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An area of research in combinatorial number theory deals with

(e o finding arithmetic structure in large enough subsets of
natural numbers.
Rothe theorem In our presentation we will consider theorems which aim to find
ek arithmetic progressions like x, x + h, x + 2h and x, x + h? in
theorem sets with positive density.
i Asymptotic density
Roth’s theorem
Nopandard Let A C N, the asymptotic (upper) density of A is defined as
- . ANl N
d(A) = limsup AL M)
N—oo N
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We will present two different ways to prove these theorems:

Roth's theorem e the density increment approach
Nonstandard
Sarory's e the energy increment approach
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We will then use these approaches in a nonstandard setting.
Ergodic Proof

Roth’s theorem

Nonstandard
setting

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 4 /35



Non
elementary
methods in

combinatorial Fourler analySIS

number theory

Francesco Di
Baldassarre

Introduction CharaCter
Density Let é‘ c ZN; we deﬁne

increment

Roth’s theorem

Nonstandard i&n
setting

ec(n) = W

theorem

Energy
Increment
Ergodic Proof
Roth’s theorem

Nonstandard
setting

Conclusions

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 5/ 35



Non
elementary

combimatora Fourier analysis
number theory

Francesco Di
Baldassarre

Character
Let £ € Zp, we define

Introduction

Roth’s theorem

Nonstandard

setting ef(n) = e
Sarkozy's

theorem

Ergodic Proof Let 5 S ZN and f: ZN — (C
s We define

F(€) = Enczy F(n)ee(n) Z f(n

DGZN

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 5/ 35



Non
elementary
methods in

combinatorial DenSIty Increment

number theory

Francesco Di
Baldassarre

Density
increment

Roth’s theorem

pone theer The density increment approach goes through two main steps

setting
Sarkozy's

Sarkozy e no arithmetic progression = correlation with a character e;

e correlation with a character e; = density increment

Ergodic Proof
Roth’s theorem

Nonstandard
setting

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 6 /35



Non
elementary
methods in

combinatorial Dens'ty Increment

number theory

Francesco Di
Baldassarre

Density
increment

Roth’s theorem

pone theer The density increment approach goes through two main steps
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Sarkozy e no arithmetic progression = correlation with a character e;

e correlation with a character e; = density increment
Ergodic Proof

el By iterating this process enough times we reach a contradiction.
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It is convenient to define

N—-1N—
1
A (]lA,]lA,ﬂA TZZ n)]lA +r)]1A(n—|—2r)
=0 r=0

Roth’s theorem

For any N € N and for any A C [1, N] such that |[A| = 6N >0

we have
A3(Ta,1a,14) =Qs(1)

i.e. A3(1a,1a,14) > Cs for some positive constant Cs
depending only on 4.
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Step 1. No AP implies correlation

We want to show that if A does not contain an arithmetic
progression of length 3 then A is correlated with some
character e.

Proposition

Let A C [1, N] with |A] = dN for some 0 < § < 1.

Assume N > 1(?—20 and that A does not contain any arithmetic
progression of length 3.

Then there exists & such that

|Enepi,n(La(n) — d6)ec(n)| = Q(8%)

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 8 /35



Non
elementary
methods in

i i Step 2. Correlation implies density

number theory

increment
Francesco Di

Baldassarre

Introduction We Want a partltlon
Density
increment

m
Roth’s theorem

LN =||PUE
setting

Sarkozy's i—

theorem J 1

Energy

Increment SuCh that
Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 9 /35



Non
elementary

methode Step 2. Correlation implies density
n:mber the;r.y |ncrement
Baldassarre

We want a partition

m
Roth’s theorem
LN =||PUE
setting
Sarkozy's [—
theorem J 1

such that
Ergodic Proof
Roth's theorem ° J — {S_] + hn}

Nonstandard
setting

n<cy/N 2re arithmetic progressions

Francesco Di Baldassarre Non elementary methods in combinatorial number theory

9/35



Non
elementary

i i Step 2. Correlation implies density
increment

number theory
Francesco Di
Baldassarre

We want a partition

m
Roth’s theorem
LN =||PUE
setting
Sarkozy's j=1

theorem

such that
Ergodic Proof

Roth’s theorem — . . . .
e o Pj={sj+ hn} _ /5 are arithmetic progressions
setting

° & fluctuates only little on each P;, i.e.

lec(x) — ec(y)| < e for x,y € P

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 9 /35



Non
elementary

methode Step 2. Correlation implies density
number theory |ncrement
Francesco Di

Baldassarre

We want a partition

m
Roth’s theorem
LN =||PUE
setting
Sarkozy's j=1

theorem

such that
Ergodic Proof
Roth's theorem ° J — {S_] + hn}

Nonstandard
setting

n<cy/N 2re arithmetic progressions
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Sarkozy's for some £ and o > 0 then there exist P C [1, N] arithmetic
progression such that

