by (Pθ, Qθ, ν), and pν∗
(
Y0 | Y −1

−∞
)

will be its counterpart induced by the true transition
kernels (P∗, Q∗, ν).

We allow for misspecified models, and thus pν∗ /∈ {pν(· | ·, θ) : θ ∈ Θ} and the relevant
limiting set for our estimator is

Θ∗ = argmin
θ∈Θ

H∗(θ),

which is the pseudo-true parameter (set) that minimizes the Kullback-Leibler information
criterion.

We now present the results of consistency as presented in [17] as Theorem 1.

Theorem 7.2.1. . Suppose the following assumptions:

1) There exists a constant q > 0 such that, for all Q ∈ {Qθ : θ ∈ Θ} ∪Q∗, Q (s, s′) ≥ q
for all (s′, s) ∈ S2.

2) There exist constants λ′ ∈ (0, 1), γ ∈ (0, 1), b′ > 0 and R > 2b′/(1−γ), a lower semi-
continuous function U : Y→ [1,∞), and a measure ϖ ∈ P(Y) such that, for all s ∈ S
: (i)

∫
Y U (y′)P∗ (y, s, dy

′) ≤ γU(y) + b′1{y ∈ A}, with A ≡ {y ∈ Y : U(y) ≤ R};
(ii) A is bounded and ϖ(A) > 0; (iii) infy∈A P∗(y, s, C) ≥ λ′ϖ(C) for any Borel set
C ⊆ Y.
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3) (i) Θ is compact; (ii) H∗ exists and is lower semi-continuous.

4) For any δ > 0 and any θ̇ ∈ Θ, let B(δ, θ̇) ≡ {θ ∈ Θ : ∥θ̇ − θ∥ < δ}.

(i) For any ϵ > 0, there exists some δ > 0 such that

max
θ̇∈Θ

EP̄ ν
∗

 sup
θ∈B(δ,θ̇)

pν
(
Y0 | Y −1

−∞, θ
)

pν
(
Y0 | Y −1

−∞, θ̇
)
 ≤ 1 + ϵ

(ii) there exists a function (y, y′) 7→ C (y, y′) ∈ R+such that supθ∈Θ
maxs∈S pθ(Y,s,Y

′)
mins∈S pθ(Y,s,Y ′) ≤

C (Y, Y ′) and maxs∈S p∗(Y,s,Y
′)

mins∈S p∗(Y,s,Y ′) ≤ C (Y, Y ′) a.s. −P̄ ν
∗ .

Then,
dΘ

(
θ̂ν,T ,Θ∗

)
= oP̄ ν

∗
(1)

where, for any set A ⊆ Θ, dΘ(θ,A) ≡ inf θ̇∈A ∥θ − θ̇∥

.

The theorem can be reformulated with a set of slightly different conditions, by following
the results already present in [17], in particular Lemma 12.

Theorem 7.2.2. Suppose that assumptions 1) and 4)(ii) hold. Assume further:

2′) there exists a ν ∈ P(Y× S) such that, under P̄ ν
∗ , (Yt)

∞
t=0 is stationary and ergodic.

5) T−1
∑T

t=1max {1, C (Yt−1, Yt)}
(
1− q

)t
= oP̄ ∗

ν
(1).

Suppose finally that Θ is compact and that for each n ∈ N0, θ 7→ pνθ
(
Y1 | Y 0

−n

)
is

uniformly continuous a.s. −P̄ ν
∗ . Suppose also that there exists functions (y1, y0) 7→(

p̄ (y0, y1) , p (y0, y1)
)

such that for any p ∈ {pθ : θ ∈ Θ},

p (y0, y1) ≤ p (y0, s, y1) ≤ p̄ (y0, y1) for all s ∈ S

, and
EP̄ ν

∗

[
p̄ (Y0, Y1) /p (Y0, Y1)

]
<∞ EP̄ ν

∗

[
p∗ (Y0, Y1) /p (Y0, Y1)

]
<∞

.

