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Introduction

Satellite geodesy of the Earth

According to (Helmert, 1880), geodesy is the science of the measurement and the
mapping of the Earth’s surface. It is a very ancient science, already known in
the Ancient Greece (Eratosthenes, for instance, measured the circumference of the
Earth using a simple astronomic argument) and also in the Eastern world (Al-
Biruni in the Middle Age measured the radius of the Earth using trigonometry).
In the early modern period, the invention of the telescope and the creation of the
logarithmic tables allowed the development of triangulation and grade measure-
ment. Noteworthy are the two expeditions dispatched by the French Academy
of Sciences, directed to Torne Valley and to Ecuador, aimed at measuring the
oblateness of the Earth.

Nowadays, thanks to the development of space industry, geodesy has expanded
its methods and applications and a new discipline has taken root, the so-called
satellite geodesy. Based on the observations of mainly artificial bodies orbiting the
planet, such discipline deals with three main problems (cf. (Seeber, 2003)):

Geodesy determination of precise global, regional and local three-dimensional
positions;

Gravimetry determination of Earth’s gravity field;

Geodynamics measurement and modeling of geodynamical phenomena (e.g., po-
lar motion, Earth rotation, crustal deformation).

Actually, if one considers the Moon a source of satellite measurements, satellite
geodesy has its roots in the beginning of the XIX century, when Laplace used
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vi Introduction

observations of the lunar nodal motion to measure the Earth’s flattening. After
the launch of the first artificial satellite, Russian SPUTNIK-1 (October 4, 1957),
the knowledge of our planet has improved rapidly: in 1959 the third zonal harmonic
coefficient was measured (“Earth Is Pear Shaped!”, see Fig. 1), in 1962 a geodetic
connection between France and Algeria was established and by 1964 scientists
determined the general shape of the Earth’s geoid. For the last 20 years, satellite
geodesy has been giving an essential contribution to the GPS service, which is still
evolving thanks to the continuous improvements in terms of spacial and temporal
resolution of the Earth’s gravity field.

Satellite geodesy of other planets

Figure 1: A fragment from the Chicago Tribune’s issue
dated January 29, 1959 (CT, 1959) reporting the Van-
gard’s discovery about the asimmetry of our planet with
respect to the equatorial plane, the so-called pear shape.
Mathematically it is showed by the presence of a non-zero
gravitational momentum J3.

Almost at the same time, attention was
drawn also to interplanetary space mis-
sions, whose targets were other plan-
ets of the solar system, the Sun, as-
teroids, comets, the outer space. The
first attempt of sending a spacecraft
towards another planet dates back to
1961, when the Sovietic probe Venera 1
was launched; it was intended to enter a
Venus orbit, but the radio contact was
lost before the flyby. Since that first
unsuccessful effort, many other mis-
sions have achieved their goals, mak-
ing it possible to answer some of the
same questions raised for Earth. Mis-
sions like Mariner 10 to Mercury, Voy-
ager 1 and 2 to the outer planets, Mars Global Surveyor to Mars and Cassini-
Huygens to Saturn helped the mankind gain insight into the characteristics of the
other planets and understand more about the origins and the formation of the
Solar System and the Earth itself.

One of the main differences between a space mission on Earth and one on an-
other planet is the environment in which they operate: while in the first case
one can build very accurate mathematical models of all the gravitational and non-
gravitational perturbations experienced by a probe, in the second case the objective
of the space mission is to find and/or verify such models, most of the times. For
instance, planet Jupiter as well as Saturn are fluid bodies, thus for them the rigid
body laws hold only in first approximation; this means that new models for the
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gravity field and the rotation must be studied and space missions help reach this
goal.

Another difference is that space missions on other planets are often planned to
undertake several experiments at the same time, whereas Earth missions are usu-
ally focused on a single experiment. This requires a hard work during the design
phase in setting the mission parameters (total duration, orbit shape, ...) so that
all the experiments give the best outcomes. Of course this is difficult to accom-
plish and most of the times a compromise between quality of the results of a single
experiment and number of experiments must be reached.

For its nature of using precise measurements to, from, or between artificial satel-
lites, satellite geodesy of other planets requires a comprehensive knowledge of
satellite motion under all the active forces and perturbations as well as the de-
scription of the positions of satellites in suitable reference frames. For example, it
is necessary to study in detail also the relativistic effects that can be experienced
by the probe, such as the corrections to the observables due to the curvature of
space-time or the difference of proper times of the planets. For this reason, satellite
geodesy belongs to basic sciences. On the other hand, when satellite observations
are used to solve practical problems, it belongs to the field of the applied sciences.
The work described in these pages follows the same duality: mathematical models
are developed independently within a self-consistent theory and have general va-
lidity; nevertheless, most of them find a natural application in or are motivated by
the Radio Science Experiment (RSE) of interplanetary space missions, especially
the NASA Juno mission to Jupiter.

Outline

This thesis is divided in two parts. In the first part we focus on the numerical
simulations of the RSE of the mission Juno in jovicentric orbit. The second part
deals with the analysis of real data of the cruise-stage of the mission Juno and the
assessment of the numerical error introduced by the orbit determination software
developed for the analysis of such data.

Part I: The Radio Science experiment of the mission Juno

Ever since the first space missions were launched, Radio Science experiments have
been performed. The RSE of a space mission is performed either analyzing the
Doppler/ranging signal reaching the Earth from the spacecraft, or by analyzing
the signal modified by occulations of the spacecraft by a planet (cf. (Dehant et al.,
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2011)). Some examples of the objectives of RSE are: the measurement of the
gravity field of the planet (Gravity Science, see Section 1.3), the assessment of the
validity of general relativistic theories, the determination of the composition of the
atmosphere of a planet and of its atmospheric dynamics.

NASA’s mission Juno will reach planet Jupiter on July 5, 2016 at 02:37 UTC
and, among all the experiments planned, will undertake a RSE. Objectives of the
latter are: the determination of Jupiter’s gravity field and the parameters giving
the tidal deformation of Jupiter; the determination of the position of the rotation
pole of Jupiter and the angular momentum. Thanks to such information, it will
be possible to improve our knowledge of Jupiter’s origins and interior structure.

This part is organised as follows.

Chapter 1 contains a brief summary of the previous space missions to Jupiter as
well as a detailed description of the Juno mission, its objectives, and a specific
focus on the Gravity Science experiment and the design of the orbit of Juno when
at Jupiter.

Chapter 2 deals with the mathematical formulation of Orbit Determination and
describes the algorithms necessary to process the data obtained during a RSE.
Moreover, it contains a presentation of the ORBIT14 Orbit Determination software
developed at the Department of Mathematics of the University of Pisa, which has
been used to perform the simulations presented in this work.

The results of the simulations regarding the gravity field of Jupiter are described
in Chapter 3. Here, we start introducing a semi-analytical method to predict
the uncertainties of the spherical harmonics coefficients of the gravity field of a
planet, valid in general for any spacecraft orbiting a celestial body. Then, we
cope with the results of the simulations for the spherical harmonics coefficients of
Jupiter. Finally, since the observations of the planet will be confined to a latitude
band in the north hemisphere of the planet, we introduce a local model for the
gravity field of Jupiter, based on ring shaped mascons. This chapter also deals
with the determination of Jupiter’s Love numbers, measuring the tidal response of
the planet to the attraction of its natural satellites and the Sun.

In Chapter 4 we tackle the determination of Jupiter’s pole of rotation and the
magnitude of its angular momentum, the latter particularly important because it
is strictly connected to Jupiter’s normalized polar moment of inertia, fundamental
for the determination of the interior structure of the planet. The joint discussion
is due to the fact that we found high correlation between the parameters related
to these physical quantities, mirroring the fact that their effects on the motion of
the spacecraft are indistinguishable. We propose a possible solution and hint at
an alternative method for determining Jupiter’s moment of inertia.
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Part II: Analysis of the cruise-stage data

Whereas the first part of this thesis is dedicated to the analysis and description of
the results of simulations of the Juno RSE, the second part deals with the analysis
of real data from the Juno spacecraft. Although the scientific content of these data
is rather poor because they have been obtained during the cruise phase, when the
relative position of the Earth-Sun-spacecraft would not allow a Solar Conjunction
Experiment, the reasons for such an analysis are at least two. Firstly, it was a
chance to assess the performance of the telecommunication system onboard and
test the quality of the data. The second motive is more relevant for the scope of
this thesis and is the validation of the ORBIT14 software and the assessment of
the numerical noise introduced therein. We will show that the software is in good
condition and well-performing, the numerical error being negligible.

This thesis is the natural conclusion of a three-year research work, whose aim was
to get ready to tackle the analysis of the data of the space mission Juno. This
entailed developing a rock-solid theoretical background which had to take into
account the peculiarities of the mission, and producing numerical simulations of
the scheduled scientific experiment. For the latter, it was necessary to have at our
disposal an orbit determination software which could exploit the characteristics of
the mission which up to that point were confined to the theory. Because of the
experience gained through the years, our choice was to develop our own software.
It is redundant to say that we had to cope with the July 5, 2016 deadline and
make sure that the software would be ready by that time. This thesis shows that
we achieved what we planned to do three years ago: we managed to produce a
software we can fully control. We are prepared to analyse the real data when they
start arriving later in 2016, undertake an actual experiment, and deliver sound
scientific results. Thus the scientific production is constrained to the analysis of
the data and slim are the chances of publishing some results earlier than 2018. For
the moment, we have one published article, (Tommei et al., 2015), and a submitted
one, reporting most of the results contained in this dissertation. The author also
participated in the work (Le Maistre et al., 2016) during his research visit at Jet
Propulsion Laboratory from April to August 2015 in the program JPL Visiting
Student Researchers Program (JVSRP).

We are not stating - and do not mean to - that it is all downhill from here. In
fact we are conscious that the hardest part is to come: we had the chance in
the past three years to realise that coping with real data is deeply different from
performing simulations. Yet if any modifications are needed or new science is
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found that requires software adjustements, having access to the source code will
facilitate our job.
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CHAPTER 1

The Juno mission

Contents
1.1 The exploration of Jupiter . . . . . . . . . . . . . . . . . 3

1.2 Motivation and scientific objectives . . . . . . . . . . . . 6

1.3 Gravity Science . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The orbit of Juno . . . . . . . . . . . . . . . . . . . . . . 8

Outline: This chapter is dedicated to the description of the Juno mission to
Jupiter. Before describing in detail the scientific objectives and the experiments
planned to be undertaken as to achieve such goals, a brief synopsis of some of the
past space missions aimed at exploring Jupiter is given.

1.1 The exploration of Jupiter

Since the early years of the 1970s, many spacecrafts have visited Jupiter, although
only one of them was designed specially for the exploration of the largest planet
of the Solar System. In this section we summarize the most important discoveries
made by these missions. For a detailed comparison, the reader is invited to refer
to (Young, 1998).

3



4 The Juno mission

Figure 1.1: Jupiter photographed by Pioneer 10 during the close approach, December
1973. Credit: NASA.

The Pioneer mission

The first space probe that encountered Jupiter and had the chance to obtain the
first close-up images of the planet was NASA’s Pioneer 10. The spacecraft made
its closest approach with Jupiter on December 3, 1973, more than one year after
becoming the first human-made object to cross the asteroid belt. On that occasion,
Pioneer 10 mapped Jupiter’s radiation belts, located the planet’s magnetic field
and established that Jupiter is a liquid planet. Almost exactly one year later, the
Pioneer 11 spacecraft reached the distance of 0.6RJup from the surface of the planet
(∼ 36000 km), obtaining the first images of the Great Red Spot and observing the
polar regions. The particularly short distance from the center of the planet allowed
Pioneer 11 to sample the inner magnetosphere of Jupiter, paving the way for the
further studies pursued by the Voyager program. By the Doppler data from the
two Pioneer spacecrafts, (Anderson, 1976) computed the first gravity field solution
of Jupiter, up to degree 6 (see Table 1.1).
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Coefficient× 10−6 Pioneer 10 Pioneer 11 Pioneer and Voyager

J2 14720± 40 14750± 50 14697± 1
J3 < 150 10± 40 n.a.
J4 −650± 150 −580± 40 −584± 5
J6 assumed zero 50± 60 31± 20

Table 1.1: Column 2 and 3: gravity field of Jupiter from analysis of Doppler Data from
Pioneer 10 and Pioneer 11 (cf. (Anderson, 1976)). Column 4: gravity field of Jupiter
from analysis of Doppler Data from both the Pioneer and the Voyager spacecrafts (cf.
(Campbell and Synnott, 1985)).

The Voyager program

The NASA’s Voyager program consisted in two spacecrafts aimed at exploring
the outer Solar System. The two probes succeded in making a Grand Tour of
the four giant planets, providing a deeper insight into Jupiter and Saturn and -
for Voyager 2 - becoming the only spacecraft to have visited Uranus and Neptune
so far. During the two subsequent close approaches to Jupiter that took place
in 1979, the two Voyager spacecrafts collected more than 33000 images of the
giant planet. Great was the impact Voyager had on the exploration of Jupiter’s
atmosphere and magnetosphere. For instance, Voyager instruments first detected
auroral emissions on Jupiter, a phenomenon that is planned to be investigated
by Juno (cf. Section 1.2). The existence of a magnetotail on the antisolar side of
Jupiter was confirmed by Voyager 1 and Voyager 2 proved that it extends to Saturn.
The discovery of vulcanism on Jupiter’s moon Io is presumably the most striking
finding: although not being directly related to Jupiter, such volcanic activity was
observed to affect the entire Jovian system. As far as the gravity field of Jupiter
is concerned, Voyager contributed to improving the accuracy of the low-degree
part of gravity field, as showed by (Campbell and Synnott, 1985) in their solution
obtained using both Pioneer and Voyager Doppler data (see Table 1.1).

Galileo

Until the arrival of Juno at Jupiter, NASA’s Galileo mission will remain the only
space mission to have been designed specifically for the exploration of Jupiter and
the only spacecraft to have orbited the planet. The project consisted of an orbiter
and an atmospheric probe, the latter set to descend into Jupiter’s atmosphere
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Figure 1.2: First close-up view of Jupiter by Voyager 1, January 1979. Credit: NASA.

right after the arrival of the orbiter, in 1995. Galileo provided the first direct
sampling of Jupiter’s atmosphere, from the thermosphere to the troposphere, re-
vealing its chemical composition and the abundances of the different elements.
Among the other accomplishments, Galileo verified that the winds observed on
the surface extend below cloud levels. Unfortunately, the gravimetry experiment
was compromised by a failure to the deployment of the high-gain antenna, thus
no important contribution was given to the gravity field of Jupiter by Galileo.
As the author himself suggests in (Young, 1998), Galileo changed the way scien-
tists look at Jupiter. Whereas the pre-Galileo vision was to consider atmospheric
composition, clouds, dynamics, thermal structure and energy balance like separate
phenomena on Jupiter, now they are considered all coupled, making the goal of
achieving a comprehensive study of Jupiter more challenging and possibly push-
ing it further in the future, when a space mission of the entire Jovian system is
launched.

1.2 Motivation and scientific objectives

Juno is a NASA mission, the second within the New Frontiers program, aimed
to study Jupiter by means of a polar orbiter. The mission and spacecraft, spin-
stabilized and endowed with three solar arrays for power, are designed in such a
fashion as to meet the scientific requirements despite Jupiter’s high radiation and
magnetic environment.
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The spacecraft was launched on August 5, 2011 and will arrive at Jupiter on July 4,
2016. During the five-year journey, Juno performed two deep-space maneuvres in
2012 in preparation of the spacecraft’s Earth flyby (for gravity assist) of October
2013. After the close approach with the Earth, the probe has gained enough
velocity to reach Jupiter.

After Jupiter Orbit Insertion (JOI), the orbiter will study Jupiter for about 15
months. The payload of eight instruments carried by Juno will operate to collect
science data and thus achieve the scientific objectives. After the nominal mission
time, if not extended, Juno will be de-orbited into Jupiter for planetary protection
reasons1.

The scientific goals of Juno can be summarized in four main points: atmosphere,
magnetosphere, interior, origins. In order to improve the general understanding
on these themes, the scientific team has selected the following objectives to be met
by Juno:

Atmospheric Composition - measuring Jupiter’s abundance of water and am-
monia.

Atmospheric Structure - investigating Jupiter’s meterology, temperature pro-
files, atmospheric dynamics.

Magnetic Field - mapping the global magnetic field and providing information
on the nature of the dynamo.

Gravity Field - in order to explore the distribution of mass inside the planet.

Polar Magnetosphere - exploration of the three-dimensional polar magneto-
sphere and aurorae.

For a detailed discussions of the previous points and a description of the instru-
ments dedicated to the experiments, the reader can see (Grammier, 2008) and
(Matousek, 2007).

