
THE BIRKHOFF ERGODIC THEOREM

ALESSIO DEL VIGNA

Ergodic theory studies the properties of dynamical systems which hold for the orbits of almost

every initial conditions with respect to measures that remain invariant under time evolution. In

this note we present one of the most important results in this field, the Birkhoff ergodic theorem.

1. Motivations

We first introduce some notation. Throughout the note, (M,B, µ) is a measure space and

f : M →M a measurable transformation.

Definition 1. The measure µ is invariant under f if µ(E) = µ(f−1E) for every E ∈ B.

If µ is finite, Poincaré recurrence theorem states that almost every point in any positive-measure

set E returns to E an infinite number of times. Furthermore, when the system is ergodic, Kač

theorem says that the mean return time to E is inversely proportional to the measure of E. We

now recall the definition of ergodicity.

Definition 2. If µ is a probability measure, we say that f is ergodic with respect to the measure

µ if for all measurable sets B ∈ B such that f−1B ⊆ B it holds that µ(B) = 0 or µ(B) = 1.

Given an arbitrary x ∈M , we consider
{
j ≥ 0 : f j(x) ∈ E

}
, the set of iterates of x which visit

the set E. Another way of stating Poincaré recurrence is that this set is infinite. We would like to

give more precise quantitative information. Let

τ(E, x) := lim
n→∞

1

n
#
{

0 ≤ j < n : f j(x) ∈ E
}
.

When this limit exists we call it the mean sojourn time of x in the set E. A convenient way to

write it is

lim
n→∞

1

n

n−1∑
j=0

1E(f j(x)).

Birkhoff ergodic theorem says that the mean sojourn time exists for µ-a.e. initial condition x ∈M
and, additionally, that if µ is ergodic then τ(E, x) = µ(E). Thus the orbit of almost every point of

M enters the set E with asymptotic frequency µ(E).

Example 1. In general the mean sojourn time does not exist for every initial condition. Consider

M = [0, 1] and f : M →M defined to be

f(x) = 10x− b10xc,

which preserves the Lebesgue measure m on M . Let

E =

[
0,

1

10

)
= {x ∈M : x = 0.0x2x3 . . .}.
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In other words, E is the set of numbers in [0, 1) whose decimal expansion starts with a 0. Consider

the initial condition x ∈ (0, 1) whose decimal expansion x = 0.x1x2x3 . . . is such that xi = 1 if there

exists k ≥ 0 even such that 2k ≤ i < 2k+1 and xi = 0 otherwise. That is

x = 0.1001111000000001111111111111110 . . .

where the lengths of the alternating blocks of 0’s and 1’s are the successive powers of 2. If n = 2k−1

with k ≥ 1 even then 1
n

∑n−1
j=0 1E(f j(x)) =

∑k−1
j=1 2j

2k−1
→ 2

3 as k → ∞. Instead if n = 2k − 1 with

k ≥ 1 odd we have 1
n

∑n−1
j=0 1E(f j(x))→ 1

3 as k →∞. Thus the mean sojourn time of x in E does

not exist.

2. The theorem

We defined the mean sojourn time of x in a positive-measure set E as the asymptotic mean of

the values of the characteristic function of E along the orbit of x. More in general, we can replace

1E with a measurable function ϕ ∈ L1(µ) and consider the asymptotic behaviour of

1

n

n−1∑
j=0

ϕ(f j(x)),

which is called the time average of ϕ along the orbit of x. Birkhoff ergodic theorem states that

the time average exists for µ-a.e. initial condition and that, if f is also ergodic, it is equal to
1

µ(M)

∫
ϕdµ, the so-called space average of ϕ.

We now turn to the theorem and its proof, following [1]. Without further specifications, here

we assume the measure µ being σ-finite, that is there exists a countable collection {An}n≥1 of

measurable sets such that
⋃∞
n=1An = M and µ(An) <∞ for all n.

Theorem 3 (maximal ergodic theorem). Let (M,B, µ) be a measure space and f : M → M a

measure-preserving transformation. Let U : L1(µ) → L1(µ) be a positive linear operator such that

‖U‖ ≤ 1. Given ψ ∈ L1
R(µ) define

ψ0 = 0, ψn = ψ + Uψ + · · ·+ Un−1ψ for n ≥ 1.