Then,
dΘ

(
θ̂ν,T ,Θ∗

)
= oP̄ ν

∗
(1)

We note that we asked for slightly weaker conditions then the ones proposed in Lemma 12.
However the proof itself doesn’t use those conditions in their full form and our assumptions
can be used in the same fashion to prove the lemma.

7.3 Markov switching QAR

We consider a model where S = {0, 1}, and

yt = ψSt
0 (Ut) + ψSt

1 (Ut) yt−1 (7.3.1)

Now the transition from Yt−1 to Yt, knowing that St = s have now density with respect to
the Lebesgue measure given by
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p(y
′, s, y) =

(
∂

∂y
Ψ−1

s,y′(y)

)
=

1

Ψ′
s,y′(Ψ

−1
s,y′(y))

(7.3.2)

where Ψs,y′(u) = ψs
0(u) + ψs

1(u)y
′, where we further assumed that Ψs,y′(u) is strictly

increasing, or Ψ′
s,y′(u) > 0.

That is we are assuming a dynamic where the transitions dependent from the hidden state
may assume two different forms of quantile autoregressive process.

Let Θ ⊂ (0, 1)2 × Rq × Rq, for q ∈ N and let θ = (p0, p1, θ0, θ1) ∈ Θ. We consider p1, p2 as
the parameters of the two state hidden Markov chain, with transition matrix:[

p0 1− p0
1− p1 p1

]
(7.3.3)

while θs are the parameters for the quantile regression coefficients assuming we are at
regime s. For any T ∈ N, let LνT : YT+1 × Θ → R be the sample criterion function given
by

Lτ,νT

(
Y T
0 , θ

)
= T−1

T∑
t=1

log
(
Lτ,ν
t

(
Yt | Y t−1

0 , θ
))

where Lτ,ν
t is a function defined as:

Lτ,ν
t

(
Yt | Y t−1

0 , θ
)
=
∑
s∈S

exp(−ρτ (Yt − θ1,sYt−1 − θ0,s) δθ,νt (s)

for (θ1,s, θ0,s) = θs,s = {0, 1}, ρτ the quantile loss function and δθ,νt (s) defined as in
the previous section, with pθ(Ym−1, s, Ym) = exp(−ρτ

(
Ym − β1s (θ)Ym−1 − β0s (θ)

)
for any

m ∈ N,

Again, for a given initial distribution κ ∈ P(Y× S) over (Y0, S0), we define our estimator
as θ̂κ,T , where

Lτ,κT

(
Y T
0 , θ̂

τ
κ,T

)
≥ sup

θ∈Θ
Lτ,κT

(
Y T
0 , θ

)
− ηT

for some ηT ≥ 0 and ηT = o(1).

We now wish to provide some convergence result about θ̂τκ,T . In the following, we will
prove that indeed θ̂τκ,T converges to a point of the set Θ∗, defined as:

Θ∗ = argmax
θ∈Θ

EP̄ ν
∗

[
logLτ,ν

t

(
Yt | Y t−1

−∞ , θ
)]

(7.3.4)

The key observation is that we can interpret the exponential of the quantile loss as a
kernel, given by some scaled Laplace distribution. This interpretation is made possible by
the fact that we can consider each term as a scaled probability density function, since we
showed in chapter 2 that the scaling parameter depends only on τ . Thus we can think of
our problem, as a misspecified problem of maximum likelihood for autoregressive hidden
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Markov models, and under some reasonable assumptions we can rely on the work of [17]
and prove that 7.2.2 holds in our framework. From now on we will use pθ(Yt−1, s, Yt) and
exp (−ρτ (Yt − θ1,sYt−1 − θ0,s)) interchangeably.

Our assumptions are the followings:

• Θ is compact

• Assumption 2’) holds with ν such that P̄ ν
∗ [|Y0| ≥ M ] ≲ e−Mγ , for γ ≥ 0, for every

M ≥ M̄ > 0.

• Ψ′
s,y′(u) > k, for some k > 0 and for every s ∈ {0, 1} and y′ ∈ Y .

