
SOME PROOFS OF THE INFINITUDE OF PRIME NUMBERS

ALESSIO DEL VIGNA

A prime number is an integer greater than 1 which is divisible by 1 and itself. We shall denote

by P = {pn : n ≥ 1} the set of prime numbers, so that

p1 = 2, p2 = 3, p3 = 5, . . .

that is, pn is the n-th prime number. The main character of this note is the following well known

result.

Theorem 1. There are infinitely many prime numbers.

This property was proved by Euclid in his Elements (Book IX, Proposition 20) and it is known by

nearly every mathematics student. Many proofs of Euclid’s theorem are currently known and our

aim for this note is to present some of them.

1. Euclid’s proof

Here we present the proof given by Euclid, of course with a modern language, and a variation of

it given by Kummer [3] in 1878.

Proof (Euclid). Suppose by contradiction that there are finitely many prime numbers, say p1 <

p2 < · · · < pk. Define

N = p1p2 · · · pk + 1,

which cannot be prime because N > pk. But N is not divisible by any of the pi’s, which gives us a

contradiction. �

Kummer’s proof is very similar to Euclid’s one in spirit.

Proof (Kummer). Suppose by contradiction that there are finitely many prime numbers, say p1 <

p2 < · · · < pk, with k ≥ 2. Define

N = p1p2 · · · pk.

The number N − 1 is greater than 1, thus it has a prime divisor among the primes p1, . . . , pk. Let

pj be this prime divisor. But pj is also a divisor of N by construction, thus pj | N − (N − 1) = 1,

which is a contradiction. �

2. A modern proof

After the classical proof by Euclid we now take a leap forward of more than two millennia and

present a recent proof by Saidak [4]. This proof dates back to 2005, showing that original proofs

of Euclid’s theorem can be found even nowadays.
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Proof (Saidak). Let n be a positive integer greater than 1. Since n and n + 1 are consecutive

integers, they must be relatively prime. It follows that the number n(n + 1) has at least two

distinct prime factors. Similarly, n(n+ 1) and n(n+ 1) + 1 are relatively prime, thus the number

n(n+ 1) · (n(n+ 1) + 1) has at least three prime factors. This process can be continued indefinitely,

showing that the number of primes is infinite. �

3. Fermat and Mersenne numbers

We recall that a Fermat number is an integer of the form

Fn = 22n + 1,

for n ≥ 0. Arguing inductively, one can prove that for every n ≥ 1 it holds

Fn = F0 · · ·Fn−1 + 2,

from which it easily follows that distinct Fermat numbers are relatively prime. From this fact we

get another proof of the infinitude of primes.

Proof. For each Fermat number we can choose one of its prime factors, for instance the smallest one.

Since distinct Fermat numbers do not share any common factor, this correspondence is injective,

proving that there are infinitely many prime numbers. �

A Mersenne number is an integer of the form

Mn = 2n − 1

for n ≥ 2. It is easy to prove that if n is composite then Mn must be composite, so the only

possibility for Mn to be prime is that n is prime. A Mersenne prime is thus a prime number of the

form 2p − 1, with p being a prime number.

Proof. Suppose that there are finitely many prime numbers and let p the greatest one. Consider

the Mersenne number Mp = 2p − 1 and let q a prime factor of Mp, that is 2p ≡ 1 (mod q). Thus

the multiplicative order of 2 in (Z/qZ)∗ divides p and hence is exactly p. In a group the order of

an elements divides the order of the group, thus p | q − 1. But then p < q, which contradicts the

maximality of p. �

4. The proof of Euler

Euler is certainly one of the greatest and most prolific mathematicians of all time. His proof of

the infinitude of prime numbers, besides being elegant, uses ideas which will later turn out to be

useful in many fields of mathematics.

We first recall the definition of the arithmetic function π, which counts the prime numbers. To

be more precise, for x ∈ R we set

π(x) := #{p ≤ x : p ∈ P} =
∑
p≤x

1.

Proof (Euler). If n < x ≤ n+ 1 then

log x =

∫ x

1

1

t
dt ≤ 1 +

1

2
+ · · ·+ 1

n
≤
∑
m∈Λx

1

m
,
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where Λx is the set of positive integers with prime divisors not greater than x. The brilliant idea

of Euler is to convert the above sum into a product over the prime numbers. Indeed from the

fundamental theorem of arithmetic we have∑
m∈Λx

1

m
=
∏
p≤x

∞∑
k=0

1

pk
,

hence

log x ≤
∏
p≤x

∞∑
k=0

1

pk
=
∏
p≤x

1

1− 1
p

=

π(x)∏
r=1

1

1− 1
pr

.

Since pr ≥ r + 1 for every r ≥ 1 we have

log x ≤
π(x)∏
r=1

1

1− 1
pr

≤
π(x)∏
r=1

r + 1

r
= π(x) + 1.