For N ≥ 0 integer let ΨN = max0≤n≤N ψn and EN = {x ∈M : ΨN (x) > 0}. Then∫
EN

ψ dµ ≥ 0.

Proof. It is clear that ΨN ∈ L1
R(µ). For 0 ≤ n ≤ N we have ΨN ≥ ψn, and by the positivity of U

follows

UΨN ≥ Uψn = Uψ + · · ·+ Unψ,

so that UΨN + ψ ≥ ψn+1. If x ∈ EN we have

UΨN (x) + ψ(x) ≥ max
1≤n≤N

ψn(x)
ΨN (x)>0

= max
0≤n≤N

ψn(x) = ΨN (x).

Thus ψ ≥ ΨN − UΨN on EN , from which∫
EN

ψ dµ ≥
∫
EN

ΨN dµ−
∫
EN

UΨN dµ =

∫
M

ΨN dµ−
∫
EN

UΨN dµ, (1)
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where the last equality holds because ΨN = 0 on M \EN . Since by definition ΨN ≥ 0, the positivity

of U implies UΨN ≥ 0, so that
∫
EN

UΨN dµ ≤
∫
M UΨN dµ. Using (1) we have∫

EN

ψ dµ ≥
∫
M

ΨN dµ−
∫
M
UΨN dµ

and the right hand side is ≥ 0 because ‖U‖ ≤ 1, as we wanted to prove. �

Let (M,B, µ) be a measure space, f : M → M a measure-preserving transformation. The

Koopman operator (or composition operator) is the linear operator

Uf : L1(µ)→ L1(µ), Uf (ϕ) := ϕ ◦ f.

Note that Uf is a linear isometry of L1(µ): since µ is preserved by f we have

‖Uf (ϕ)‖1 =

∫
|Uf (ϕ)| dµ =

∫
|ϕ| ◦ f dµ =

∫
|ϕ| dµ = ‖ϕ‖1 .

Moreover, Uf is a positive linear operator, that is Uf (ϕ) ≥ 0 µ-a.e. for every ϕ ≥ 0. The

next corollary is the application of the maximal ergodic theorem to Uf , obtaining a fundamental

inequality.

Corollary 4. Let (M,B, µ) be a measure space, f : M →M a measure-preserving transformation,

and g ∈ L1
R(µ). For α ∈ R set

Bα =

{
x ∈M : sup

n≥1

1

n

n−1∑
j=0

g(f j(x)) > α

}
.

Then for all invariant subset A with µ(A) <∞ we have∫
Bα∩A

g dµ ≥ α · µ(Bα ∩A).

Proof. We first prove the result assuming that M has finite measure and A = M . Let ψ = g − α.

Following the notation of the maximal ergodic theorem applied to the operator Uf we have ψ0 = 0

and for n ≥ 1

ψn =

n−1∑
j=0

U jfψ =

n−1∑
j=0

ψ ◦ f j ,

and En = {x ∈M : Ψn(x) > 0}. Then

Bα =
∞⋃
n=1

{
x ∈M :

n−1∑
j=0

g(f j(x)) > nα

}
=
∞⋃
n=1

{x ∈M : ψn(x) > 0} =

∞⋃
n=1

En

since ψn(x) > 0 for some n ≥ 1 implies Ψn(x) > 0 and Ψn(x) > 0 for some n ≥ 1 implies ψj(x) > 0

for some 1 ≤ j ≤ n. From the maximal ergodic theorem we have
∫
En
ψ dµ ≥ 0 for all n ≥ 1. Since

En ⊆ En+1 for all n ≥ 1, we have 1En → 1Bα for n → ∞. Moreover, |ψ1En | ≤ |ψ| and thus from

the dominated convergence theorem we have∫
En

ψ dµ =

∫
ψ1En dµ→

∫
ψ1Bα dµ =

∫
Bα

ψ dµ as n→∞.

Therefore
∫
Bα
ψ dµ ≥ 0 and the thesis follows by recalling that ψ = g − α. In the general case it

suffices to apply this argument to f |A to get
∫
Bα∩A g dµ ≥ α · µ(Bα ∩A). �
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We are now ready to prove the Birkhoff ergodic theorem.