Surely the several experiments that Juno will perform while at Jupiter will help
improve our knowledge of the planet as it is nowadays. Apart from that, if we
consider that Jupiter had a primary role in the formation of the Solar System,
then Juno’s findings will also provide more clues to understanding the origin and
evolution of the Solar System. In conclusion, not only is Juno a chance to learning
our own history, but also an opportunity to improve our knowledge of the several
giant planets orbiting other stars.

1It is indeed believed that Jupiter’s satellite Europa might host life. In view of a possible
future mission on Europa, letting the spacecraft in Jupiter system could interfere with the search
of local life, because of biological contamination risks.
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1.3 Gravity Science

The experiment of Gravity Science (GS) is aimed at measuring Jupiter’s Gravity
Field in order to discriminate amongst different models of the distribution of mass
in the planet’s interior. In particular, Juno’s GS experiment has been conceived
to:

• provide constraints on the mass of the core;

• determine the depth of the zonal winds;

• investigate the response to tides raised by the Jovian satellites.

In terms of harmonic coefficients (see Section 3.1), the objective of the GS exper-
iment is the determination of Jupiter’s even coefficients J2 to J14.

The instrument used for the GS experiment is a telecommunication system which
uses both X and Ka-band frequencies, providing a two-way signal from the ground
station to the spacecraft, allowing to observe the Doppler shift in the proximity
of Jupiter. The X-band system has been provided by Jet Propulsion Laboratory,
whereas the Ka-band translator (KaT) carried by the spacecraft has been supplied
by the Italian Space Agency (ASI). The accuracies reachable for the measurement
in terms of relative velocity is of 3 × 10−4 cm/s over an integration time of 1000
sec. The ground antenna is the DSS-25 antenna at the Deep Space Network (DSN)
station in Goldstone, CA (more details can be found in (Mukai et al., 2012)).

1.4 The orbit of Juno

Until October 2013, the Juno orbit during the jovicentric phase was planned to
be a polar, 11-day orbit, characterized by high eccentricity, e = 0.946, thus with
a very low perijove distance, rp ∼ 1.04RJup, and a very high apojove distance,
ra ∼ 39RJup. Such a configuration allowed the spacecraft to avoid Jupiter’s ra-
diation belt for most of the orbital period, guaranteeing the integrity of the in-
strumentation for the duration of the mission. After experiencing several episodes
of the spacecraft switching automatically to safe mode2, the Juno team came up
with the idea that a jovicentric orbit with longer period would have allowed more
time to recover from safe mode in case that happened while at Jupiter. In July
2015 the new Juno orbit was finally approved by NASA and announced publicly.

2An operating mode during when only the essential systems are on.
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Figure 1.5: Sun-Earth-Planet (SEP) angle over the Juno mission.

After JOI, Juno will perform two 53.5-day orbits, for total of 107 days, which
will prepare the spacecraft to the insertion in the scientific mission orbit, whose
period is set now to 14 days. The perijove distance will vary from 1.06RJup to
1.11RJup (in terms of altitude of the spacecraft with respect to Jupiter’s surface3,
from 4200 km to 7900 km) and the apojove distance on average ∼ 45.7RJup.
The nominal mission will start in November 2016 and will end in February 2018.
Thus, during the 15-month mission the probe will orbit the giant planet 35 times
(plus one possible extra orbit). Orbit 5 and orbits 10 to 35 will be dedicated to
GS, although communication with the spacecraft in the X-band will be available
also during orbits 4 and 6 to 9. Data will be collected since 3 hours before the
pericenter pass, until 3 hours later. By effect of Jupiter’s oblateness, the latitude
of the pericenter with respect to Jupiter’s equator is not fixed in time: starting
from about 6 deg N at orbit 4, it reaches about 35 deg N at orbit 35 (cf. Fig. 1.3).

Many maneuvers are scheduled during the orbit, out of the observation window at
pericenter. For instance, right after every perijove a maneuver will ensure that the
next orbit Juno will observe the right longitude of the planet. The middle-course
maneuver is meant to change the longitude of the ascending node of the Juno orbit

3Being Jupiter a gaseous planet it is not obvious how to define its surface. Here we mean
a sphere having as radius Jupiter’s mean radius RJup = 69911 km, obtained averaging the
equatorial and the polar radii, measured at the 1 bar level of pression.
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in order to have a more uniform coverage of Jupiter’s surface. The large number of
maneuvers is crucial for selecting the most convenient orbit determination method
(see Section 2.1.2).

As regards the position of Juno’s orbital plane in space, Fig. 1.4 and 1.5 show the
evolution over the orbits when data will be available for GS. The orbit is close to
face-on for almost the entire duration of the mission, thus making Juno always
visible when Jupiter is in the sky. As we can see studying the Sun-Earth-Probe
(SEP) angle, the Sun and Jupiter will be in opposition at arc 12 (orbit 15) and in
conjunction at arc 27 (orbit 30).
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Outline: In this chapter we describe the orbit determination method used for
the Radio Science experiment of a generic space mission, having in mind that
our goal is to apply the theory to the Juno mission. After recalling the classical
least squares method proposed by Carl Friedrich Gauss, we show how to define
the observable we deal with, the range-rate of the spacecraft, and give a sketch of
how its computation can be tackled. Since it is particularly important for Juno, a
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specific focus on the Shapiro effect follows. The chapter closes with a description
of the orbit determination software ad hoc developed.

2.1 Non-linear least squares

Orbit determination for a space mission is based on the classical least squares
method, first introduced in (Gauss, 1809). The concept of orbit determination in
this case is strictly connected to the process of parameter estimation. By observ-
ing the spacecraft, not only do we want to calculate its orbit, but we can also
attempt to determine a set of unknown - or poorly known - physical parameters
chracterizing the planet orbited and its system. For a comprehensive analysis, see
((Milani and Gronchi, 2010), Chapter 5) or (Bierman, 2006).

Let r1, . . . , rm be observations of the spacecraft at times t1, . . . , tm. The state
vector of the spacecraft y is solution of the equation of motion{

d

dt
y = F(t,y,µ)

y(t0) = y0,
(2.1)

where F is dependent on y and on a vector of dynamical parameters µ, and y0 is
the initial state at time t0. Thus y = y(t,y0,µ). If R(t,y,ν) is the observation
function modeling the observation, where ν is a vector of kinematical parameters
(e.g., the positions of the stations on Earth or the accelerometer readings) then
we can define the prediction function by composition of R and y(t,y0,µ):

r(t) := R(t,y(t,y0,µ),ν). (2.2)

The previous, evaluated at times t1, . . . , tm, gives a prediction of the observations
r1, . . . , rm. Ideally, the difference between ri and r(ti) should be zero. In fact, even
in case of perfect model, the difference is always non zero, for instance because of
the measurement noise affecting ri. The difference ξi := ri− r(ti) is called residual
at time ti, the residual vector is ξ := (ξi)i=1,...,m. Note that ξ = ξ(t,y0,µ,ν).

Let us now select a subvector1 x of (y0,µ,ν), made of parameters we would like
to determine. Let N be the length of x. Let us define the target function

Q(x) =
1

m
ξ · ξ.

The idea for the determination of x is given by the minimum principle: the solution
x∗ is a point of minimum for Q. Thus the solution x∗ satisfies

∂Q

∂x
(x∗) = 0.

1We will also refer to such vector as vector of solve-for parameters.
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The previous is a non linear equation, which can be solved using an iterative
method. We omit the details and skip to the main result: the nominal solution x∗

is given by the limit, if exists, of the sequence (xk) generated by the differential
correction algorithm

C(xk+1 − xk) = −BTξ. (2.3)

The matrices B,C are respectively the design matrix and the normal matrix and
are defined as follows

B =
∂ξ

∂x
, C = BTWB,

where W is the weight matrix. Note that, like ξ and Q, also B and C depend on
x, B = B(x), C = C(x).

2.1.1 Probabilistic interpretation

The minimum principle expresses the optimization interpretation of the least
squares method. The following theorem, proved by Gauss, gives a probabilis-
tic interpretation. The symbol N(m, G) indicates the multi-dimensional normal
(or Gaussian) distribution of mean vector m and covariance matrix G.

Theorem 1. Let us suppose that the residual vector ξ is a vector of random
variables with probability density p(ξ) = N(0, I)(ξ), where I is the identity matrix.
Then the solution of a linear least squares problem has a Gaussian probability
density, with mean equal to the nominal solution x∗ and covariance matrix equal
to the inverse of the normal matrix C.

The matrix Γ = C−1 is called covariance matrix. Thanks to the previous theorem
we have that the covariance matrix Γ(x∗), computed at convergence of the differ-
ential correction algorithm, contains the formal errors and the correlations of the
solve-for parameters. In particular, the formal error of the parameter xi is

σ(xi) =
√
γi,i (2.4)

and the correlation between any two parameters xi, xj, i 6= j, is

corr(xi, xj) =
γi,j

σ(xi)σ(xj)
.

2.1.2 Multi-arc method

Sometimes it is impossible to model the dynamics of the spacecraft over the entire
time span of the observations with a single set of initial conditions y0. It is the
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case when the non-gravitational accelerations acting on the orbiter are not known
accurately enough or when many maneuvres are scheduled along the trajectory.

The multi-arc strategy is a possibile solution to this issue. The time span of
observations is divided into disjoint subinterval and the observations belonging
to each subinterval are said to constitute an arc. Each arc has its own set of
initial conditions, thus it is as if each arc is the result of the observation of a new
spacecraft.

If n is the number of arcs, the observations and the residuals are split in n sub-
vectors. The vector of solve-for parameters can be split in the vector of global
parameters g and that of local parameters h,

ξ =

 ξ1
...
ξn

 and x =

(
g
h

)
.

The vector of local parameters is also split in n vectors hj, where hj is associated
with arc j. The residuals ξj depend on hj only:

B(j)
g :=

∂ξj
∂g

, B
(j)
hi

:=
∂ξj
∂hi

= 0 for i 6= j.

Consequently the normal matrix C has an arrow-like structure:

C =

(
Cgg Cgh

Chg Chh

)
=


Cgg Cgh1 . . . Cghn

Ch1g Ch1h1 0 0
... 0

. . . 0
Chng 0 0 Chnhn

 .

This simplifies the solution of the normal system (2.3), allowing to solve n + 1
smaller normal systems in place of a larger one (see (Milani and Gronchi, 2010),
Chapter15 for the explicit formulae).

In the case of the mission Juno, the geometry of the observations - 6 hours every
14 days - suggests the use of a multi-arc strategy. On the one hand, this means
that we can ignore all the dynamics outside the observation time, including all
the maneuvers, obtaining a considerable simplification of the dynamical model.
On the other hand, the price to pay is that now we must solve for at least 6n
local parameters. In the Juno case, being n = 32, this is a rather convenient
compromise.
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2.1.3 Apriori conditions

When some information on one or more solve-for parameters is available, it may
be taken into account during the differential correction process. This can happen
for instance when another orbiter previously visited the planet and produced a
solution of the gravity field or if Earth-based observations have been collected, e.g.
visual astrometry, optical transits etc2. If on the one hand this is useful to stabilize
the fit because the search of the solution is limited to a subset of the space of the
parameters, on the other hand the use of apriori information - if available - is the
only way to cure a rank deficiency (cf. Milani and Gronchi (2010), Chapter 6) of
that specific orbit determination problem.

Let us suppose that some information on the single parameters is provided by
some source (past space missions, ground-based gravimetry, etc.) and let xP the
apriori values of the solve-for parameters. To each apriori observation xi = xPi is
associated the apriori standard deviation σi. If CP := diag(σ−2

1 , . . . , σ−2
N ), this is

equivalent to the normal equation CPx = CPxP . The target function is modified
to take into account the apriori information, thus becoming

Q(x) =
1

m+N
[ξ · ξ + (x− xP ) · CP (x− xP )].

Finally, the new normal system is

[C + CP ]∆x = −BTξ + CP (x− xP ),

where ∆x = xk+1 − xk.

Note that the same formulae can be used in case we knew that a subset of the
solve-for parameters satisfies a number k of linear relations3. Let F (x − xP ) = 0
the linear system expressing such linear relations (here F ∈ Rk×N). We define the
apriori normal matrix as

CP = F TW PF, (2.5)

where W P = diag(σ−2
1 , . . . , σ−2

N ) is the matrix of the apriori weights.

It is important to remark that the use of apriori conditions should be based on
the actual availability of previous information. The risk of using fictitious apriori
observations - or with very low apriori standard deviations associated - is to obtain
a solution which is fictitious as well.

2The solutions for Jupiter gravity field given by (Jacobson, 2003) were in fact obtained com-
bining spacecraft and Earth-based observations.

3Such relations usually come from theoretical considerations. For example, the Nordtvedt
equation (cf. (Nordtvedt, 1970)) is a linear combination of some Post-Newtonian relativity
parameters used for Relativity experiments. See also Section 3.4 for an example regarding the
Juno mission.
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2.2 Observations

Once the equation of motion (2.1) is solved for the spacecraft and for all the bodies
involved in the dynamics, we need to tackle the computation of the observations,
that is of the prediction function (2.2). For Juno the observables will be almost
exclusively range-rate measurements, that is the component of the velocity of
the spacecraft along the direction of the observer. Since the computation of the
range-rate entails the computation of the light-time4 from the station on Earth
to the spacecraft, which is equivalent to calculating the range, the distance of the
spacecraft from the antenna on Earth, we will show how to obtain both.

The definitions are very simple: if the range of the spacecraft is the distance
between the ground antenna on Earth and the center of phase of the antenna on
the spacecraft, the range-rate is the time derivative of the range. Despite the easy-
to-write definitions, the computation of both range and range-rate is definitely non
trivial. It is beyond the scope of this work to give a comprehensive analysis of the
well-known problem of the computation of the light-time, thus we will outline the
key-points and indicate other works the reader can refer to.

2.2.1 Light-time iterations

In a flat space-time where the light propagates instantaneously, the range is (see
Fig. 2.1)

r0(t) =
∣∣yBJS + yJup + yS/C − yE − yant

∣∣ , (2.6)

where yBJS and yE are respectively the position of the Barycenter of the Jovian
System (BJS) and the Earth Barycenter with respect to the Solar System Barycen-
ter, yJup is the position of Jupiter Barycenter with respect to the BJS, yS/C is the
position of the orbiter with respect to Jupiter Barycenter and yant is the position
of the ground antenna with respect to the Earth Barycenter. All the previous
vectors are computed at time t 5.

Since the signal has finite velocity c = 299, 792.458 km/s, it takes a time ∆t to get
to the spacecraft6. Therefore we must introduce the times tt, tb and tr of trans-
mission, bounce and reception of the signal and compute each of the considered
vectors at the adequate time. In particular, we have two different light-times,

4The time the light takes to reach the spacecraft and go back to Earth.
5In this modelization we assumed that the spacecraft center of mass and the antenna center

of phase are coincident. In general - and in particular for Juno - this is not true, thus a vector
yCoP should be added to yS/C. The effect of such approximation will be described in Chapter 5.

6Since Jupiter is ∼ 5AU far from the Sun, during the Juno mission it will be from 4 to 6 AU
far from the Earth, ∆t thus varying from 33 to 50 minutes.
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Figure 2.1: Scheme describing the positions of the bodies involved in the dynamics and
showing the range in case of flat space-time and infinite speed of light.

the up-leg ∆tup and the down-leg ∆tdo, along with the up-leg and the down-leg
distances:

rup(tr) =
∣∣yBJS(tb) + yJup(tb) + yS/C(tb)− yE(tt)− yant(tt)

∣∣ (2.7)
rdo(tr) =

∣∣yBJS(tb) + yJup(tb) + yS/C(tb)− yE(tr)− yant(tr)
∣∣ . (2.8)

Usually the observable is labeled with the receive time tr, thus the times tb and tt
are unknown and must be calculated. The computation uses an iterative method
which involves the previous relations and is described in detail in (Tommei et al.,
2010) in the case of the BepiColombo orbiter around Mercury. Once tt and tb are
known, the range is defined by average of the up-leg and the down-leg ranges,

r(tr) := (rup(tr) + rdo(tr))/2. (2.9)

The computation of the range-rate is even more complicated, because it is nec-
essary to take into account that tt and tb are function of tr, defining implicit
equations for ṙup and ṙdo. Similarly to what has to be done for the range, the
instantaneous range-rate is defined as the average of the up-leg and the down-leg
range-rate: ṙ(tr) := (ṙup(tr) + ṙdo(tr))/2.

In fact, the observation is not the instantaneous range-rate of the spacecraft. The
actual observable is computed measuring the difference in phase between carrier
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waves generated at the ground station and the one returned from the spacecraft,
over some integration time ∆. Therefore it is a difference of range indeed:

r(tb + ∆/2)− r(tb −∆/2)

∆
, (2.10)

or, equivalently, an integrated range-rate:

1

∆

∫ tb+
∆
2

tb−∆
2

ṙ(s)ds. (2.11)

By a numerical point of view, using (2.11) is preferable because it allows much more
control of the rounding off problems, as it is described in ((Milani and Gronchi,
2010), Chapter 17). In Chapter 5 we will show in the special case of the Juno
mission that this formulation is in fact more convenient.