Ergodic Proof

oth's theorem 1 A ﬂ P (o

P =Q(o?Nz)  and ‘IP\’ =0ty
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setting
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e A has increased density & + cd2 on a subprogression P of
Syt Frast |ength Q(\/ N)
Roth’s theorem
Nonstandard Since

A does not contain a 3 AP

4

A restricted to P does not contain a 3 AP

we can repeat the process until we obtain an absurdum since
the density cannot exceed 1.
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extensions of mathematical objects. Here we focus on *N
and *R. The main properties of *R are:

e |s an ordered field and contains R
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The nonstandard analysis deals with the nonstandard
extensions of mathematical objects. Here we focus on *N

s and *R. The main properties of *R are:
itig e Is an ordered field and contains R
‘ e Contains both infinite and infinitesimal numbers
ZeE e Every finite hyperreal r is infinitely close to exactly one real
Nonstandard number called standard part of r and denoted with st (r)
e Has the same “elementary” properties of R if we consider

only internal sets and functions (Transfer principle)
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Roth's theorem
Let N € *N infinite and let A C [1, N] be an internal subset

Roth’s theorem

st such that % % 0. Then A contains an arithmetic progression
Sarkozy's

A of Iength 3.

e Proot With slight alterations to the standard proof we obtain the

o theorem result in nonstandard setting.

o For instance, in the fragmentation step, we can take the length
v of the subprogression to be infinite but infinitely smaller
than N.
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Sarkozy's theorem

Let N € *N infinite and let A C [1, N] be an internal subset
such that %l % 0. Then A contains two elements whose
difference is a perfect square.

Similarly to what we have done for Roth's theorem we define

No(La,1a) = 75 Z Z La(n)La(m)Ls(n — m)

n=1 m=1

where S = {d?: 1 < d < V/N}.
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To obtain the estimate we use a bound on
Weyl sum
We define Weyl sum the quantity

M
Sm(€) = ) e(m?)

m=1

To obtain the fragmentation we use the

Quadratic recurrence

For all N € Z sufficiently large and £ € R there exists an
integer 1 < h < N such that

1
e

th'fHR/Z =
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Let (X, B, u, T) be a measure preserving system. For any
E € B with p(E) > 0 there exists some n > 0 such that
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where:
Roth’s theorem
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setting
Sarkozy's feAP(X) if {n: ||T"f — f|| < €} is syndetic for any €

f e WM(X) if D-lim (f, T"f) = E(f)?

Ergodic Proof
Roth’s theorem

Nonstandard The almost periodic component represents the structured part
b of our set and the weak mixing component represents the
pseudo-random factor.
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Roth’s theorem

To use this idea in the discrete setting [1, N| we aim to
ek decompose a function in:
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. L almost periodic
f=fy+fyo withq Y= = 0-
Sl i vt fys wi fy negligible
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e Let k> 1 be an integer and o > 0. A function f: [1, N] = C

Nonstandard

Sakory's is (k,o)-almost periodic if there exist frequencies &1, . .., &k
and c1,...,c €C, |a],...,|c| <1 such that
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Ergodic Proof k
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Nonstandard Hf — E ci€e ” 2 < o

setting gl fj [2 =
Jj=1
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Let f: [L,N] > RT, 0<f<1land E(f)>4. If fis
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Let f: Zn — C, we define

Roth's theorem Hf||u2 = EIE%T\(/ ’f(f)‘
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setting

Sarkozy's
theorem

Estimate on A3
Ergodic Proof

e Let f,g,h: Zny — C. Then we have the estimate
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setting

[As(f, g, M| < [Ifll2llgllez (1Al 2
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Badassare e define the energy of an algebra B on [1, N] with respect to

f to be
2
E¢(B) = | E(f|B) |72 = Exez [E(IB)(x)
Nonstandard
l}ti” s with
E(18)() = ey & U
Ergodic Proof yEB x)
Roth’s theorem . . ) )
M where B(x) is the unique atom of B which contains x.

Energy increment

If f — E(f|B) has one large Fourier coefficient then we can find
a new o-algebra B’ with more energy with respect to f.
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fncueen et o >0 and let F: RT x RT — RT be an arbitrary function.