Theorem 5 (Birkhoff ergodic theorem). Let (M,B, µ) be a measure space, f : M →M a measure-

preserving transformation, and ϕ ∈ L1(µ). Then

1

n

n−1∑
j=0

ϕ(f j(x))

converges pointwise for µ-a.e. x ∈ M to a function ϕ∗ ∈ L1(µ). Also ϕ∗ ◦ f = ϕ∗ µ-a.e. and if

µ(M) <∞ then ∫
ϕ∗ dµ =

∫
ϕdµ.

Proof. We first assume that µ(M) < ∞. By considering real and imaginary parts separately, we

can assume ϕ : M → R. Let

ϕ∗(x) = lim sup
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)) and ϕ∗(x) = lim inf
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)),

which are defined for all x ∈M and are measurable functions. We divide the argument in the proof

of the following properties:

(i) ϕ∗ and ϕ∗ are f -invariant;

(ii) ϕ∗ = ϕ∗ µ-a.e.;

(iii) ϕ∗ ∈ L1(µ);

(iv)
∫
ϕ∗ dµ =

∫
ϕdµ.

For (i), we first note that the following identity holds:

n+ 1

n

(
1

n+ 1

n∑
j=0

ϕ(f j(x))

)
− 1

n

n−1∑
j=0

ϕ(f j(f(x))) =
1

n
ϕ(x).

Then by taking the limit superior and the limit inferior we get ϕ∗ ◦ f = ϕ∗ and ϕ∗ ◦ f = ϕ∗,

respectively.

We now show (ii). For real numbers α and β let Eα,β = {x ∈M : ϕ∗(x) < β and ϕ∗(x) > α}.
Since

{x ∈M : ϕ∗(x) < ϕ∗(x)} =
⋃
β<α
α,β∈Q

Eα,β

it is suffices to prove that µ(Eα,β) = 0 for all β < α (note that the above union is countable).

Clearly f−1Eα,β = Eα,β and if we set

Bα =

{
x ∈M : sup

n≥1

1

n

n−1∑
j=0

ϕ(f j(x)) > α

}
we have Eα,β ⊆ Bα. From Corollary 4 we get∫

Eα,β

ϕdµ =

∫
Bα∩Eα,β

ϕdµ ≥ α · µ(Eα,β).
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If we replace ϕ, α, β with −ϕ, −β, −α respectively, since (−ϕ)∗ = −ϕ∗ and (−ϕ)∗ = ϕ∗ we also

get the inequality
∫
Eα,β

ϕdµ ≤ β · µ(Eα,β). Therefore α · µ(Eα,β) ≤ β · µ(Eα,β) and if β < α we get

µ(Eα,β) = 0. Note that here we also used that µ(M) <∞. This gives ϕ∗ = ϕ∗ almost everywhere

with respect to µ.

Property (iii), that is ϕ∗ ∈ L1(µ), is a simple consequence of the Fatou Lemma. Let (fn)n≥1 be

the sequence of functions given by fn(x) =
∣∣∣ 1
n

∑n−1
j=0 ϕ(f j(x))

∣∣∣. They are non-negative measurable

functions and
∫
fn dµ ≤

∫
|ϕ|dµ <∞, so that∫
|ϕ∗|dµ =

∫
lim
n→∞

fn ≤ lim inf
n→∞

∫
fn dµ <∞.

We are left to show
∫
ϕ̄dµ =

∫
ϕdµ, which is (iv). To this end, for k and n ≥ 1 integers, define

Dn,k =

{
x ∈M :

k

n
≤ ϕ∗(x) <

k + 1

n

}
.

The sets Dn,k are measurable and invariant under f , and moreover for all ε > 0 we have Dk,n ⊆
B k
n
−ε. From Corollary 4 we have∫

Dn,k

ϕdµ =

∫
B k
n−ε∩Dn,k

ϕdµ ≥
(
k

n
− ε
)
µ(Dn,k)

and since ε is arbitrary it follows that
∫
Dn,k

ϕdµ ≥ k
nµ(Dn,k). Then∫

Dn,k

ϕ∗ dµ ≤ k + 1

n
µ(Dn,k) ≤

1

n
µ(Dn,k) +

∫
Dn,k

ϕdµ

and summing over k yields ∫
ϕ∗ dµ ≤ 1

n
µ(M) +

∫
ϕdµ.