2.2.2 Shapiro effect

In the previous section we neglected the fact that by General Relativity space-
time is not flat. This means that the light path is not a straight line, rather
some geodesics of the 4-dimensional manifold. The deviation from the straight-
line propagation can be quantified with the Shapiro effect S(γ) (cf. (Shapiro,
1964)), to be added to the down-leg and up-leg range (2.7) and (2.8). Here γ is
the coefficient of the Parametrized Post-Newtonian (PPN) formalism related to
the curvature of the space-time (cf. (Will, 1971)). It is known that such curvature
is due to the presence of the bodies and their masses, in this case the planets and
the satellites. Thus, the Shapiro effect is the sum of the terms due to each body.

Note that the Shapiro effect due to a spherical body is different from that of an
oblate one. The difference between the two can be modeled as a term to be added
to the monopole term S0:

S(γ) = S0(γ) + SJ2(γ).

The term S0 can be approximated as (cf. (Moyer, 2003)):

S0(γ) =
(1 + γ)GMP

c3
ln

[
r1 + r2 + r12 + (1+γ)µ

c2

r1 + r2 − r12 + (1+γ)µ
c2

]
,

and the term SJ2 is given to the order 1/c2 by (cf. (Klioner, 1991) and (Teyssandier
and Le Poncin-Lafitte, 2008)):

SJ2(γ) =− 1 + γ

2

GM

c2
J2
RE

r1r2

r12

1 + n1 · n2

·

·
[(

1

r1

+
1

r2

)
(s · n1 + s · n2)2

1 + n1 · n2

− 1− (s · n1)2

r1

− 1− (s · n2)2

r2

]
.
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Figure 2.2: Signals on the range-rate observables from first pericenter pass due to the
Shapiro effect induced by Jupiter (on the left) and the Shapiro effect due to Jupiter’s
oblateness only (on the right). The S/N is ∼ 30 for S(γ), whereas SJ2(γ) is of the order
of noise.

In the previous formulae: MP and RE are the mass and the equatorial radius of the
perturbing body7; if we indicate with r1, r2 the vectors originating in the central
body’s center of mass pointing respectively to the spacecraft and to the ground
antenna on Earth, then ri = |ri| and ni = ri/ri, i = 1, 2; r12 = |r2 − r1|; s is a unit
vector along the spin axis of the perturbing body.
For the Shapiro effect on the range-rate, one differentiates the previous expressions
with respect to time.

For the Radio Science experiment of the Juno mission, we included in the observ-
ables the contributions due to the Sun and Jupiter, which are not negligible: the
first because of its large mass, the second for its proximity to the light path from
the spacecraft to the ground antenna.

Fig. 2.2 shows the effect on the range-rate observables due to the light bending
induced by Jupiter, the complete S(γ), and the effect due to the light bending
induced by Jupiter’s oblateness, the term SJ2(γ) alone. The first effect is measur-
able, the S/N being ∼ 30, the second is of the level of noise. We considered both
in the computation of the observable. On the contrary, the signal on the range
observables of SJ2(γ) is well below the level of noise and therefore we neglected it.
As regards the oblateness term of the Sun, note that its magnitude with respect
to the oblateness term of Jupiter is proportional to (m�J2�)/(mJupJ2Jup) = 10−2,
thus it can be neglected as well.

7RE = 71492 km (cf. (Williams, 2015)).
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Figure 2.3: The block diagram of a simple simulator setup. The black rectangles indicate
the main programs, the rectangles with smoothed corners the data structures.

2.3 ORBIT14

The Department of Mathematics of the University of Pisa, in collaboration with
the spin-off SpaceDyS s.r.l. has designed and developed ORBIT14, a software able
to perform the orbit determination and the parameter estimation for the missions
BepiColombo (ESA) and Juno. In the following we describe shortly the structure
of the software and focus on the dynamical modules and the relativistic corrections
that have been included.

2.3.1 Software architecture in short

The structure of ORBIT14 is showed in Fig. 2.3. It is composed of two main
programs, the data simulator and the differential corrector.
The latter solves the equation of motion computing the dynamics of the bodies
involved, calculates the observables following what said in Section 2.2 and imple-
ments the non-linear least squares method performing the differential correction
algorithm described in Section 2.1. The outcomes are the results of the parameter
estimation, which is accompanied by the covariance analysis.
The data simulator responds to the necessity of using the differential corrector
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before the mission starts, in order to assess whether the scientific goals could be
reached. It simply produces a simulation of the observables that are given as input
to the differential corrector.

2.3.2 Dynamics

The complexity of the software is in the computation of the observable and in the
propagation of the dynamics. While we have addressed the first in Section 2.2, in
the following we describe the dynamics considered for the Juno mission.

For the dynamics which have to be propagated by numerical integration we call a
propagator which uses the corresponding dynamic module and solves the equation
of motion for the requested time interval. The states (time, position, velocity, ac-
celeration) are stored in a memory stack, from which interpolation is possible with
the required accuracy. Then, when the state is needed to compute the observables,
the dynamics stacks are consulted and interpolated by the propagator modules.

Reference systems and their realizations

In celestial mechanics the concept of reference system is crucial. A reference system
is the complete specification of how a celestial coordinate system is to be formed,
i.e. it is defined by a point - the origin - and three orthogonal axes. A reference
frame, or realization of the reference system, is specified by a set of points in
the sky along with their coordinates, which allow the practical realization of the
reference system.

The following reference systems - and the relative realizations - are used in the
software ORBIT14. The rigorous definitions can be found in the corresponding
papers; for a divulgative yet detailed and technically coherent description, see
(IERS, 2016).

• International Celestial Reference System (ICRS): an ideally inertial
reference system with the Earth mean equator at epoch J2000 as fundamen-
tal plane; the origin is the Barycenter of the Solar System, the x axis points
in the direction of the mean equinox of J2000 and the pole is given by the
direction of the z axis. The realization of ICRS is called International Celes-
tial Reference Frame (ICRF) and in this thesis will be indicated with ΣICRF

(cf. (Ma and Feissel, 1997)).

• International Terrestrial Reference System (ITRS): an Earth-fixed ref-
erence system centered at the geocenter (center of the whole Earth system)
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whose x and y axis are in the plane of the true equator at date, with the
condition that there is no residual rotation with respect to the Earth sur-
face. The realization of the ITRS is the International Terrestrial Reference
Frame (ITRF) and in this thesis will be indicated with ΣITRF (cf. (Petit and
Luzum, 2010), Chapter 4).

• Ecliptic Celestial Reference System of J2000 (ECRS): an ideally iner-
tial reference system with the Earth ecliptic at epoch J2000 as fundamental
plane; the origin is the Barycenter of the Solar System, the x axis points in
the direction of the mean equinox of J2000 and the pole is the point on the
celestial sphere in the direction of the z axis8 (cf. (Dehant and Mathews,
2015), Chapter 3). The realization of ECRS, the ECRF, will be indicated
with ΣECRF.

• Jupiter Equatorial: a conventional inertial reference system centered at
Jupiter’s barycenter, whose fundamental plane is Jupiter’s equator; its def-
inition can be found in the 2009 Report of the IAU Working Group on
Cartographic Coordinates and Rotational Elements (Archinal et al., 2011).
It will be indicated with ΣEQ.

• Jupiter body-fixed: a Jupiter-fixed reference system, rotating with Jupiter,
whose fundamental plane is Jupiter’s equator; if ΣBF is such reference sys-
tem, the transformation mapping ΣEQ to ΣBF is a rotation, whose expression
in coordinates will be given in Section 4.2.

In 2000, the IAU General Assemby defined a system of space-time coordinates for
the Solar System, within the framework of the General Relativity (cf. (Rickman,
2001)), called Barycentric Celestial Reference System (BCRS). Later in 2006, the
IAU General Assembly established that “for all practical applications, [...] the
BCRS is assumed to be oriented according to the ICRS axes”. Thus, whenever in
this work we speak of BCRS, the previous statement will be implicitly considered.

Dynamics of the spacecraft

The dynamics of the orbiter is integrated numerically in the reference system ΣEQ.
Its equation of motion contains:

• the gravitational attraction of Jupiter, expressed through spherical harmon-
ics expansion (see Section 3.1);

8The ECRS is obtained from the ICRS by a rotation about the x axis of angle ε0 =
23◦26′21′′.406 (cf. (Petit and Luzum, 2010)), the mean obliquity of the Earth.
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• the non-gravitational perturbations, including direct radiation pressure, pres-
sure from radiation reflected and emitted by Jupiter, thermal emission;

• solar and planetary differential attractions;

• Jupiter’s satellites differential attractions and tidal perturbations (see Sec-
tions 3.5.1 and 3.5.2)

• relativistic corrections (a term due to the use of a Jupiter Dynamical Time -
see Section 2.3.3 - a term due to the mass of Jupiter and the Lense-Thirring
effect - see Section 4.1).

Dynamics of Barycenter of the Jovian System

The dynamics of BJS is integrated numerically in ΣECRF, which gives the possibility
to include its initial conditions in the vector of solve-for parameters. The equation
of motion for BJS contains the following perturbations:

• the Newtonian attraction from the Sun and the planets;

• the relativistic PPN corrections, including the PN parameters γ, β and the
Sun’s dynamic oblateness;

• the effect of the Galilean satellites on the motion of BJS, expressed by
the Jupiter-satellite-Sun Roy-Walker parameters9 (cf. (Milani and Gronchi,
2010), Chapter 4).

Rotation of Jupiter and of the Earth

For the rotation of Jupiter, we use a semi-empirical model, containing parameters
defining the model of Jupiter’s rotation, see Section 4.2.

For the Earth, we are using the interpolation tables made public by the IERS,
because we can by no means solve for the Earth rotation parameters from obser-
vations at Jupiter at accuracies competitive with other available measurements.
The same argument applies to the station coordinates: we assume they are sup-
plied by the ground station with the required accuracy, including corrections for
the antenna motion.

9Such perturbations are actually detectable only using range measurements; since Juno will
supply ranging only in the X-band, their relevance to our scope is limited. Future missions to
the satellites will have to consider such perturbations.
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Dynamics of other bodies

The current state, as a function of time, of the planets Mercury to Neptune (ex-
cluding Jupiter and considering also Pluto) are read from the Jet Propulsion Lab-
oratory (JPL) ephemerides (currently the DE421 version, cf. Folkner et al. (2009))
as Chebychev polynomials, which are interpolated with the JPL algorithm. For
Jupiter satellites the ephemerides are provided by JPL in the form of SPICE
kernels (cf. Jacobson (2003)): the SPICE software has been linked and suitable
interfaces have been implemented in the code.

We need also to take into account asteroid perturbations on the orbit of the BJS.
The software to generate asteroid ephemerides interpolation tables is available,
and the interface has been built, to be used with as many asteroids as needed.
At the moment, for consistency with DE421 we use the perturbations from 343
asteroids, each one with a mass as assigned by the ephemerides.

2.3.3 Time ephemerides and reference systems

A correct relativistic formulation10 of the observable must consider that with differ-
ent reference systems are associated different time coordinates, and the conversion
between them must be handled properly.

The vectors in (2.6) must be converted to a common space-time reference system in
order to perform the sums. It is conventional to choose some realization of BCRS:
we adopt the so-called Solar System Barycentric (SSB) realization, in which the
time coordinate is a redefinition of the Barycentric Dynamic Time (TDB) (cf. IAU
2006 Resolution B3, (van der Hucht, 2008)). All the other possible choices for such
time coordinate differ from TDB by linear scaling.

For all the practical issues on Earth the time scale of reference is the Terrestrial
Dynamical Time (TDT or TT), whose definition is based on averages of clock and
frequency measurements on the Earth surface. The other time scales realizing TT
differ by some time offset (TAI, UTC or GPS time).

When coping with an orbiter around a planet, its equation of motion can be
approximated with a Newtonian equation provided that the independent variable
is the proper time T of the planet. As described in (Milani et al., 2010) in the case
of Mercury and in (Tommei et al., 2015) in the case of Jupiter, it is necessary to
define a new time coordinate whose relationship with TDB time t, truncated to

10By “correct” we mean “that takes into account all the measurable effects”.
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1-PN order11, is given by the differential equation

dT

dt
= 1− 1

c2

[
U +

v2

2
− L

]
, (2.12)

where U is the gravitational potential of the contributing bodies12 at the center
of the planet, v is the SSB velocity of the planet and L is a constant used to
perform the conventional rescaling motivated by removal of secular terms, e.g. for
the Earth, L is LC = 1.48082686741 × 10−8 (cf. (Irwin and Fukushima, 1999)).
For Jupiter, we call this time Jupiter Dynamical Time (TDJ).

The previous can be solved by a quadrature formula, provided we know the orbits
of the Sun and the planets (by numerical integration or by JPL ephemerides).
ORBIT14 implements a Gaussian quadrature formula to generate an interpolation
table for the conversion from TDB to TDT, TDJ. This table is pre-computed by
a separate main program and it can be read by all other programs: a suitable
module uses the interpolation to compute all conversions of time coordinates, that
is it implements an internal system of time ephemerides.

Going back to the transformation of the vectors in (2.6) to SSB, they involve
essentially the geocentric position of the antenna yant and the position of the orbiter
yS/C. The former must be converted to SSB from the geocentric frame and the
latter from the jovicentric equatorial system. We report here the transformation of
the spacecraft state; the reader is referred to (Tommei et al., 2015) for the others.
The position and the velocity of the Juno spacecraft from the jovicentric frame to
the SSB frame are given by

yTB
S/C = yTJ

S/C

(
1− U

c2
− LCJ

)
− 1

2

(
vTB

M · yTJ
S/C

c2

)
vTB

M

vTB
S/C =

[
vTJ

S/C

(
1− U

c2
− LCJ

)
− 1

2

(
vTB

M · vTJ
S/C

c2

)
vTB

M

]
·
[
dT

dt

]
,

where dT/dt is the transformation of the local time T at the planet (TDJ) to the
SSB time t given by (2.12) and LCJ is the constant to remove the secular terms.
We believe that we do not need to do this, since a very simple iterative scheme is
very efficient in providing the inverse time transformation. Thus, as described in
(Tommei et al., 2015), we set LCJ = 0.

11Although the O(c−4) terms are known, we do not need to include them because their con-
tribution is below the accuracy level of the experiment.

12The list depends on the accuracy required: we included the Sun, Mercury to Neptune, the
Moon.



28 Orbit determination for space missions



CHAPTER 3

Determination of the gravity field
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Outline: As discussed in Section 1.3, the Gravity Science experiment of the mis-
sion Juno is aimed at determining Jupiter’s gravity field. This chapter is dedicated
to this problem. Firstly, we give the mathematical definition of gravitational po-
tential, introducing the classical spherical harmonics expansion and recalling its
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properties. Then we present a semi-analytical method for determining the formal
uncertainty of the gravity field of a generic planet and apply it to the Juno-Jupiter
case. Our discussion will focus on the results of full numerical simulations con-
ducted with Orbit14 regarding Jupiter’s gravity field. Not only do we analyze the
accuracies available using the spherical harmonics model, we also introduce a local
model for the gravity field of Jupiter, the ring mascons model, useful for describing
high-frequency components of the gravity field.

3.1 The gravity field of a planet

Let us consider an extended body A and a reference system Σ = Oê1ê2ê3. The
gravitational potential of an extended body A of density ρ is a real-valued function
U : R3 → R defined as

U(p) =

∫
A

Gρ(p′)

|p− p′|
dp′.

The gravity field of A is its gradient, gradU . It is a well-known fact that U is
harmonic on R3 \ A (cf. (Heine, 1861)), therefore it can be expanded in series of
spherical harmonics1. Using spherical coordinates (r, θ, λ) with respect to Σ, such
expansion reads

U(r, θ, λ) =
GM

r
+
∞∑
`=1

∑̀
m=0

U`m(r, θ, λ), (3.1)

where

U`m(r, θ, λ) =
GM

r
P`m(sin θ)

R`

r`
[C`m cos(mλ) + S`m sin(mλ)].

Here P`m is Legendre’s associated function of degree ` and order m, R is the
radius of an open ball strictly containing A, C`m, S`m are the spherical harmonics
coefficients. We distinguish the zonal coefficients (C`m, m = 0) from the tesseral
coefficients (C`m, S`m, 0 < m < `) and the sectorial coefficients (C`m, S`m,m = `).
The gravitational momentum of degree ` is J` := −C` 0.

Let us remark that since O is exactly the planet’s center of mass, then the degree-
1 coefficients C10, S11, C11 are necessarily zero (cf. (Milani and Gronchi, 2010),
ch.13).