Sacey Then there exists k such that for any f: [1, N] — [0, 1] there
exists a decomposition f = f;1 + fy with:

Ergodic Proof e fyi is (k,o)-almost periodic
Roth’s theorem 1

S il < mo
)
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fy1 almost periodic

]lA = fU + fUL Wlth { HfUHuz smaII

Roth’s theorem
Nonstandard

setting using the inequality

Sarkozy's
theorem

As(f, g, h)l < [Ifll2llgllez M1l 2

Ergodic Proof

Roth's theorem

we obtain

Nonstandard
setting

N3(La, 14, 14) = Ns(fu, fu, fu) + As(fu, fu, fyr )+
4+ -+ /\3(fuL, fuL, fu) + A3(fuL, fuL, fui) =
= A3(fuL, fuL, fui) +e= Qg(l)
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Roth's theorem _ |A | |
Nonstandard M(A) = st
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Sarkozy's
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Ergodic Proof
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Let A C [1, N] be an internal set and define

' e Al
:O:Stm:’dard ,LL(A) = st (l\l’

setting

Sarkozy's

theorem

cwscrer  LOED measure

Roth's theorem

e There is a unique o-additive extension of y to the o-algebra £

generated by the internal sets. The completion of this measure
is called Loeb measure and is denoted with ;.
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We define

Ns(f.g.h) = /[1,/\/] /[_NM F(n)g(n-+ r)h(n+2r) dpe(F)dpue(n)
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setting

Sarkozy's for any f, g, h: [1, N] — C Loeb measurable.
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Roth’s theorem
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Roth’s theorem
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Sarkozy's
theorem

Ergodic Proof
Roth’s theorem

Nonstandard
setting

Nonstandard Roth

We define
Na(F, g, h) = / / F(me(n+ )h(n+2r) du(r)dp (n)
[l,N] [—N,N]

for any f, g, h: [1, N] — C Loeb measurable.

Roth’s theorem

Let N € *N be infinite and let f € L*°(u), f: [1, N] = R
bounded, non negative, with E ¢ nj f(n) > 0. Then

As(f,f,f) >0
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Loeb integral

Let F, G, H: [1,N] — *C be internal functions bounded by a
finite number, then

As(st (F),st(G),st(H)) =

1 N N
st| —=——=> > F(n)G(n+r)H(n+2r)
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Almost periodicity

Using the properties of the Loeb integral we have that
Almost periodic functions are recurrent

Let f € L°(n), 0< f <1, Epyy(F) = 8 > 0.
If f is (k,o)-almost periodic with o < % then

Ns(f,f,f) >0
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We define Z! to be the o-algebra generated by the characters
Roth’s theorem
Nonstandard {egj § € []_7 N]}

Sarkony's

theorem Theorem

i et Let f: [1, N] = C be Z'-measurable and f € L>°(u). Then for
N o any o > 0 there exists k such that f is (k, o)-almost periodic.
setting
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fur = E(14|2%)

1a=fy+ fyo with fy = 14— fy

Roth’s theorem

Nonstandard
setting

Sarkozy's
theorem

Ergodic Proof
Roth’s theorem

Nonstandard
setting
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fu=1a—fy

Roth’s theorem
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setting

Sarkony's Lemma

' Let f,g, h: [1,N] = C, f, g, he L®(u).
L IfE(F|2Y) = 0 then As(f, g, h) = 0.
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Roth’s theorem
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setting
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Let f,g,h: [I,N] = C, f,g,h e L®(un).
Ergodic Proof If E(f‘Zl) = 0 then /\3(f,g, h) = 0

Roth’s theorem
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setting T h us

N3(La, L, 1a) = As(fu, fu, fu) + Ns(fu, fu, fyr)+
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Final remarks

The density increment proof of Roth's theorem in a
nonstandard settings is easier to obtain, reduces a bit the
length of computations and is easily adapted to prove
Sarkozy's theorem but does not give any estimate.
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e The density increment proof of Roth’s theorem in a

Roth's theorem nonstandard settings is easier to obtain, reduces a bit the
Stkt” length of computations and is easily adapted to prove
L Sarkozy's theorem but does not give any estimate.

e The energy increment proof of Roth's theorem in a
Ergodic Proof . . .
P a— nonstandard settings provides an easy way to obtain the
Nonstandard ay - .. .
setting decomposition by using both hyperfinite (discrete) and

Conclusions

continuous techniques.
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Possible developments

e Extend the density increment proof of Sarkozy's theorem
to patterns of the form x, x + P(n) with P(n) polynomial,

P(0) = 0.
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o e Extend the density increment proof of Sarkozy's theorem
bl to patterns of the form x, x + P(n) with P(n) polynomial,
Stz P(0) = 0.

e Find a “pure” nonstandard proof of Roth’s theorem via
e e energy increment by replacing the characters e with a
St suitable subspace of CNV with N € *N infinite.

Conclusions

Ergodic Proof

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 35 /35



	Introduction
	Density increment
	Roth's theorem
	Nonstandard setting
	Sarkozy's theorem

	Energy Increment
	Ergodic Proof
	Roth's theorem
	Nonstandard setting

	Conclusions