This holds for every n ≥ 1, so that
∫
ϕ∗ dµ ≤

∫
ϕdµ. The same argument applied to −ϕ gives∫

(−ϕ)∗ dµ ≤
∫
−ϕdµ, which is the same as

∫
ϕ∗ dµ ≥

∫
ϕdµ. Since ϕ∗ = ϕ∗ µ-a.e. we can

conclude that the two integrals do coincide. This finishes the proof when µ(M) <∞.

For the case µ(M) =∞ the above proof is still valid if we prove that µ(Eα,β) <∞ when β < α, so

that we are allowed to apply Corollary 4. Suppose α > 0 and let C ∈ B be such that C ⊆ Eα,β and

µ(C) <∞. Such a set exists because we are assuming M to be σ-finite. By letting ψ = ϕ−α1C ∈
L1(µ), the maximal ergodic theorem yields∫

{x∈M : Ψn(x)>0}
(ϕ− α1C) dµ ≥ 0 (2)

for all n ≥ 1. Thus

α · µ(C ∩ {x ∈M : Ψn(x) > 0})
(2)

≤
∫
{x∈M : Ψn(x)>0}

ϕdµ ≤
∫
{x∈M : Ψn(x)>0}

|ϕ|dµ ≤
∫
|ϕ|dµ

We claim that Eα,β ⊆
⋃∞
n=0{x ∈M : Ψn(x) > 0}. If x ∈ Eα,β then there is an n (actually infinitely

many) such that 1
n

∑n−1
j=0 ϕ(f j(x)) > α, so that with the notation of the maximal ergodic theorem

ψn(x) =

n−1∑
j=0

ϕ(f j(x))− α
n−1∑
j=0

1C(f j(x)) ≥
n−1∑
j=0

ϕ(f j(x))− αn > 0,
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which implies Ψn(x) > 0. So we have the inclusion

C ⊆ Eα,β ⊆
∞⋃
n=0

{x ∈M : Ψn(x) > 0}.

The sequence of sets (C ∩ {x ∈M : Ψn(x) > 0})n≥1 is non-decreasing and the union of these sets

is C. Thus µ(C ∩ {x ∈M : Ψn(x) > 0})→ µ(C) as n→∞, and hence

α · µ(C) ≤
∫
|ϕ|dµ.

We thus proved that µ(C) ≤ 1
α

∫
|ϕ|dµ for each C ∈ B with C ⊆ Eα,β and µ(C) < ∞. Since M

is σ-finite, we can write Eα,β as the union of a non-decreasing sequence (Cn)n≥1 of finite-measure

sets. Since for each n we have µ(Cn) ≤ 1
α

∫
|ϕ| dµ, it follows that µ(Eα,β) ≤ 1

α

∫
|ϕ|dµ < ∞.

If α ≤ 0 then β < 0 and we can apply the argument to −ϕ and −β instead of ϕ and α to get

µ(Eα,β) <∞. �

Corollary 6. Let (M,B, µ) be a finite measure space, f : M →M a measure-preserving transfor-

mation, and ϕ ∈ L1(µ). The map f is ergodic if and only if for µ-a.e. x ∈M we have

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)) =
1

µ(M)

∫
ϕdµ.

Proof. (⇒) From the Birkhoff ergodic theorem we know that ϕ∗ is invariant under f , that ϕ∗ ∈
L1(µ) and that

∫
ϕ∗ dµ =

∫
ϕdµ. Since f is ergodic, ϕ∗ must be constant µ-a.e. and the thesis

follows.

(⇐) Let B ∈ B be an invariant set and ϕ = 1B. From the hypothesis we have that the mean

sojourn time

τ(B, x) = lim
n→∞

1

n

n−1∑
j=0

1B(f j(x))

is constant for µ-a.e. x ∈M . But τ(B, x) = 1 for every x ∈ B and τ(B, x) = 0 for every x ∈M \B,

thus necessarily µ(B) = 0 or µ(B) = 1. �
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