The functions Y`m1 := P`m(sin θ) cos(mλ) and Y`m0 := P`m(sin θ) sin(mλ) are called
spherical harmonics. We can normalize the spherical harmonics with respect to

1For a detailed description of how to obtain the expansion, see (Kaula, 1966).
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the scalar product

〈f, g〉 :=
1

4π

∫
S2

fg dS

of L2(S2), the space of the square-integrable functions on the sphere:

Y `mi =
Y`mi√
〈Y`mi, Y`mi〉

=

√
(2− δ0m)(2`+ 1)(`−m)!

(`+m)!
= H`mY`mi.

The normalized harmonic coefficients are then C`m = C`m/H`m and S`m = S`m/H`m.
With the new notation, the gravitational potential (3.1) reads

U(r, θ, λ) =
GM

r

∞∑
`=0

R`

r`

∑̀
m=0

[C`mY `m1 + S`mY `m0].

Using normalized spherical harmonics is particularly convenient in numerical ap-
plications, since their magnitude 1/H`m is fast-growing as ` increases.

If we use the spherical harmonic expansion to model the gravity field of a planet,
then in order to measure it via orbit determination, it is sufficient to determine
the harmonic coefficients C`m, S`m. Of course, the (3.1) needs to be truncated at
a suitable degree `max, which can be established for example by the rule

`max = π
R

h
,

where h is the altitude of the spacecraft with respect the surface of the planet (cf.
(Milani and Gronchi, 2010), ch. 16).

3.2 A semianalytical method

During the phase of design of a space mission, it is essential to set the mission
parameters so that all the scientific requirements can be met. Usually the scientific
goals are limited by external factors, such as the environmental conditions. For
example, in the case of an orbiter around a planet, the choice of the orbit of
the probe should provide enough coverage of the surface of the planet as well as
ensure protection from the magnetic field and/or the high temperatures. Finding
the best match between science and mission design requires several simulations. In
the case of the gravimetry experiment, the best way to have a global and complete
overview of the results achievable is by performing a complete orbit determination
and parameter estimation simulation, of course.
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ê1

ê3

ê2

y(t)

ẏ(t)

N(t)

Figure 3.1: The frame Oê1ê2ê3, the spacecraft position and velocity y(t), ẏ(t) and the
direction Earth-Jupiter N(t). The vectors ê1, ê2 span the equatorial plane of the planet,
the vector ê3 is parallel to its rotation axis. The picture is not in scale.

In this section we present a semi-analytical theory for estimating the accuracy in
the determination of the gravity field of a target planet. Such a theoretical study
can be easily implemented numerically and used in practice to obtain preliminary
results exclusively about the gravimetry experiment of a given space mission. We
also describe how to map the computed uncertainties on the gravity field to the
surface of the planet in order to obtain an estimation of the gravity anomalies
uncertainties. This indicates also the regions of the planet in which the gravity
field is better recovered.

3.2.1 Axially symmetric planet

In first approximation we consider the case of an axially symmetric planet, leaving
the general case to Section 3.2.3.

Let us then consider a planet of mass M , equatorial radius R and symmetric with
respect to the z-axis of an inertial frame Oê1ê2ê3 of coordinates xyz, with origin
in the center of mass of the planet, such that the xy plane is the equatorial plane
of the planet (see Fig. 3.1).
The gravitational potential U of the planet is then function only of the latitude
θ and the distance r from the center of mass. Thus, the expansion in spherical
harmonics (3.1) contains only zonal coefficients:

U =
GM

r
+
∞∑
`=2

U`0, where U`0 =
GM

r
C`0

(
R

r

)`
P`(sin θ).

Let `max > 2 be an integer. We want to study the uncertainty in the determination
of the zonal harmonic coefficients C2 0, . . . , C`max0. The main idea is to find an



3.2 A semianalytical method 33

analytical expression for the elements of the normal matrix C in order to compute
the covariance matrix and use (2.4).

Let us start defining a proper prediction function. Let (ti, ṙi)i=1,...,m be observations
of the spacecraft, where ṙi is the range-rate of the probe orbiting the planet2. Let
y(t) be the cartesian coordinates of the spacecraft with respect to the planet at
time t and ẏ(t) its velocity. Let us truncate the spherical harmonic expansion
of U at degree `max. Note that by the principle of linearity of the first order
perturbations, we have, at the first order,

ẏ = v + ∆v = v +
`max∑
`=2

∆v(`) (3.2)

where v is the component of the velocity due to the monopole U0 := GM/r and
∆v(`) is the first order component due to the correction U`0.

If we denote with N(t) the opposite of the unit vector centered at the planet and
pointing at the center of the Earth, we can define our prediction function as

ṙ(t) := [ẏ(t) + w(t)] ·N(t),

wherew(t) is a function of the time accounting, among the others, for the dynamics
of the Earth and the planet; in particular it does not depend on the gravity of the
planet. The residuals are

ξi = ṙi − ṙ(ti) = vi − ẏ(ti) ·N(ti)−w(ti) ·N(t), i = 1, . . . ,m. (3.3)

Since w does not depend on the harmonic coefficients of the planet, it does not
affect the uncertainty of the gravity field and can be considered perfectly known.

The following remark is crucial. For an unperturbed orbit, the energy (per unit of
mass)

E :=
1

2
|v|2 − U0

is an integral of motion. Perturbing the gravitational potential with a term U`0,
the function

E` :=
1

2

∣∣v + ∆v(`)
∣∣2 − (U0 + U`0)

is still an integral of motion, equal to E. Thus

1

2
|v|2 − U0 =

1

2

∣∣v + ∆v(`)
∣∣2 − (U0 + U`0)

2The notation follows the same used in Chapter 2: the dot here is purely notational, not
indicating an actual derivative. The same holds later, when we define the prediction function.
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and, neglecting second order terms,

v ·∆v(`) = U`0, ` ≥ 2.

In fact, the transversal component of ∆v(`) with respect to v can be neglected
because the main effect is given by the parallel one, the effect being quadratic in
time. Therefore we rewrite the previous equation as

|v|
∣∣∆v(`)

∣∣ = U`0, ` ≥ 2. (3.4)

In conclusion, a measurement of the range-rate of the spacecraft gives a direct
measurement of the potential of the planet.

Combining (3.2) and (3.3), if ϕi is the angle between the vectors ẋ(ti) and N(ti),
the residual assumes the expression

ξi = vi − (|v(ti)| cosϕi +
`max∑
`=2

∣∣∆v(`)(ti)
∣∣ cosϕi)− w(ti). (3.5)

If x := (C`+1 0)`=1,...,`max−1 ∈ RN is the vector of the solve-for parameters, we obtain
from (3.4) and (3.5) that the design matrix B = (bi`) ∈ Rm×N has elements

bi` =
∂ξi
∂x`

= −GM
ri

(
R

ri

)`+1
P`+1(sin θi)

|vi|
cosϕi (3.6)

where the subscript i indicates the evaluation in ti.

Now it is straightforward to compute the normal matrix C := BTWB = (cjk) ∈
RN×N . Choosing W = σ−2I as weight matrix3, it immediately follows from (4.2)
that

cjk =
N∑
i=1

σ−2bijbik =
N∑
i=1

(GM)2Rj+k+2

rj+k+3
i

Pj+1(sin θi)Pk+1(sin θi)

σ2 |vi|2
cos2 ϕi.

It is possible to compute numerically the inverse of C and use (2.4) to compute
the formal uncertainty of the spherical harmonic coefficients C`0, ` = 2, . . . , `max.

3.2.2 Surface gravity anomalies uncertainties

We define a gravity anomaly as the difference between the real value of the gravity
acceleration and the value due to the monopole term. We can predict the un-
certainty of the gravity anomalies at the surface of the planet using the principal
components analysis of the covariance matrix computed in section 3.2.1.

3That is, we use a uniform weight 1/σ2. Such weight is usually assumed equal to the inverse
of the square of the RMS of the observables, in this case the range-rate.
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Let λ1 > λ2 > · · · > λN > 0 be the eigenvalues of the covariance matrix Γ and
let V (i) = (V

(i)
` )`, i = 1, . . . , N be respective unit eigenvectors. It is a known fact

that
√
λiV

(i) is the i-th semiaxis of the 1-sigma confidence ellipsoid (cf. Milani
and Gronchi (2010), ch. 5), thus its entries belong to the space of the parameters
and are zonal harmonics coefficients. Consequently, each eigenvector V (i) can be
mapped onto the following function:

U (i)(r, θ) :=
GM

r

`max∑
`=2

√
λiV

(i)
`−1

(
R

r

)`
P`(sin θ). (3.7)

The function U (i) represents the contribute of the i-th semiaxis of the confidence
ellipsoid to the uncertainty of the non-spherical part of the gravitational potential.
In other words, it is the uncertainty of the gravitational potential in the direction
of the i-th semiaxis. To obtain the uncertainty of the gravity anomalies at the
surface, one simply takes the derivative with respect to r of (3.7)

∂U (i)

∂r
(r, θ) = −GM

r2

`max∑
`=2

(`+ 1)
√
λiV

(i)
`−1

(
R

r

)`
P`(sin θ)

and evaluates it at the surface r = R:

U (i)(θ) :=
∂U (i)

∂r
(R, θ) = −GM

R2

`max∑
`=2

(`+ 1)
√
λiV

(i)
`−1P`(sin θ). (3.8)

The latter gives the uncertainty of the gravity anomalies on the surface of the
planet due to the i-th semiaxis of the confidence ellipsoid.

We use the root mean square of the U (i) to have a representation of the surface
acceleration uncertainty which takes into account the contributes of all the semi-
axis:

U(θ) :=

√∑N
i=1(U (i)(θ))2

N
. (3.9)

If the magnitude of some U (i) is negligible with respect to the others, we can choose
not to consider it in the sum (3.9).

Note that the unit eigenvector relative to a certain eigenvalue is not unique: if u is
such a vector, then also −u is. This causes an ambiguity in the definition of U (i),
as it is defined except for the sign. This is not important as we are interested in
U , where only the square of U (i) appears, thus eliminating the ambiguity.
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3.2.3 Effect of tesseral harmonics

In this section we consider the case of a planet with no symmetries. Following
the same argument of Section 3.2.1, we show that the uncertainty of the zonal
harmonic coefficients is influenced by the presence of the tesseral and sectorial
coefficients and is larger than in the axially symmetric case.

Repeating the same calculations of and using the same notation as in Section 3.2.1,
we obtain immediately that

ẏ = v + ∆v = v +
∑
`,m

∆v(`,m),

where ∆v(`,m) is the component due to the correction U`m and

|v|
∣∣∆v(`,m)

∣∣ = U`m for all ` ≥ 2, m = 0, . . . , `. (3.10)

Hence the residual is

ξi = vi − (|v(ti)| cosϕi +
∑
`,m

∣∣∆v(`,m)(ti)
∣∣ cosϕi)− w(ti). (3.11)

Even if we want to study the uncertainty in the computation of the first `max

zonal harmonic coefficients, the presence of the tesseral and sectorial coefficients
cannot be ignored. If µ ∈ RN , N := (`max + 1)2 − 4, is the vector of the solve-for
parameters made up of all the harmonic coefficients up to degree `max, the design
matrix B = (∂ξi/∂µj) ∈ Rm×N has elements:

∂ξi
∂C`m

= −GMR`

r`+1
i

P`m(sin θi)

|vi|
cos(mλi) cos(ϕi), (3.12)

∂ξi
∂S`m

= −GMR`

r`+1
i

P`m(sin θi)

|vi|
sin(mλi) cos(ϕi), (3.13)

where the subscript i indicates the evaluation in ti.

By reordering the entries of the vector µ, we can suppose that µ = (z;w), where
z is the subvector of the zonal harmonic coefficients and w is the subvector of
the other harmonic coefficients. With this notation, the normal matrix C and the
covariance matrix Γ have the block structure

C =

(
Czz Czw

Cwz Cww

)
, Γ =

(
Γzz Γzw

Γwz Γww

)
, (3.14)

where:
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◦ the submatrices Γzw = ΓTwz contain information about the correlations among
zonal and non-zonal coefficients;

◦ the submatrix Czz is the normal matrix of the fit obtained by choosing z
as vector of the fit parameters and moving w into the consider parameters,
thus it is the same normal matrix obtained in section 3.2.1.

The uncertainty of the zonal coefficients, considering correlations with tesseral
coefficients, is given by definition by the square root of the diagonal of Γzz. Note
that the matrices Γzz and C−1

zz are in general different. It is possible to define
an order relation between positive definite matrices - using their interpretation as
quadratic forms - and show that Γzz ≥ C−1

zz : given two positive definite matrices
A,B ∈ Rn×n, we say that A ≥ B if xTAx ≥ xTBx for all vectors x ∈ Rn.
The inequality can be proven using the following known formula (cf. Milani and
Gronchi (2010), Chapter 5):

Γzz = (Czz − CzwC
−1
wwCwz)

−1.

As a consequence, we have that the uncertainty of the coefficient C`0 when con-
sidering non-zonal coefficients is always higher than the uncertainty of the same
coefficient in the axially symmetric case.

3.2.4 Test on the Juno mission

In this section we apply the theory developed in the previous section to the Juno
mission.

Implementation of the algorithm

We implemented the theory described in section 3.2 in a Matlab function called
uncertainties. The user is invited to specify a value for the `max, the highest
degree in the truncation of the spherical harmonics series of Jupiter’s potential U ,
and to provide a file with a simulation of the spacecraft orbit around the planet.
The data set is required to be composed of cartesian coordinates of the positions
and velocities of the spacecraft y(ti), ẏ(ti), i = 1, . . . ,m and unit vectors N(ti)
centered at the planet pointing at the Earth, all referred to a planet equatorial
reference frame.

The algorithm converts the observations to spherical coordinates and computes the
design matrix B using (4.2), in a form that uses normalized spherical harmonics,
for numerical stability (cf. Milani and Gronchi (2010), ch. 13). Therefore, the
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code gives as result the uncertainties of the normalized zonal harmonic coefficients
C`0 =

√
2`+ 1C`0.

The weight matrix W is defined as a multiple of the identity matrix, W = σ−2I.
The constant factor σ is chosen as the standard deviation of the two-way Doppler
observables of the spacecraft, possibly rescaled in order to take into account the
difference between the integration time and the sampling time of the orbit. The
uncertainties of the normalized zonal harmonic coefficients is given by (2.4).

The principal components analysis is performed as described in Section 3.2.2. The
program computes the eigenvalues of the covariance matrix Γ and provides, upon
request of the user, a comparison between the first principal component and any
other component. Then the user can decide how many components should be
included in the computation of (3.9). Normalized Legendre polynomials P ` are
used for the principal components analysis, too.

Formal errors

In order to stress the fact that the accuracy of the estimated gravity field depends
on the surface coverage, we compare the uncertainties obtained with a complete
mission to those obtained with a single arc, namely the first Juno orbit dedicated
to GS. We set `max = 30, that is we compute the uncertainty of the normalized
zonal harmonic coefficients C2 0, . . . , C30 0. The standard deviation σ = 3µm/s
for 1000 sec integration time is assumed for the two-way Doppler measurements.
The simulation of the orbit of the spacecraft is provided by the Data Simulator
Program of the Orbit14 orbit determination software (cf. Section 2.3).

Fig. 3.2 shows the uncertainty of the normalized zonal harmonic coefficients C`0

in the one-arc and the full mission cases. We trivially remark that the formal
error is minor for the latter, since more observations result in more accuracy. It
is interesting to remark that the uncertainties do not always increase with the
harmonic degree: they reach the maximum value at degree 23, then they start
decreasing. This increase in the uncertainty is due to the well-known fact that
each zonal coefficient is highly correlated to the two following ones. On the other
hand, truncating the spherical harmonics series at degree `max = 30 prevents from
taking into account the correlations of the coefficients C`0, ` = 23, . . . , 30 with the
coefficients C`0, ` ≥ 30, thus causing a decreasing in the uncertainty. This “hump”
behaviour does not depend on the particular value of `max, but it disappears for
small values of `max.

When we take into account the effect of the tesseral coefficients, the analysis can
be done only with the datas coming from all the GS orbits, otherwise the solve-for
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Figure 3.2: Comparison of the formal errors of the first 30 zonal harmonic coefficients of
Jupiter’s gravitational potential computed using one pericenter pass and a full mission.
Semilogarithmic scale is used.
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parameters would be more than the observations, making the recovering impossi-
ble.

We already remarked that the formal error of the zonal coefficients, comprehensive
of tesseral harmonics correlations, is given by the diagonal entries of

Γzz = (Czz − CzwC
−1
wwCwz)

−1.