• Ψ′
s,y′(Ψ

−1
θ;s,y′(y)) ≳ eM

γ′ , for γ′ ≥ 0, for every y such that |y| ≥ M̄(y′) > 0 and for
every s ∈ {0, 1} and y′ ∈ Y

We note that these hypothesis are verified, for example if we have a standard AR(1) model
in each state.

Thus we only need to check that 1), 4)(ii) and 5) hold, θ 7→ pνθ
(
Y1 | Y 0

−n

)
is uniformly

continuous a.s. −P̄ ν
∗ . and that there exists functions (y1, y0) 7→

(
p̄ (y0, y1) , p (y0, y1)

)
such

that for any p ∈ {pθ : θ ∈ Θ} ∪ p∗
p (y0, y1) ≤ p (y0, s, y1) ≤ p̄ (y0, y1)

for all s ∈ S, and

EP̄ ν
∗

[
p̄ (Y0, Y1) /p (Y0, Y1)

]
<∞ EP̄ ν

∗

[
p∗ (Y0, Y1) /p (Y0, Y1)

]
<∞

.

Uniformly continuity of pνθ
(
Y1 | Y 0

−n

)
is verified as consequence of

exp(−ρτ
(
Yt − β1s (θ)Yt−1 − β0s (θ)

)
being Lipshitz as a function of θ. 1) is direct

consequence of the compactness of Θ.

We now define the functions p̄ and p. p̄ is straightforward since p is limited by a constant
that we will call C.

Let diam(Θ) = sup{d(θ1, θ2)|θ1, θ2 ∈ Θ}. Then we can define, for some constant C ′:

p̄(y1, y2) = eC
′|diam(Θ)|(|y1|+|y2|)

Since we also have Ψ′
θ;s,y′(u) > k, we only need to show:

∫
R

∫
R
eC

′|diam(Θ)|(|y1|+|y2|) 1

Ψ′
s,y1(Ψ

−1
s,y1(y2))

dy2ν(dy1) ≤ ∞ (7.3.5)

which is then true due to our assumptions on Ψ−1
s,y1(y2)) and ν.

4) (ii) is then satisfied by CeC′|diam(Θ)|(|y1|+|y2|).

Finally we prove 5).

P

(
T−1

T∑
t=1

max {1, C (Yt−1, Yt)} (1− q)t > ϵ

)
=

P

(
T−1

T∑
t=1

max {1, exp (diam(Θ)C (|Yt−1|+ |Yt|))} (1− q)t > ϵ

)
=
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We disintegrate with respect to the set {Yi ≥M, i = 1, . . . , T}, and exploit the stationarity
of the process to derive the union bound

P({Yi ≥M, i = 1, . . . , T}) ≤ TP(Y0 ≥M)

, thus getting the inequality:

P

(
T−1

T∑
t=1

max {1, C (Yt−1, Yt)} (1− q)t > ϵ

)
≤

P

(
T−1

T∑
t=1

exp (diam(Θ)C(τ)2M) (1− q)t > ϵ

)
+ TP(Y0 ≥M) ≤

P
(
T−1C ′′exp (M) > ϵ

)
+ TP(Y0 ≥M)

for some constant C ′′.

Then by choosing M = log(T )δ, for 1/γ < δ < 1, we get:

lim
T→∞

C ′′P
(
T−1exp (M)

1

1− q
> ϵ

)
+ TP(Y0 ≥M) = 0 (7.3.6)

And the proof is completed by the arbitrariness of ϵ.
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Conclusions

In this thesis we explored the Markov switching quantile regression model, from its theoret-
ical formulation to an extensive analysis of computational issues and method of assessment.
While the results seem promising when the variables are sampled all at the same frequency,
we obtained a less clear picture in the case of multifrequency data. The assessment of our
results also happened to be harder due to the proved unrealiability of the statistical tests
caused by the lack of datapoints. We leave to future work the exploration of further and
different methods for parametrizing the MIDAS polynomials. In this thesis we also con-
centrated on prediction of the median, but the method can be applied with any quantile
and it would be interesting to verify the performance of the model in such framework.
Finally we exploited the results of [17] to prove a convergence result for the estimator of
the markov switching quantile autoregression model. The immediate next step would be to
prove that indeed the points of convergence are the quantiles expressed by the coefficients
of the QAR model.
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Appendix A