Since log x diverges as x→∞, we have that also π(x) diverges, which implies that P is infinite. �

The following is not a proof given by Euler, but exploits the same idea.

Proof. Consider the product ∏
p

1

1− 1
p2

and write its general term as a geometric series. Limiting the product to the primes not exceeding

a certain N > 1, we have

∏
p≤N

1

1− 1
p2

=
∏
p≤N

∞∑
k=0

(
1

p2

)k
=
∑
n∈ΛN

1

n2
, (1)

where ΛN is the set of numbers whose prime divisors do not exceed N . Taking the limit for N →∞
we get ∏

p

1

1− 1
p2

=
∞∑
n=1

1

n2
=
π2

6
.

If P were a finite set then the left hand side would be rational, being it a finite product of rational

numbers. But the right hand side is not rational because π2 /∈ Q, which gives us a contradiction. �

Remark 2. The fact that
∑∞

n=1
1
n2 = π2

6 is not trivial. Three different and clever proofs can be

found in the beautiful book [1].

Remark 3. When we used that π2 is not rational we implicitely assumed that π is not only irrational,

but also transcendental. In 1794 Legendre proved that π is irrational and later, in 1882, Lindemann

proved that π is transcendental. Both facts were not known to Euler, though he had supposed that

they were true.
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5. Erdös and the series of the recicprocals of the primes

In this section we prove that the series ∑
p

1

p

diverges, which implies that the set P is infinite. We follow the brilliant proof given by Erdös, also

presented in [1].

Proof (Erdös). Suppose by contradiction that the series
∑

p
1
p is convergent. Then there exists k

such that ∑
j≥k+1

1

pj
<

1

2
.

We shall call small primes the prime numbers p1, . . . , pk and big primes the prime numbers in

P \ {p1, . . . , pk}. Given a non-negative integer N we set

Nb = {n ∈ N : 0 < n ≤ N and n has at least a big prime factor}

and

Ns = {n ∈ N : 0 < n ≤ N and n has only small prime factors}.

Note that 1 ∈ Ns, being it the empty product. Let

Nb = #Nb and Ns = #Ns.

Of course N = Nb + Ns and now we show that by assuming that
∑

p
1
p converges we obtain the

contradiction N 6= Nb +Ns.

Note that
[
N
pj

]
counts how many integers ≤ N are divisible by pj , thus we have

Nb ≤
∑
j≥k+1

[
N

pj

]
≤
∑
j≥k+1

N

pj
<
N

2
.

We now estimate Ns. Let n ∈ Ns and note that it can be uniquely written as

n = a2
nbn,

with bn being a square-free integer. Since n ∈ Ns the factor bn must be a product of distinct small

primes, hence it can be chosen in 2k ways. Furthermore, since an ≤
√
n ≤

√
N we have at most√

N possibilities for an. As a consequence

Ns ≤ 2k
√
N.

By choosing N = 22k+2 we obtain the estimate Ns ≤ N
2 , which implies N = Nb + Ns < N , a

contradiction. �

6. A topological proof

In 1955, Furstenberg gave his famous topological proof of the infinitude of the primes in the

paper [2].
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Proof (Furstenberg). In the first part of the proof we define a topology on the set Z. For a, b ∈ Z
with b > 0 we set

Na,b = {a+ nb : n ∈ Z}
and we say that O ⊆ Z is an open set if O is empty or if for all a ∈ O there exists b > 0 with

Na,b ⊆ O. We observe that each set Na,b is open. Proving that we actually defined a topology is

an easy task.

(i) The empty set is open by definition and Z = N0,1, thus it is open.

(ii) It is clear that the union of open sets is open.

(iii) If O1 and O2 are open sets and a ∈ O1 ∩ O2 then there exist b1 > 0 and b2 > 0 such that

Na,b1 ⊆ O1 and Na,b2 ⊆ O2. Then a ∈ Na,b1b2 ⊆ O1 ∩ O2, from which it follows that the

intersection of a finite number of open sets is open.

We have two properties of this topology:

(P1) every non-empty open set is infinite;

(P2) every open set Na,b is also closed because it can be written as Na,b = Z \
⋃b−1
i=1 Na+i,b, which

is the complement of a finite union of open sets.

Every integer n ∈ Z \ {−1, 1} is either zero or has a prime factor p, thus it is contained in N0,p.

Hence

Z \ {−1, 1} =
⋃
p

N0,p.

If the set P were finite, then
⋃
pN0,p woudl be closed since it is a finite union of closed sets by

the property (P2) . From this it follows that {−1, 1} would be an open set, which contradicts

property (P1) . �
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Email address: alessio.delvigna@dm.unipi.it

5


	1. Euclid's proof
	2. A modern proof
	3. Fermat and Mersenne numbers
	4. The proof of Euler
	5. Erdös and the series of the recicprocals of the primes
	6. A topological proof
	References