The computation of the latter is difficult because the matrix Cww is badly con-
ditioned. We can avoid this obstacle by adding some a priori observations of the
tesseral coefficients, as described in (Milani and Gronchi, 2010), Chapter 6: under
the hypothesis that the depth of Jupiter’s zonal winds is ∼ 100 km, we can suppose
that the tesseral coefficients are not larger than 10−8 (cf. (Parisi et al., 2016)). In
other words, we can assume we observed Jupiter’s potential tesseral coefficients
being tP := 0 with uncertainty sP = ±10−8 and add to Cww the a priori normal
matrix CP := s−2

P I, where I is the identity matrix of the suitable dimension. The
new covariance matrix is

Γzz = [Czz − Czw(Cww + CP )−1Cwz]
−1,

which is no more badly conditioned. In Fig.3.3 the result is compared to the formal
error obtained ignoring tesseral harmonics. While the uncertainty is higher for low-
degree coefficients, it is almost the same for high-degree ones. This confirms the
fact that the accuracy with which the zonal harmonic coefficients can be recovered
depends mainly on the spacecraft’s orbit geometry and is not largely infuenced by
the presence of other parameters.

Surface gravity anomalies uncertainties

Fig. 3.4 shows the square root of the eigenvalues of the covariance matrix Γ in the 1-
arc and in the full mission cases. It is clear that

√
λ1,
√
λ2 are the largest, therefore

we could expect that their effect on the surface gravity anomalies uncertainty is
dominating. This is only partially true. To understand this, it is useful to look at
Fig. 3.5: here the contributes due to

√
λiV

(i), i = 10, 15, 20, 25 are compared with
the effect of

√
λ1V

(1) (we considered the full mission case, the same conclusions can
be drawn from the other one). The effect on the polar caps rapidly decreases as i
grows, while the uncertainty on middle latitudes is of the same order of magnitude
up to i = 20. For i > 20, even this effect can be considered negligible as the
corresponding figure for i = 25 suggests.

We computed the RMS of the principal components according to the previous
analysis, thus including U (i), i = 1, . . . , 20. The result is shown for both the 1-arc
and the full mission in Fig. 3.6. Since the uncertainty at low latitudes is > 102
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Figure 3.4: Square root of eigenvalues of covariance matrix Γ, in the case of one passage
and two passages (semilogarithmic scale).
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Figure 3.5: Comparison between gravity anomalies uncertainty due to
√
λ1V

(1) and√
λiV

(i), i = 10, 15, 20, 25 (all GS orbits were considered). The difference in magnitudine
between eigenvalues reflects into a difference in anomalies uncertainty on polar caps,
while around the perijove their influences are the same in terms of order of magnitude,
at least up to i = 20.
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Figure 3.6: Root mean square of U (i), i = 1, . . . , 20, in the 1-arc case and for the full
mission, in semilogarithmic scale. The vertical lines bound the pericenters of the Juno
spacecraft on Jupiter’s equator.

mGal, we conclude that the gravity field at the South pole is badly recovered. On
the contrary, the gravity field at the latitudes corresponding to the Juno probe’s
pericenters, namely 6 deg N - 35 deg N, is well determined. The uncertainties are
smaller than 10−1 mGal in this area.

It is evident that a full mission allows a better determination of the gravity field.
The improvement with respect to the 1-arc mission is concentrated on the latitudes
of the Juno’s pericenters and on the northern hemisphere in general, thus confirm-
ing our claim that the accuracy in the determination of the gravity field is mainly
function of the quantity of surface covered and the distance of the spacecraft from
the surface.

3.3 The gravity field of Jupiter with Juno

In this section we cope with the determination of Jupiter’s gravity field through
orbit determination and present the results obtained by simulating the Juno Grav-
ity Science experiment with the Orbit14 software. The model used in this section
is the spherical harmonics expansion for the gravitational potential.
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Figure 3.7: Formal error vs true error of the zonal harmonic coefficients C2 0, . . . C30 0 at
convergence. The formal uncertainties increase along with the degree because of the high
correlations among the parameters. Truncating at degree 30 is equivalent to set to zero
the correlations with the higher-degree coefficients, making the formal errors of the last
coefficients decrease, thus causing the peculiar “hump”. Since we did not introduce any
source of sistematic error, the true error is always less than the formal uncertainty.

First let us describe the setup for the gravity field estimation. We simulated
Jupiter’s gravity field using the values for the gravitational momenta J2, J3, J4 and
J6 of the orbit solution by (Jacobson, 2003) and set to zero the other coefficients.
We supposed Jupiter’s gravity field being composed of only zonal terms, that is
Jupiter being axially symmetric with respect to the rotation axis. We truncated the
spherical harmonics expansion at degree 30, estimating the normalized coefficients
C`0, ` = 2, . . . , 30. Finally, we used no apriori information on spherical harmonic
coefficients during the estimation process.

Fig. 3.7 shows the formal uncertainties obtained at convergence compared to the
true errors. Note that since no systematic error was added to the observables,
but only random error, the ratio true error/formal uncertainty is about 1 for ev-
ery harmonic degree. The “hump” behaviour of the formal errors curve is the
result of the constraint imposed truncating the series (3.1) to a finite degree, as
we already explained in Section 3.2.4. In fact, every harmonic coefficient is highly
correlated to the next one. In Fig. 3.8 the correlations between all the estimated
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Figure 3.8: Correlations of the spherical harmonic coefficients at convergence.
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Figure 3.9: Errors in the determination of the gravity anomalies of Jupiter for the spher-
ical harmonics coefficients C`0, ` = 2, . . . , 30, at the reference spherical surface of radius
RJup, mean radius of Jupiter.
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spherical harmonics coefficients are displayed. With reference to the latter, the
highest values (> 0.99) are close to the diagonal and they gradually decrease to
0 when moving towards the top right corner (or, by symmetry, the bottom left)
of the figure. This means that any two spherical harmonics coefficients of subse-
quent degrees are highly correlated, causing loss of accuracy in the determination
of the high-degree coefficients, as the “hump” of Fig. 3.7 also shows. In fact, by
Kaula’s expansion (Kaula, 1966), two subsequent even-degree or odd-degree spher-
ical harmonics share a great number of frequencies, thus making it hard to separate
the effects. By neglecting such correlations the results would look much better,
nonetheless illusory.

If we consider that the expected values of the spherical harmonic coefficients of
degree `, ` > 15, range between 10−6 and 10−9 for depths of the zonal flows varying
from 105 km to 10 km (cf. (Kaspi et al., 2010) and (Galanti and Kaspi, 2016)), the
conclusion is that these parameters have too high uncertainties and thus cannot
be trusted. In Table 3.1 the results obtained for the even normalized spherical
harmonic coefficients up to degree 14 can be found.

As the zonal winds produce a signature in the gravity anomalies of Jupiter, from
measuring such signature it is possible to gain information about the depth of the
winds. For this reason, it is useful to look at the uncertainties of Jupiter’s gravity
field over some reference surface, say a sphere of radius RJup, Jupiter’s mean radius.
We followed the procedure described in (Konopliv and Sjogren, 1994): if gr,`max(r, θ)
is the radial component of Jupiter’s zonal gravity field (truncated at some degree
L), the uncertainty of the gravity anomalies due to the spherical coefficients from
degree 2 to `max as a function of the latitude of the planet, over a reference sphere
of radius RJup, is

σ2:`max(θ) =

(
∂gr,`max

∂C`0

)T
Γ2:`max

(
∂gr,`max

∂C`0

)
,

where Γ2:`max is the covariance matrix relative to the coefficients C`0, ` = 2, . . . , `max.
The result for `max = 30 is shown in Fig. 3.9. The determination of the gravity
anomalies is better in the latitude belt of the pericenters, the formal uncertainty
being ∼ 0.1 mGal. At the poles, especially the south pole, the uncertainties are
much higher, ∼ 1000 mGal, thus making the recovery of the gravity field over
these latitudes impossible.

The same conclusion was found in Section 3.2 using a semi-analytic method. The
relation between surface coverage and gravity field estimation was also investigated
in (Milani and Gronchi, 2010), ch. 16, in the case of an Earth orbiter with non-
polar orbit.

Note that the results of Table 3.1 have been obtained excluding Jupiter’s gravita-
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Coefficient Formal Uncertainty

C2 0 1.068× 10−10

C4 0 1.359× 10−10

C6 0 3.810× 10−10

C8 0 1.325× 10−9

C10 0 4.540× 10−9

C12 0 1.420× 10−8

C14 0 3.905× 10−8

Table 3.1: The formal uncertainties obtained with Orbit14 of the normalized even zonal
spherical harmonics coefficients from degree 2 to degree 14.

tional parameter GMJ from the fit. Including the latter in the estimation process -
with no additional apriori information - caused a degradation of the accuracy of the
coefficient C2 0 of two orders of magnitude, originated by the particular geometry of
Juno Gravity Science orbits: since data are available only from pericenter passes,
the distance of the spacecraft from Jupiter’s center of mass is approximately the
same in each pass, making the separation of the monopole effect and the C2 0 effect
difficult. Since the relative uncertainty obtained for GMJ was ∼ 4× 10−7, almost
twenty times worse than the current knowledge (cf. (Jacobson, 2003)), it is not
questionable whether to estimate it using no apriori constraint. Thus we made a
second experiment, in which we determined also GMJ, this time constraining its
value to the currently known value, with apriori uncertainty corresponding to the
current uncertainty. The correlation with coefficient C2 0 dropped, the uncertainty
on the latter becoming ∼ 2×10−10. The formal sigma of the other coefficients were
not affected by the addition of GMJ to the fit, remaining the same of Table 3.1.

3.4 The ring mascons model for the gravity field

The results of Section 3.3 show that it is impossible to obtain accurate determina-
tion of the global gravity field of Jupiter from the Juno mission using the classical
spherical harmonics representation. In particular, given the high uncertainties,
any information about the gravity anomalies in the south pole cap should be con-
sidered meaningless. A simple geometric argument hinting at this is the following:
data from the spacecraft do not cover uniformly all the surface of the planet be-
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Figure 3.10: A ring mascon located at latitude θR with depth d.

cause the observables are available only from a time interval of six hours centered
at the pericenter and the altitude of the orbiter grows rapidly during the arc -
with subsequent loss of resolution. Since the spherical harmonics are a complete
orthogonal basis of the space of the harmonic functions on the sphere - and are
not orthogonal on a portion of it - then the reconstruction is impossible.

A possible way of solving this degeneracy is to turn to a different system of func-
tions, which is a basis for the observed surface, and expand the gravitational
potential in this new system (e.g., the Slepian functions).

Alternatively, it may be considered the option of determining the gravity field of
Jupiter only in the portion of the planet which is observed best, that is the latitude
band covered by the spacecraft’s pericenters from 6 deg N to 35 deg N. To do this,
it is necessary to use a local model for the gravity field, introducing ring mascons.
Similarly to what done in the case of rocky planets, where the gravity anomalies
in correpondance of craters are modeled with pointwise mass concentrations (cf.
(Muller and Sjogren, 1968) for the case of the Moon gravity field), we model the
gravity anomalies on Jupiter using ring-shaped mascons, accomodating the fluid
nature of the planet, which is approximately axially symmetric.

3.4.1 The gravitational potential of a ring

Let P be an axially symmetric planet of mean radius RP and mass MP and let us
fix a reference frame Σ = Oê1ê2ê3, centered at the center of mass O of the planet,
and where ê1 and ê2 span the equator. Let (r, θ, λ) be the spherical coordinates
with respect to Σ.

Let us define a ring mascon R on a planet P as a zero-thickness circumference,
endowed with a mass MR, lying in a plane of fixed latitude θR and contained in
the planet. By definition, if RR is the radius of the ring, then RR = RP cos θR−d,
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where d is called depth of the ring mascon. We are interested in the analytical
expression of the gravitational potential UR of a ring mascon, in particular the
coefficients of its expansion in spherical harmonics

UR(r, θ, λ) =
GMR
r

+∞∑
`=0

c`R
r`

∑̀
m=0

[C
(R)
`m cos(mλ) + S

(R)
`m sin(mλ)]P`m(sin θ),

where c2
R = R2

R + z2
R, zR = RP sin θR and r > cR. A first trivial remark is

that a ring mascon is axially symmetric by definition, so the tesseral coefficients
C

(R)
`m , S

(R)
`m , m 6= 0, are all zero, the expansion being simply

UR(r, θ) =
GMR
r

+∞∑
`=0

C
(R)
`0

c`R
r`
P`(sin θ),

where P` is the Legendre polynomial of degree `. The following theorem gives an
expression for the non-zero spherical harmonics coefficients of a ring.

Theorem 2. Let R be a ring mascon of mass MR and located at latitude φR of a
sphere. The coefficients of the spherical harmonic expansion of its potential are

C
(R)
`0 = P`(sinφR).

Proof. Let us compute the gravitational potential of a ring R of density ρR and
located at latitude θR on a point x = (0, 0, r)T on its axis. We remarked in
Section 3.4 that its spherical harmonics expansion is composed of only zonal terms.
Using the definition of gravity potential,

UR(r) =

∫
R

GρR
|x− p|

dp = G

∫
R
ρR

+∞∑
`=0

c`R
r`+1

P`(cosψ)dp,

where ψ is the angle between x and p. For the choice of x, we have that cosψ
is constant and it is equal to sinφR, the potential becoming trivially (assuming
constant density)

UR(r) = GMR

+∞∑
`=0

c`R
r`+1

P`(sinφR).

By the unicity of the spherical harmonic expansion, we conclude that C(R)
`0 =

P`(sinφR).

We conclude that the spherical harmonics expansion of the gravitational potential
of a ring is
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UR(r, θ) =
GMR
r

+∞∑
`=0

c`R
r`
P`(sinφR)P`(sin θ). (3.15)

If d = 0 obviously φR = θR. In the general case φR is defined by sinφR = zR/cR,
cosφR = RR/cR. Let us remark that the coefficient of degree 1 is not zero because
the center of mass of the ring does not coincide with O, unless the ring is in the
equatorial plane of the planet.

A finite set of ring mascons can be used to model the gravity field of the planet
in a latitude band (Θ1,Θ2). The low-frequency components of the gravity field
are modeled with the regular gravitational potential of the planet, expanded in
spherical harmonics up to degree `max ≤ 10. The high-frequency components
are modeled with a number m of ring mascons, of latitudes θ1, . . . , θm such that
Θ1 = θ1 < · · · < θm = Θm, and whose gravitational potential (3.15) is expanded
up to degree L > `max.

Let us fix an integer `max and a number of ring mascons m. If R1, . . . ,Rm are
ring mascons of masses M1, . . . ,Mm at the latitudes θ1 < · · · < θm, then a local
representation of the gravity field of the planet in the latitude belt (Θ1,Θ2) is
given by

U(r, θ) =
GMP

r
+
GMP

r

`max∑
`=2

R`
P

r`
C`0P`(sin θ) + UR1 + · · ·+ URm . (3.16)

The previous equation can be rewritten by grouping the terms of the same degree
`:

U(r, θ) =
GMP

r
+
GMP

r

L∑
`=1

(
RP

r

)`
C̃` 0P`(sin θ), (3.17)

where

C̃` 0 =


C` 0 +

m∑
i=1

GMi

GMP

(
cRi
RP

)`
C

(Ri)
`0 ` = 2, . . . , `max

m∑
i=1

GMi

GMP

(
cRi
RP

)`
C

(Ri)
`0 otherwise.

(3.18)

In a least squares fit, the parameters to estimate would be the spherical harmonic
coefficients C`0, ` = 2, . . . , `max and the masses of the ring masconsGM1, . . . , GMm.
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3.4.2 Numerical simulations

In the case of Jupiter and the Juno mission, we used a degree-8 spherical harmonic
expansion of the gravitational potential of Jupiter and a numberm of ring mascons
in the Juno’s pericenters latitude belt (Θ1,Θ2), where Θ1 = 6 deg N and Θ2 = 35
deg N.

The first problem was to determine how many rings to use in the representation.
The first attempt was to use 30 rings, one every degree, but numerical simulations
showed that it is impossible to estimate all the 30 parameters GMi without using
any a priori information on their value. Indeed, the normal matrix C of the least
squares fit resulted ill-conditioned, with condition number ∼ 8 × 1050. In fact,
we obtained that the maximum number of ring mascons the software was able to
solve for is m = 11 (all the rings equally distributed). For greater values of m the
normal matrix was not sufficiently well-conditioned to be inverted. In conclusion,
we set m = 11. We remark that - as explained in (Milani and Gronchi, 2010),
Chapter 16 - good sensitivity of a spacecraft to the gravity field of a planet is
obtained if the altitude is of the order of spatial scale, in this case the distance
between two subsequent rings. Since 11 rings equally distributed means one ring
every three degrees, which corresponds to one ring every 3660 km on the surface
of Jupiter, considering that the altitude of Juno at pericenter is > 4200 km, then
any attempt to determine more than 11 rings is likely not to succeed.