Dataset variables description

Code Variable Name Economic Meaning

BUBILL3M Short-term German government
bond yield

Interest rate on 3-month Bundes-
bank bills

CISS composite indicator of systemic
stress (EU area)

Measure of health and stability of
the financial system

CRSPR Corporate bond spread difference between yields on cor-
porate and government bonds (IG-
3M Euribor)

EA10YGOV Euro area bond yield (10 years) Interest rate on 10-year bench-
mark bond

EA2YGOV Euro area bond yield (2 years) Interest rate on 2-year benchmark
bond

EA3YGOV Euro area bond yield (3 years) Interest rate on 3-year benchmark
bond

ESTER Euro short-term rate Volume-weighted trimmed mean
rate

EURIBOR3M Euro Area Euribor 3-month Interest rate of 3-month Euribor
EUROMPB Euro Area macroprudential

buffer
value of Euro-denominated secu-
rities held by the Eurosystem for
monetary policy purposes

HICP Harmonized Index of Consumer
Prices (EU area)

Measure of inflation for the Euro-
zone

HICPX Harmonized Index of Consumer
Prices excluding energy and un-
processed food (EU area)

Measure of inflation for the Euro-
zone

LHHNFC loan volumes to Non-financial
corporates (NFC) and house-
hold (HH).

The total amount of money bor-
rowed by businesses and house-
holds from banks.

M1 Money supply (M1 definition) Narrow measure of money supply,
including physical currency and
checking accounts

M3 Money supply (M3 definition) Broad measure of money supply,
including M1 and other liquid as-
sets
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OILPUSD Oil price (USD denominated) Price of crude oil in US dollars
OIS10Y Overnight indexed swap rate

(10-year)
Interest rate derived from swaps
referencing future short-term rates
over a 10-year period

OIS1Y Overnight indexed swap rate (1-
year)

Interest rate derived from swaps
referencing future short-term rates
over a 1-year period

OIS2Y Overnight indexed swap rate (2-
year)

Interest rate derived from swaps
referencing future short-term rates
over a 2-year period

SX5E Euro Stoxx 50 Index Stock market index for the 50
largest companies in the Eurozone

UP Unemployement rate (EU area) Labour market condition
US10YGOV US government bond yield (10-

year)
Interest rate on 10-year US gov-
ernment bonds

USDEUROXRATE US dollar to Euro exchange rate Exchange rate between the US
dollar and the Euro

USGDP US Gross Domestic Product Total value of goods and services
produced in the US

USHICP US Harmonized Index of Con-
sumer Prices

Measure of inflation

USHICPX Harmonized Index of Consumer
Prices excluding energy and un-
processed food (US area)

Measure of inflation for the Euro-
zone

USUP Unemployement rate (US area) Labour market condition
VSTOXX VSTOXX Volatility Index Measure of stock market volatility

in Europe
DEIT10YSP German-Italian spread (10-

year)
Difference between interests rate
on 10-year German and Italian
government bonds

GPR Geopolitical Risk Index measure of adverse geopolitical
events and the associated risks

GDP Gross Domestic Product (EU
area)

Total value of goods and services
produced in EU

USCISS composite indicator of systemic
stress (EU area)

Measure of health and stability of
the financial system

US1YGOV US government bond yield (1-
year)

Interest rate on 1-year US govern-
ment bonds

US2YGOV US government bond yield (2-
year)

Interest rate on 2-year US govern-
ment bonds

US3MTGOV US government bond yield (3
months)

Interest rate on 3-months US gov-
ernment bonds

US10Y2YGOVSPR US area spread between 10-year
and 2-year government bond
yield

Difference between the 10 year
treasury rate and the 2 year trea-
sury rate.

USM2 US area Money supply (M2 def-
inition)

Middle measure of money sup-
ply, including M1, and strictly in-
cluded in M3
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