Note that the solution for the masses of the ring mascons must satisfy a number
of constraints. For instance, if the sum

∑m
i=1 GMi were different from zero, the

total mass of Jupiter would change, which surely is not something we want to
happen. Thus the previous sum must be set to zero. The same holds for the
degree-1 coefficients of the ring mascons potential: if their combinations, weighed
with the rings’ GMi, were not null, then the center of mass of Jupiter would
move from the actual location, which is again undesirable. In general, we demand
that the combinations

∑m
i=1GMi and

∑m
i=1 GMiC`,i, for each ` ≤ `max, where

C`,i = CRi`0 (cR/RP )`, ` = 1, . . . , `max, i = 1, . . . ,m, be equal to zero. In other
words, we imposed that the vector m = (GM1, . . . , GMm) of the gravitational
parameters of the rings solved the linear system Fm = 0, where

F =


1 1 . . . 1

C1,1 C1,2 . . . C1,m
... . . . ...

C`max,1 C`max,2 . . . C`max,m

 .

Once that we have obtained an estimation of the masses of the rings, we would like
to map it to the uncertainty on Jupiter’s gravity field. Using (3.17) and (3.18), we
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Figure 3.11: Formal uncertainties vs true error of the harmonic coefficients using the ring
mascons model; the computation of the uncertainty is given by (3.19). Note that since
the coefficients uncertainties are not global, they cannot be compared to Fig. 3.7.

can express the uncertainty obtained on the parameters C` 0, GMi as uncertainty
on the harmonic degree `:

σ(C̃` 0) =


σ(C` 0) +

m∑
i=1

σ(GMi)

GMP

(
cRi
RP

)`
C

(Ri)
`0 ` = 2, . . . , `max

m∑
i=1

σ(GMi)

GMP

(
cRi
RP

)`
C

(Ri)
`0 otherwise.

(3.19)

For L = 30, Fig. 3.11 shows the RMS of the uncertainties obtained on C̃` 0 for every
harmonic degree `. Because of the local nature of the ring mascons model, in no
way can these uncertainties be compared to those in Fig. 3.7, which are referred
to a global model.

Similarly to what done in Section 3.3, the information contained in the covariance
matrix of the fit can be used to obtain the accuracy in the determination of the
gravity anomalies at a reference surface of Jupiter. Fig. 3.12 shows the error on
the gravity anomalies at the spherical surface of radius RJup, the mean radius
of Jupiter. The comparison with what obtained in Fig. 3.9 is only possible in
the latitude interval (Θ1,Θ2) since the ring mascons model, being a local model,
does not give valuable and realistic predictions of the gravity in the latitudes
where the resolution of the orbiter is poorest. The two models appear to be in
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Figure 3.12: Surface acceleration uncertainty as a function of the latitude of the planet
obtained using the ring mascons model for the gravity field of Jupiter. Since this model
is local, the uncertainties are to be considered realistic only for the latitude belt (6, 35).

good agreement in the latitude belt (6, 35), the ring mascons model being more
optimistic by a factor ∼ 1.3.

We conclude this section by remarking that the use of the ring mascons in Jupiter’s
gravity field in place of the pure spherical harmonics model had no effect on the
determination of the other parameters.

3.5 Other gravitational parameters

In this section we deal with the determination of the gravitational effects which
are not caused by Jupiter’s gravitational field directly. More specifically, we will
discuss the possibility of determining Jupiter’s Love numbers k`, ` = 2, 3, 4 and
the masses of the Galilean satellites.

3.5.1 Jupiter’s tidal deformation

The tidal deformation of Jupiter, due mainly to the Galilean satellites, causes an
additional gravitational perturbation on the spacecraft which, in the hypothesis of
static tidal theory, is induced by a potential, called Love potential, whose expansion
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Parameter Formal Uncertainty

k2 1.955× 10−3

k3 4.752× 10−3

k4 2.701× 10−2

Table 3.2: Formal uncertainty of Jupiter’s Love numbers k`, ` = 2, 3, 4.

in spherical harmonics series (cf. (Mignard, 1978)) is

ULove =
+∞∑
`=2

k`
GMPR

2`+1
Jup

r`+1
P r`+1

P`(cosϕ).

HereMP , rP are respectively the mass and the distance of the perturbing body from
Jupiter, r is the distance of the spacecraft, ϕ is the angle between the direction
of the perturbing body and the direction of the orbiter, the coefficients k` are
called Love numbers and their values are a measure of the response of Jupiter to
the perturbation. The latter can be used to add more contraints to the interior
structure of the planet, as it has been done in (Konopliv and Yoder, 1996) for
Venus, in (Iess et al., 2012) for Titan or in (Padovan et al., 2014) for Mercury.

A sensitivity analysis disussed in (Tommei et al., 2015) showed that Juno is sen-
sitive to the Love potential up to degree ` = 4. Our dynamical model includes
the Love potential due to the Sun, the Galilean satellites, Amalthea and Thebe.
The value of k2 used for simulating the observables is the conventional value 0.37
given in (Gavrilov and Zharkov, 1977). The values for k3 and k4 cannot be found
in literature and they were set to the arbitrary value 0.7.

The results of the fit regarding these parameters can be found in Table 3.2. The
Love numbers k2 and k3 appear to be estimated very accurately, the relative accu-
racy being respectively ∼ 0.26% and ∼ 0.34%. The coefficient k4 turns out to be
determined 5 times worse than k3.

3.5.2 The masses of the Galilean Satellites

The Galilean moons of Jupiter - Io, Europa, Ganymede and Callisto - were the first
Jupiter’s natural satellites to have been observed in 1610 by Galileo Galilei. Ever
since the first space missions visited Jupiter, these bodies have aroused scientists’
curiosity thanks to their surprising features, namely Io’s volcanic activity and
Europa’s ocean layer.
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Parameter(cm3/s2) Present knowledge Juno

GMIo 1.2× 1013 2.7× 1013

GMEu 9× 1012 9.48× 1013

GMGa 1.7× 1013 4.81× 1014

GMCa 1.3× 1013 2.54× 1013

Table 3.3: Current formal uncertainties of Io, Europa, Ganymede and Callisto’s GM
(cf. (Jacobson, 2003)) compared to those obtained in the case of the Juno Radio Science
experiment.

Even though the exploration of these moons is not one of Juno’s scientific objec-
tives, still we attempted to solve for their masses. The results obtained in terms
of formal uncertainty, compared with the present knowledge, are displayed in Ta-
ble 3.3. Unsurprisingly, all the Juno formal errors are higher than the present ones
(obtained putting together Earth-based observations and spacecraft observations,
cf. Jacobson (2003)), thus confirming that Juno will not be able to improve our
knowledge of the system of Jupiter’s main satellites.

In the case of the old 11-day Juno orbit, in view of possible availability of Juno
observations other than those already scheduled (see Section 1.4), we tackled the
determination of the Galilean Satellites’ masses in two new scenarios. Both consist
in “extended” Juno missions, where we supposed that the number of Juno orbits
remained the same, but the number of tracking sessions raised from one per orbit
to one every other day - that is 5 or 6 tracking sessions per orbit. In the first
scenario the “new” observations were assumed to be in X-band, in the second
in Ka-band. The obtained formal uncertainties of the masses of the satellites
were indeed smaller. However, relatively to the present knowledge only for the
inner satellites Io and Europa an actual improvement was obtained, though rather
marginal. In the 14-day orbit case we tried to repeat the same analysis, but the
results obtained were worse. For this reason we abandoned the idea of solving for
the masses of the satellites, important though it may be.

Indeed, exploring the Galilean moons is crucial for the understanding of the entire
Jovian system. The current status and the evolution of the system are the result
of gravitational and tidal interactions among the moons and Jupiter, such as the
1:2:4 Laplace resonance among Io, Europa and Ganymede. These interactions are
caused by processes that still have not been identified. To do so, it is necessary to
design a dedicated mission, more complex, which will provide the same insight into
the Jovian system as Cassini-Huygens has been doing for the last twelve years for
Saturn’s system. The ESA JUICE mission (cf. (ESA/SRE, 2014)), to be launched
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in 2022 and expected to arrive at Jupiter in 2030, has been studied in such a way
as to make a grand-tour of the Galilean moons Europa, Callisto and Ganymede.
Among its scientific objectives is the study of the diversity of the satellite system
and a full characterisation of the processes that led to the dynamically stable
environment we see nowadays.

It is thus clear that a mission to Jupiter like Juno, which neglects the study of
its moons, is not suitable for a comprehensive investigation of the jovian system,
rather it must be regarded as the starting point for a deeper, more fascinating and
even more arduous research to be conducted in the future.
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CHAPTER 4

The angular momentum and the pole
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Outline: In this chapter we will explore the possibility of determining the param-
eters relative to two physical quantities regarding Jupiter: the angular momentum
magnitude and the direction of the rotation pole. The reason for having a ded-
icated discussion is that such parameters appear in accelerations acting on the
spacecraft which induce scarcely distinguishable effects, inasmuch as the formal
uncertainties are too high to ensure a good determination of the parameters.
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Figure 4.1: Effect on the observable (range-rate) due to the Lense-Thirring effect, during
perijove 5.

4.1 The Lense-Thirring effect

In (Iorio, 2010), the author proposed to determine Jupiter’s angular momentum
magnitude using the information coming from the acceleration on the Juno space-
craft due to the Lense-Thirring effect. As stated in (Helled et al., 2011), knowing
the angular momentum of Jupiter and the precession rate of its rotation axis is cru-
cial for the determination of Jupiter’s normalized polar moment of inertia (MOI),
the latter being an important piece of information for the investigation of the in-
terior of a planet (cf. (Guillot and Gautier, 2007)). In the following we briefly
introduce the Lense-Thirring effect; for a critical analysis, the reader might want
to refer to (Mashhoon et al., 1984).

Arising when the central mass rotates about some axis and is endowed with angular
momentum J, the general relativistic Lense-Thirring effect induces a precession of
the longitude of the ascending node of a body moving in the gravity field of the
central mass. It can be considered a frame-dragging effect and can be modeled
as a perturbative acceleration aLT to be added to the equation of motion of the
spacecraft. If J = J ŝ, where J is the angular momentum magnitude, then aLT

reads (cf. (Moyer, 2003))

aLT =
(1 + γ)GJ

c2 r3

[
−ŝ× ṙ + 3

(ŝ · r) (r× ṙ)

r2

]
. (4.1)

Here, γ is the Post-Newtonian parameter related to the space-time curvature,
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which is equal to 1 in General Relativity, c is the speed of light and r is the
position of the spacecraft with respect to the center of mass of the planet.

Thanks to the low pericenter of its orbit and its high velocity at the closest ap-
proach (∼ 60 km · s−1), the Juno spacecraft is going to detect such relativistic per-
turbation generated by Jupiter’s rotation: the effect on the observable, displayed in
Fig. 4.1, shows that the S/N ratio is approximately ∼ 100. The value used for GJ
in the simulated Lense-Thirring effect is 2.829×1038 cm5 ·s−3, given by the formula
GJ = IJGMJR

2
JΩJ, where IJ = 0.254 is Jupiter’s MOI and ΩJ = 1.75853×10−4 s−1

is Jupiter’s angular velocity (all the values are taken from (Williams, 2015)).

For this reason, we are encouraged to believe that the determination of GJ via
orbit determination could lead to a very good result. Whether this is the case or
not will be discussed in Section 4.3.

4.2 The rotation of Jupiter

In this section we will describe the model of rotation of Jupiter and define the
parameters to solve for in order to determine the pole of the planet. We describe
two possible sets of parameters: the first is the couple right ascension and dec-
lination (with respect to a suitable reference frame), the second is a set of two
semi-empirical parameters which correct the position of the pole defined by the
International Astronomical Union (IAU) in (Archinal et al., 2011).

4.2.1 Right ascension and declination

In this section we define the first couple of parameters which determine the position
of the north pole of Jupiter, and thus the direction of its rotations axis. The
definition and the construction of the rotation matrix is taken from (Archinal
et al., 2011).

By definition the north pole of a planet is the pole of rotation that lies on the
north side of the invariable plane1 of the Solar System. In the ICRF frame ΣICRF,
the position of the north pole is defined by two angles, the right ascension α0 and
the declination δ0. The former is the angular distance measured eastward along
the mean equator from the x-axis to the projection of the north pole, the latter is
the angular distance between the mean equator and the north pole.

The position of Jupiter’s north pole intervenes in the transformation of coordinates
from ΣICRF to ΣBF. The two points of intersection between the ICRF equator and

1The plane orthogonal to the total angular momentum of the Solar System.
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the Jupiter equator (that is the plane perpendicular to the rotation axis) are
α0 ± 90◦. We define node the point Q of right ascension α0 + 90◦. Let B be
the intersection of the prime meridian of the planet with its equator. The angle
φ(t), measured eastward from Q to B is the location of the prime meridian2. It
is easy to show that the inclination of the body’s equator with respect to the
celestial equator (the equator of the ICRF) is 90◦ − δ0. In conclusion, the matrix
of coordinate transformation from ΣICRF to ΣBF is

R(t) = R3(φ(t))R1(90◦ − δ0)R3(α0 + 90◦),

where

R1(ε) =

1 0 0
0 cos ε sin ε
0 − sin ε cos ε

 , R2(ε) =

cos ε 0 − sin ε
0 1 0

sin ε 0 cos ε

 ,
R3(ε) =

 cos ε sin ε 0
− sin ε cos ε 0

0 0 1

 .
The values of the angles α0, δ0 and φ for Jupiter are the following:

α0 = 268.056595− 0.006499T + 0◦.000117 sin Ja + 0◦.000938 sin Jb

+ 0.001432 sin Jc + 0.000030 sin Jd + 0.002150 sin Je

δ0 = 64.495303 + 0.002413T + 0.000050 cos Ja + 0.000404 cos Jb

+ 0.000617 cos Jc − 0.000013 cos Jd + 0.000926 cos Je

φ = 284.95 + 870.536d,

where

Ja = 99◦.360714 + 4850◦.4046T, Jb = 175◦.895369 + 1191◦.9605T,

Jc = 300◦.323162 + 262◦.5475T, Jd = 114◦.012305 + 6070◦.2476T,

Jd = 49◦.511251 + 64◦.3T

and d is the number of days from J2000 and T is the interval in Julian centuries
(of 36525 days) from J2000.

2Note that Q is fixed, thus the dependence on the time variable of φ is due to the displacement
of B. If the planet rotates uniformly with angular velocity ω, then φ = φ0 +ωt, where φ0 = φ(t0)
for an arbitrary time instant t0 (usually t0 =J2000) and t is the time past t0.
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Figure 4.2: The two angles δ1 and δ2 defining the direction of the rotation axis (vector
v) with respect to the equatorial reference frame ΣEQ, whose axes are xEQ, yEQ, zEQ.

Partial derivatives

The matrix R(t) defined in the previous section is used to compute the coordinates
of the spacecraft acceleration due to the gravity field of the planet in the body-
fixed reference frame ΣBF, where the expression of the gravitational potential of
the planet is given by (3.1).

Let y, ÿ be the vectors giving the coordinates of the position and the accelerations
of the spacecraft in ΣICRF and y′, ÿ′ the vectors of the coordinates of the position
and the acceleration of the spacecraft in ΣBF. Then y′(t) = R(t)y(t) and ÿ′(t) =
R(t)ÿ(t). Note that then latter is correct because we are not computing the
apparent forces, but only the contribution of the gravity field to the acceleration.
The computation of the whole acceleration is indeed performed in the ΣECRF frame,
which is inertial, thus the apparent forces are not needed.

The partial derivatives of the acceleration ÿ with respect to the rotation parameter
α0 are therefore (we omit the dependance on t)

∂ÿ

∂α0

=
∂RT ÿ′

∂α0

=
∂RT

∂α0

ÿ′ + RT ∂ÿ
′

∂α0

=
∂RT

∂α0

ÿ′ + RT ∂ÿ
′

∂y′0

∂y′

∂α0

=
∂RT

∂α0

ÿ′ + RT ∂ÿ
′

∂y′0
· ∂R
∂α0

y,

where y′0 are the initial conditions of the spacecraft. The partial derivatives with
respect to δ0 are formally identical.
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4.2.2 Semiempirical model

Another possibility for the modelization of the direction of Jupiter’s rotation axis
is to use a semiempirical model.

The idea is to keep fixed the angles α0 and δ0 described in the previous section
and, in order to take into account a possible deviation of Jupiter’s rotation axis
from that model, we define two angles δ1 and δ2 such that the coordinates in ΣEQ

of the unit vector v, giving the direction of the rotation axis, are (see figure 4.2)

[v]ΣEQ = (sin δ1 cos δ2,− sin δ2, cos δ1 cos δ2)T .

Consequently, the time-dependent transformation mapping ΣEQ into ΣBF is

S (t) = R3(φ(t))R1(δ2)R2(δ1).

The partial derivatives with respect to δ1, δ2 are similar to the partial derivatives
with respect to α0, δ0.

In Fig. 4.3 the effect on the observable due to a change in the angle δ1 of 10−7

rad is displayed. Two things should be remarked: first, the S/N ratio is high
enough to ensure the sensitivity of the spacecraft to the direction of the rotation
axis (the same S/N is obtained for a variation of the angle δ2); second, the shape
of the signal is very similar to the effect on the observable due to GJ (Fig. 4.1).
This constitutes a first clue to the fact that the effects due to the Lense-Thirring
acceleration and to the rotation axis are almost indistinguishable by the orbit
determination process, thus affecting the determination of the related parameters
GJ, δ1, δ2.

4.3 The problem of the correlation

In this section we present the results of a simulation of the Juno Radio Science
experiment regarding the parameter GJ and the semi-empirical parameters δ1, δ2.
The same results are obtained if solving for the parameters α0, δ0. For this reason,
the discussion here is limited to the δ1, δ2, as it was done in (Cicalò et al., 2016).

Although the S/N ratio hinted that GJ could be determined with high level of
accuracy, the results of a full parameter estimation simulation showed that this
objective cannot be achieved in practice. Indeed we obtained that GJ cannot
be estimated at all since the formal error obtained is too high if compared to its
nominal value3, the relative error being ∼ 112%. By analyzing the covariance

3See Section 4.1 for the nominal value used in the simulation.
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Figure 4.3: Effect on the observable (range-rate) due a change in δ1 of 10−7, during
perijove 5.
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of the acceleration a acting on the spacecraft, during perijove 5, semi-logarithmic scale.
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matrix, we found that GJ is highly correlated to δ1, corr(GJ, δ1) ∼ 0.9996. This
outcome is not surprising: by comparing Fig. 4.1 and Fig. 4.3, it is evident that
the effect on the observable of a change in δ1 is very similar to the effect due to
the Lense-Thirring effect.

Generally speaking such high a value for the correlation is not enough to reflect a
degeneration in the normal matrix. Nevertheless it can cause the degradation of
some outcomes. Since the correlations between GJ , δ1 and the other parameters
are less than 0.7, we believe that the cause of such poor estimation of the param-
eter GJ is due to some symmetry involving just GJ and δ1, which generates an
approximate rank deficiency in the normal matrix (cf. (Milani and Gronchi, 2010),
Chapter 6). Indeed, excluding δ1 and δ2 from the fit, the relative accuracy in the
determination of GJ was ∼4%.

We investigated the reason for the presence of such a high correlation numerically.
It is easy to show (see Section 4.6) that if there exist two solve-for parameters
x1, x2 such that the corresponding partial derivatives of the acceleration ∂a/∂x1

and ∂a/∂x2 are linearly dependent vectors, then the normal matrix is singular. If
such two vectors were not parallel, nonetheless the sine of the angle α formed by
the two vectors is small, say sin(α) = ε, then although the normal matrix is not
singular, the correlation between x1 and x2 is corr(x1, x2) = 1− o(ε2). This is the
case of the two parameters GJ, δ1. As Fig. 4.4 shows, the two partial derivatives
∂a/∂GJ and ∂a/∂δ1 are actually very close to being parallel: the ratio of the
out-of-plane components in the RTW frame (the other components are smaller
by order of magnitudes and thus negligible) during perijove 5 is almost constant.
The sine of the angle between these partial derivatives during perijove 5 (Fig. 4.5)
is between 10−1 and 10−2 except for a 8-minute time interval around pericenter.
Even a short period of time in which sin(α) ∼ 1 would be in general enough to
decorrelate the parameters, but in this case during that time interval the (dominant
components of the) partial derivatives are near zero. Their effects are orders of
magnitudes smaller than in the rest of the pass and therefore even if sin(α) gets
close to 1, the correlation does not decrease.

The same qualitative behaviour can be found in the partial derivatives of the
range-rate observable (Fig. 4.6). Although not being perfectly proportional, their
effects are not easily separable by the parameter estimation process.

4.4 A priori knowledge of the pole

If some previous knowledge of the parameters involved in the approximated rank
deficiency is available, either from past space missions or theoretical considerations,
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some a priori constraints could be added to the fit (using methods described for
instance in (Bierman, 2006) and discussed in Section 2.1.3). If such information is
accurate enough, then the degeneracy could be solved, at least partially.

We made three experiments. In all of them we performed full simulations, that is
we determined Jupiter’s gravity field, Love numbers, the orbit of the spacecraft,
the orbit of BJS, the angular momentum magnitude GJ and the angles δ1, δ2. The
three experiments distinguish themselves in the values of apriori sigma used on
δ1, δ2:

• in the first experiment (exp. A), we added a priori observations of the δ1

angle, with a priori uncertainty σAP = 10−7 rad;

• the second (exp. B) is the same as exp. A, except for σAP = 10−8 rad;

• in the third (exp. C) we assumed a priori knowledge about both the angles
δ1 and δ2, with uncertainty σAP = 10−8 rad.

The results regarding GJ in the three experiments are shown in Table 4.1. In
experiment A, although the correlation between GJ and δ1 decreased (to 0.991),
the relative accuracy in the determination of GJ was ∼ 48%, thus yet too low.
In experiment B the correlation between δ1 and GJ was less than 0.7 and GJ ’s
relative accuracy ∼8%. Finally, experiment C showed that knowing the direction
of the rotation axis up to 10−8rad level would allow the estimation of GJ with
relative accuracy of ∼6%.

Of course, the use of a priori constraints on Jupiter’s rotation axis must reflect
the actual availability of this information, otherwise the results obtained would be
meaningless. Possible sources of knowledge can be, as anticipated, the measure-
ments made during other experiments, other space missions, or from the observa-
tions of Jupiter’s satellites orbits, which trace Jupiter’s equator.

4.5 The precession rate

Although the determination of Jupiter’s MOI looks compromised because of the
poor estimation of GJ , it should not be forgotten that the latter is not the only
parameter used to retreive the former. The precession rate ψ̇ of Jupiter’s rotation
axis with respect to the normal of the invariable plane is another source of informa-
tion about Jupiter’s MOI. In (Le Maistre et al., 2016) the authors propose a new
model of precession for Jupiter’s rotation axis and perform numerical simulations
using Jet Propulsion Laboratory’s software ODP to assess the accuracy with which
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Exp. A Exp. B Exp. C

σAP (δ1) 10−7 10−8 10−8

σAP (δ2) − − 10−8

GJ rel. acc. 40% 13% 8%

Table 4.1: Relative accuracy in the determination of GJ as resulting from three different
experiments: in experiment A and B a priori information on δ1 alone (σAP = 10−7 and
10−8 respectively) is considered, in experiment C a priori information on both rotation
axis angles δ1 and δ2 (σAP = 10−8) is included.

Parameter Nom. value Formal unc. Relative unc.

ψ̇ −3269 mas/yr 1.99 mas/yr 0.06%

Table 4.2: Nominal value, formal uncertainty, relative uncertainty of Jupiter’s precession
rate ψ̇ obtained with the software ODP (Le Maistre et al., 2016).

such rate can be retrieved with Juno. The results are very encouraging, insofar
as ψ̇ is declared to be determined with relative accuracy ∼ 0.06% (see Table 4.2).
Furthermore, it is showed that such high an accuracy induces the same accuracy
on Jupiter’s MOI.

According to the analysis in (Helled et al., 2011), this should lead at least to
conclude whether Jupiter has a core or not. In the best case, such could be the
precision in the determination of the size and the mass of the core that it could
help distinguish among competing scenarios for the planet’s origins.

Part of our future work will be to enrich ORBIT14 with the possibility of deter-
mining Jupiter’s precession rate, since for the time being it is the only chance to
gain information on its moment of inertia.

4.6 Degeneracy of the normal matrix

This section contains the mathematical details cited and used in Section 4.3.

We recall that the normal matrix C is obtained multiplying the design matrix B
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by its transpose. The generic component of B is

bij =
∂ξi
∂xj

= − ∂ri
∂xj

= −∂ri
∂y
· ∂y
∂xj

. (4.2)

The vectors ∂y/∂xj are computed solving the Cauchy problem, known as varia-
tional equation ((Milani and Gronchi, 2010), ch. 2),

∂

∂t

∂y

∂x
=
∂a

∂y
· ∂y
∂x

+
∂a

∂x
∂y

∂x
(0) = 0,

where a is the acceleration, y is the state vector and x is a set of parameters not
involving the state vector initial coordinates.

Let us suppose, without loss of generality, that for the two parameters x1, x2 the
partial derivatives satisfy

∂a

∂x2

= c
∂a

∂x1

, c ∈ R \ {0};

it is an easy exercise to show that necessarily ∂y/∂x2 = c∂y/∂x1 and consequently
bi2 = cbi1 for all i, that is B is not full-rank (and so is C).

Now, let us suppose that the two partial derivatives are not parallel, but the angle
they form is close to zero; if we call α such angle, we suppose sin(α) = ε, with ε
infinitesimal. By taking the orthogonal projection of ∂a

∂x2
on the subspace generated

by ∂a
∂x1

, it follows that there exists a vector η and a constant c ∈ R \ {0} such that

∂a

∂x2

= c
∂a

∂x1

+ η;

if we call v := ∂a
∂x1

and w := ∂a
∂x2

, then

c =
v ·w
‖v‖2

and

‖η‖2 = ‖w‖2 + c2 ‖v‖2 − 2cv ·w

= ‖w‖2 − (v ·w)2

‖v‖2

= ‖w‖2 (1− cos2 α
)

= ε2 ‖w‖2 ,
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thus ‖η‖ = o(ε).

Let us show that, for such a choice of ∂a
∂x1

and ∂a
∂x2

, the corresponding solutions
y1 := ∂y

∂x1
and y2 := ∂y

∂x2
of the variational equation satisfy a similar property:

there exists a vector z with ‖z‖ = o(ε) such that

y2 = cy1 + z.

Since y1 and y2 are respectively solutions of the two differential systems ẏ1 =
A(t)y1 +v and ẏ2 = A(t)y2 +w, where the matrix A(t) = ∂a

∂y
is a continuous func-

tion of t, then the vector z := y2 − cy1 solves the Ordinary Differential Equation
(ODE)

ż = Az + η.

Let ρ(t) be its norm, ρ = ‖z‖; then,

ρ̇ =
〈z, ż〉
‖z‖

≤ ‖ż‖ ≤ ‖A‖ ρ+ ‖η‖ .

Thus ρ ≤ u, where u is a solution of the ODE u̇ = ‖A‖u+ ‖η‖:

ρ ≤ ea(t)

∫ t

0

e−a(s) ‖η(s)‖ ds;

this implies that ρ ≤ sup ‖η‖ t = o(ε), as we wanted to prove.

Now, let us show that if x1, x2 are the only solve-for parameters and the angle
α between the two vectors v and w is such that sinα = ε, then corr(x1, x2) =
1 − o(ε2). Let ξi be the derivative of the residual with respect to the parameter
xi. From (4.2) it follows that

ξ2 = cξ1 + ζ, ‖ζ‖ = o(ε).

It is easy to show that the normal matrix is

C =

(
‖ξ1‖

2 c ‖ξ1‖
2 + ξ1 · ζ

c ‖ξ1‖
2 + ξ1 · ζ ‖cξ1 + ζ‖2

)
, (4.3)

the covariance matrix is

Γ =
1

detC

(
‖cξ1 + ζ‖2 −c ‖ξ1‖

2 − ξ1 · ζ
−c ‖ξ1‖

2 − ξ1 · ζ ‖ξ1‖
2

)
(4.4)

and consequently the correlation corr(x1, x2) is, at the first order in ε,

corr(x1, x2) =
c ‖ξ1‖

2 + ξ1 · ζ
‖ξ1‖ ‖cξ1 + ζ‖

=

(
1 +

ξ1 · ζ
c ‖ξ1‖

2

)(
1− ξ1 · ζ

c ‖ξ1‖
2

)
= 1− o(ε2),

(4.5)

as we wanted to prove.
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Outline: In this chapter we present a statistical analysis - performed using
ORBIT14 - of Juno Doppler data collected in the first half of 2015, during several
tracking sessions performed by the Deep Space Network (DSN). In particular,
we will tackle the analysis of the Day of the Year (DOY) 056 (corresponding to
February 25). At that time the Juno spacecraft was on its way to Jupiter, more
than 4.5 AU far from the Sun. Although the dynamical model of the probe in this
case is much simpler than the one in jovicentric orbit in terms of forces acting on
the spacecraft, many others are the corrections and calibrations that should be
taken into account when computing the observable in order to reach the desired
accuracy. Using the Allan Deviation, we analyse the quality of the data delivered
by DSN and study the numerical noise introduced by the software ORBIT14 when
computing the observable. We conclude with the analysis of the residuals of a
least-squares fit of the given data.

5.1 Dynamical model for interplanetary spacecraft

The equation of motion for a spacecraft in interplanetary orbit is relatively easier
than in the planetary case. The acceleration acting on the spacecraft can be
expressed with the following formula

a = aN + aPN + J2�aJ2� + ang,

where: aN is the newtonian N-body gravitational attraction due to the Sun, the
planets, the dwarf planets and a number of asteroids; aPN is the Post-Newtonian
term, accounting for the relativistic effects; J2�aJ2� is the acceleration caused by
the Sun’s oblateness and ang includes the non-gravitational perturbations.

For a description of the relativistic terms, the reader may refer to (Milani et al.,
2010). In the following section we will deal with the non gravitational perturba-
tions term. We will then go on to describe all the corrections to the position of
the ground antenna on Earth needed for accurate computation of the prediction
function.

5.1.1 Solar radiation pressure

The main non-gravitational perturbation experienced by the Juno spacecraft in
interplanetary orbit is the solar radiation pressure. Such force depends on the
angle β between the incident radiation and the surface normal, the distance of
the spacecraft from the sun r, the solar constant at 1 AU Φ� = 1361 W/m2 (cf.
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(Kopp and Lean, 2011)) and three constants, α, ρ, δ expressing the properties of
radiation absorption, reflectivity and diffusivity of the spacecraft. The reader is
recommended to consult (Milani and Gronchi, 2010), Chapter 14 for the explicit
formulae.

Since no model of the spacecraft and of the optical properties of its surface are
available because subject to information export restrictions (ITAR), we model the
acceleration ang with semi-empirical parameters to be estimated during the fit.
Since the solar radiation pressure can be considered constant during an observed
arc of interplanetary orbit, we introduce three constant forces in the radial, trans-
verse and out-of-plane directions and estimate them. In fact the main effect is
given by the radial component, therefore our fit includes the latter only.

5.1.2 Modelling the position of the station

In order to compute the prediction function, not only do we need to know the
position of the spacecraft, but also the exact position of the ground station on
Earth. The following corrections have to be applied to the position of the antenna
in the ITRF ΣITRF, before the inertial position is computed. Fig. 5.1 shows the
difference between the DOY056 observables and the predictions (the so-called pre-
fit residuals) if we neglect these corrections. For more details on the models, see
(IERS, 1992) and (Moyer, 2003), Chapter 5.

Body-fixed velocity of the station

Let rbf be the position of the ground station in the body-fixed reference frame.
Because of the crust movement, the velocity of the spacecraft in this reference
frame vbf is not zero. For this reason, the following correction ∆rbf must be added
to rbf :

∆rbf = vbf(t− t0),

where t is the current time instant and t0 is a reference time instant.

Note that in general we can write

∆rbf = srr̂bf + sφN + sλE,

where r̂bf = rbf/|rbf |,N = (− sinφ cosλ,− sinφ sinλ, cosφ), E = (− sinλ, cosλ, 0),
and φ, λ are the latitude and the longitude of the tracking station.
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Figure 5.1: Difference between observations and predictions from DOY056, Ka-band.
The predictions do not include the corrections to the position of the tracking antenna.

First-order tidal displacement

The solid tides induced by the differential attraction of the Sun and the Moon give
rise to a displacement of the ground station, which can be expanded in series. The
first-order contribution reads

∆rbf =
2∑
j=1

GMj

GME

r4

R3
j

{
3l2(R̂j · r̂bf)R̂j +

[
3

(
h2

2
− l2

)
(R̂j · r̂bf)

2 − h2

2

]
r̂bf

}
,

where: r = |rbf |; Rj is the body-fixed geocentric position of the body j, Rj = |Rj|
and R̂j = Rj/Rj; h2 = 0.6090 and l2 = 0.0852 are the second-degree Earth Love
numbers (IERS, 1992).

Second-order tidal displacement

The second-order contribution of the tidal displacement reads

sr = −(1.264× 10−5 km) sin(2φ) sin(θM + λ),

where θM is the mean sidereal time.
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Permanent displacement due to Solid Earth Tides

This accounts for the constant part of the displacement of the tracking station due
to solid Earth tides. The correction is given by

sr = −h2(0.19841× 10−3 km)

(
3

2
sin2 φ− 1

2

)
sφ = −l2(0.29762× 10−3 km) sin(2φ).

Ocean loading

This effect is due to the periodic ocean tides. Assuming the Earth spherical, the
displacements in the geocentric north, radial and east directions are

sr = +10−3

11∑
i=1

Ari cos(θi + χi − φri ) km

sφ = −10−3

11∑
i=1

ASi cos(θi + χi − φSi ) km

sλ = −10−3

11∑
i=1

AWi cos(θi + χi − φWi ) km.

Here, Ari , ASi , AWi are the amplitudes, θi are astronomical arguments, χi are called
Schwiderski phase angles, φri , φSi , φWi are the Greenwich phase legs. All their nu-
merical values can be found in (IERS, 1992). The summations are over eleven tide
components.

Pole tide

This is a solid Earth tide caused by polar motion.

sr = −h2

2

ω2
Er

2

g
sin(2φ)[(X −X) cosλ− (Y − Y ) sinλ] km

sφ = −l2
ω2

Er
2

g
cos(2φ)[(X −X) cosλ− (Y − Y ) sinλ] km

sλ = l2
ω2

Er
2

g
sinφ[(X −X) sinλ+ (Y − Y ) cosλ] km.
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Here, ωE = 0.7292115×10−4 rad/s is the magnitude of the Earth angular rotation
vector, X and Y are the Earth-fixed coordinates of the true pole, whereas X and
Y are average values of X and Y over some time span.

5.1.3 Time conversion

As we already pointed out in Section 2.3.3, converting times from TDB to TDT is
a crucial task for the computation of the observables. The TDT time coordinate
tTDT solves the differential equation

dtTDT

dtTDB

= 1− 1

c2

(
U +

1

2
v2

E − LC

)
,

where c is the speed of light, U is the Newtonian gravitational potential at the
Earth center, vE = |vE| is the magnitude of the barycentric velocity of the Earth
and LC = 1.48082686741× 10−8 is a constant used to remove secular terms.

In fact, the previous formula assumes that the observer (in this case the tracking
station) is located at the center of the Earth. In order to take into account the
actual position of the antenna, the formula should be modified as follows (cf.
(Moyer, 2003), Chapter 4):

dtTDT

dtTDB

= 1− 1

c2

(
UE +

1

2
v2

E − LC

)
− vE · vE

ant

c2
− aE · xE

ant

c2
,

where aE is the barycentric acceleration of the Earth, xE
ant and vE

ant are respectively
the position and the velocity of the antenna with respect to the Earth.

5.1.4 The computed observable

In Chapter 2 we defined the observable as a difference of range and touched on
the integral formulation (cf. formula (2.11)), stating that it would be much more
convenient. Strictly speaking, the actual observable delivered by DSN is not the
range-rate of the spacecraft, but a frequency measurement ν(t), namely the differ-
ence of frequency between the uplink and the downlink radio signal. The relation
between the frequency and the range-rate is described in the following and can be
found in detail in (Moyer, 2003).

Let t be the time tag of the observable, receiving time of the signal at the ground
antenna. The averaged received frequency is given by

ν(t) =
1

∆

∫ tb+
∆
2

tb−∆
2

ν(s)ds, (5.1)
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where tb is the bounce time of the signal at the spacecraft. Analogously to what
done for the range-rate, for the implementation of (5.1) ORBIT14 uses a quadra-
ture formula:

ν(t) ∼
m∑
i=1

wiνi,

where wi are the weights associated to the quadrature formula, ti are the times
of discretization of the integration interval

[
tb − ∆

2
, tb + ∆

2

]
(the nodes) and νi is

the instantaneous received frequency at time ti. The formula relating νi and ṙi,
the instantaneous range-rate computed at time ti, whose formulation has been
described in Chapter 2, is

νi = M2ft

(
1− 2

ṙi
c

)
,

where M2 is the spacecraft turn-around ratio1, c is the speed of light, and fT is the
transmitted frequency at time ti − 2ri/c, where ri is the range at time ti.

Because of the Doppler effect, the transmitting frequency has not always the same
value when the signal arrives at the spacecraft. In order to match the band width
of the receiver during the entire tracking pass, the transmitted frequency is ramped,
that is it is modified so as to take into account the relative velocity between the
spacecraft and the antenna on Earth. Thus fT is not constant over the tracking,
but it is a linear function of time

fT(t) = fT,0 + ḟT · (t− t0),

where fT,0 is a reference frequency, t0 is a reference time instant and ḟT is the
ramp-rate, which could be either constant or piecewise constant.

5.1.5 Earth Troposphere

The troposphere is the lowest layer composing the Earth atmosphere, with a depth
of 12 km on average. It represents an important source of perturbation for the
radio signal coming from the spacecraft: with reference to Fig. 5.2, which displays
the difference between Doppler observables and non-corrected ORBIT14 predic-
tions for the DOY056 pass, we see that neglecting such calibrations would produce
a signature in the observables as large as 0.3 Hz. For this reason, a proper mod-
elization of the tropospheric effect on the observable is necessary.

1For the Juno spacecraft, the turn-around ratio is 3360/3599 for the Ka-band and 880/749
for the X-band.



80 Statistical analysis of the cruise phase data

The tropospheric perturbations appear as a delay in the time measurement of
the signal traveling from the spacecraft and can thus be expressed in form of
correction to the range. Since the troposphere contains both a hydrostatic part,
made of the dry gases (N2 and O2 mostly), and a wet part, made of condensed
water, the corrections are usually divided in two components, named dry and wet
components. The two contributions are also very different qualitatively speaking:
whereas the former is usually stable, the latter suffers from very stiff fluctuations
(cf. Fig. 5.5).

The dry and wet tropospheric corrections are given as zenithal corrections to the
range, ∆rdry,z and ∆rwet,z, because based on the data available relative to the part
of troposphere on the vertical line at the station. These must then be projected
to their value at the actual elevation angle2 of the spacecraft. The projection
is performed by multiplying the terms ∆rdry,z and ∆rwet,z by mapping functions.
ORBIT14 uses Niell’s dry and wet mapping functions (cf. Niell (1996)): if α is
the elevation angle of the spacecraft,

m(α) =

1
1+ a

1+ b
1+c

1
sinα+ a

sinα+ b
sinα+c

,

where a, b, c are constant coefficients depending on the latitude and height of the
ground station, and are different for the dry mapping function mdry(α) and the
wet mapping function mwet(α). In order to include the tropospheric delays in the
computation of the observable, the following must be added to the range (2.9)

rtropo = ∆rdry,zmdry(α) + ∆rwet,zmwet(α).

Whereas the hydrostatic part of the atmosphere can be modeled from surface
pressure and temperature using the laws of the ideal gases, the wet component is
unpredictable and difficult to model. For Juno, the dry component is computed
according to the model described in (Saastamoinen, 1972), whereas the wet com-
ponent is supplied by Advanced Water Vapor Radiometer (AWVR) measurements.

An AWVR is a radiometer operating at frequencies from 22 to 31 GHz supporting
NASA’s radio science experiments. It measures atmospheric water vapor along a
line of sight from the ground based antenna to the spacecraft. For the time being
two AWVRs are used: one is installed at the DSN in Goldstone, the second in
Madrid.

2The elevation angle measured with respect to a topocentric reference frame centered at the
station.



5.1 Dynamical model for interplanetary spacecraft 81

seconds after arc beginning
×10

4
0 0.5 1 1.5 2 2.5

H
z

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Juno DOY056 Ka-band
Observables and predictions difference

Figure 5.2: Difference between observations and predictions from DOY056, Ka-band.
The predictions do not include tropospheric corrections, giving rise to a 0.3 Hz-large sig-
nature, whose peculiar shape is due to the elevation angle of the spacecraft (cf. Fig. 5.3).
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Figure 5.4: Dry component of the tropospheric corrections during DOY056 at Goldstone,
CA.

For Juno the AWVR measured troposphere corrections along the line of sight to
Jupiter and then mapped to zenith using the Niell mapping function. To use the
data, the same function needed to applied to the desired elevation.

The measurements are expressed as corrections to the range at a given list of time
instants. If the correction at a time instant not included in the list is needed,
ORBIT14 performs interpolation using cubic splines.

Fig. 5.4 and 5.5 show respectively the zenith dry and the zenith wet components
during DOY056 at the Goldstone station in California.

If AWVR measurements are not available (for instance in case of bad weather
conditions), the tropospheric effects could be calibrated using seasonal models,
giving predictions of the troposphere conditions based on data taken over the past
years. Of course the level of accuracy of such models is inferior with respect to
the AWVR data.

In this case, the functions ∆rdry,z and ∆rwet,z are expressed as trigonometric poly-
nomials. For the dry component at time t, there exist coefficients A0, Ak, Bk, k =
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Figure 5.5: Wet component of the tropospheric corrections measured by the Advanced
Water Vapor Radiometer during DOY056 at Goldstone, CA.

1, . . . , n such that

∆rdry,z(t) = A0 +
n∑
k=1

Ak cos(kX) +Bk sin(kX),

where, calling t0 the initial time of tracking and P the period of the fundamental
mode, then X = 2π(t− t0)/P (see Cangahuala et al. (2002) for details). The wet
component has a similar expression.

Fig. 5.6 and 5.7 show respectively the zenith dry and the zenith wet components
for every day of the year 2014 at the Goldstone station in California.

5.1.6 Effect of charged particles

The noise budget of Doppler measurements contains also the contribution due to
the interaction of the radio signal with the charged particles (plasma) contained
in the solar wind and in the ionosphere. The presence of a medium characterized
by refractive index fluctuations causes frequency fluctuations in the radio wave
which are proportional to the square of the wavelength (cf. (Asmar et al., 2005)).
Consequently Ka-band radio links suffer from these fluctuations much less than
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Figure 5.6: Dry component of the tropospheric corrections for the year 2014 (seasonal
model).
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Figure 5.7: Wet component of the tropospheric corrections for the year 2014 (seasonal
model).
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X-band and in special conditions, such as near opposition, the plasma effect on
Ka-band data is close to being negligible.

On the other hand, when the spacecraft is near conjunction it is necessary to elim-
inate the charged particles noise from the radiometric observables. As proposed
in (Bertotti et al., 1993), in presence of a radio link featuring X/X, Ka/Ka and
X/Ka phase coherent bands, by applying a suitable linear combination of the three
types of observable, it is possible to remove completely the plasma noise. For Juno
such a triple of links is not available, thus it is not possible to achieve a complete
removal; following (Mariotti and Tortora, 2013), it is still possible to calibrate a
substantial part of the charged particle noise exploiting the two available radio
links X/X and Ka/Ka: if fKa/Ka and fX/X are the received fractional frequencies
respectively in Ka-band and X-band, the almost-calibrated observable is given by

fcal ' 1.05fKa/Ka − 0.05fX/X.

Since the Juno Ka-band data analyzed in this chapter were obtained near opposi-
tion, we were in condition of ignoring plasma calibration. This might also be the
case of the first Gravity orbits, but as Fig. 1.5 suggests, around perijove 28 noise
removal will be crucial, as the spacecraft will be near conjuction.

5.1.7 Effect of the spin on the observable

The radio signal sent from the ground antenna to the spacecraft is circularly po-
larized. Since the spacecraft is spinning3, the received frequency in the rotating
frame at the spacecraft is lowered or increased, depending on the polarization of
the signal. The Ka-band signal is Left-hand Circularly Polarized (LCP) for recep-
tion at the spacecraft and Right-hand Circularly Polarized (RCP) for transmission,
whereas the X-band signal is RCP for both. This induces the Doppler shift (cf.
Marini (1971))

∆ν = −ωspin(1±M2), (5.2)

where ωspin is the spin frequency of the spacecraft and M2 the turn-around ratio
of the spacecraft and the sign is chosen according to the polarization.

For the Juno spacecraft, this shift is ∼ 0.0022 Hz for the Ka-band and ∼ 0.0722
Hz for the X-band4. If one does not correct the Doppler observables with the effect
of the spin, the least-squares process would correct the velocity of the spacecraft
in order to account for this signal. As a consequence, computing a prediction of

3At the time of the analyzed pass the spin rate was 1 rpm, but currently, and at Jupiter, the
spacecraft is rotating at 2 rpm

4These values were provided by the University of Bologna via private communication
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Figure 5.8: Difference between the Ka-band Doppler data and ORBIT14 predictions
using initial conditions obtained by fitting the X-band data. The residuals have an offset
of ∼ −0.137 Hz because the effect of the spinning spacecraft had not been included in
the X-band Doppler.

the Ka-band data using the spacecraft state vector obtained fitting the X-band
data (or viceversa) would produce biased residuals. This is showed in Fig. 5.8
and Fig. 5.9. The first is the difference of the Ka-band Doppler observables and
the predictions computed by ORBIT14 using the state vector obtained from a
previous fit of non-corrected X-band data. A bias of ∼ −0.137 Hz is present. The
second figure shows the same difference, but in this case the X-band data had been
corrected before the fit using (5.2). The bias is no longer present in the new figure,
the mean being ∼ −2.3× 10−4.

Another effect due to the spinning spacecraft is due to a misalignment between
the spacecraft spin axis and the antenna. If not taken into account, this results in
a periodic effect in the residuals, the period being a multiple of the rotation period
of the orbiter (cf. Fig. 5.16). See Section 5.2.3 for possible solutions.

5.2 Data processing

The results of the statistical analysis of the Juno Doppler data using ORBIT14 are
described in this section. Before going on to deal with the fit of the observables,
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Figure 5.9: Difference between the Ka-band Doppler data and ORBIT14 predictions
using initial conditions obtained by fitting the X-band data. Since the effect of the
spinning spacecraft has been included, no bias is present.

we will dwell on the analysis of the intrinsic noise contained in the Doppler data
and in the computed observables generated by ORBIT14.

We will fully analyse the DOY056 Ka-band data set. It has been obtained by two-
way telemetry between the Juno spacecraft and the DSS-25 station in Goldstone,
California. The sampling time is 1 second and the tracking time is approximately
six hours. The elevation angle of the spacecraft over the topocentric reference
frame at the station goes from ∼ 70 degrees to ∼ 15 degrees, see Fig. 5.3. Finally,
the data set is unramped.

5.2.1 Quality of the data

To investigate the noise of the Doppler data we did as follows: first, we made a
polynomial fit of the data using Chebyshev polynomials (cf. Section 5.3.1); second,
we computed the Allan Deviation (cf. Section 5.3.2) of the difference between the
data and the fitting polynomial, divided by the reference frequency5. The Allan
Deviation (from now on, AD) was computed at times τ = 1, 2, . . . , 1000 seconds.

The result for the DOY056 Ka-band Doppler data is in Fig. 5.10. The value of the

5For the Ka-band data the reference frequency is ∼ 34 GHz
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Figure 5.10: Allan Deviation of the Juno DOY056 Ka-band Doppler observables (received
frequencies) for t = 1, . . . , 1000 sec.

AD for this data set at 1000 s is ∼ 6× 10−15. This should be compared to what
stated in (Asmar et al., 2005): the authors show that the best accuracy currently
achievable6 is about 3× 10−15 at 1000 s, thus Juno performs 2 times worse.

5.2.2 Numerical noise of the computed observable

In order to detect the presence of numerical noise in the predictions computed
by ORBIT14, we follow the same scheme used for the observables. That is, we
fit the predictions to a polynomial and then compute the AD of the difference.
The result relative to the DOY056 Ka-band Doppler data is in Fig. 5.11. The
AD σ(τ) is less than 10−16 for all τ = 1, 2, . . . , 1000 sec. We conclude that the
numerical noise introduced by the software when computing the predictions is
much smaller than the noise of the observables, thus it is negligible. Such small
a value of numerical noise could be reached using the integrated formulation for
the computation of the observable, (5.1) for the observed frequency and (2.11) for
the range-rate. As already shown in (Milani and Gronchi, 2010), Chapter 17, the
integrated observable allows more control of the rounding off problems than the
differenced observable (2.10).

6Note that although the cited article is more than 10 years old, such statement is still true
since technology has not improved.
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Figure 5.11: Allan Deviation of the predictions computed by ORBIT14 relative to the
DOY056 Doppler data.

Note that the computed observables did not include the tropospheric corrections.
The latter could contain additional noise which would affect the final result (see
Section 5.2.3). In this case, the tropospheric data should be pre-processed in such
a way that they are a smooth function of the time, allowing for a reduction of the
numerical noise.

5.2.3 Least squares fit

In this section we describe the results of the least-squares fit of the DOY056 Ka-
band observables performed with ORBIT14. The goal is to measure the noise of
the residuals obtained from the fit.

Pre-fit residuals

Before going on to study the post-fit residuals, let us analyse the difference between
the observables and the predictions (including the tropospheric corrections), the
so-called pre-fit residuals. Figure 5.12 shows that the pre-fit residuals are charac-
terised by an offset of about ∼ −0.05 Hz and a linear drift. The former is due to
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Figure 5.12: Difference between observables (DOY056 Ka-band) and predictions com-
puted by ORBIT14.
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Figure 5.13: Residuals obtained at convergence of the least-squares fit.
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an error in the initial conditions used, the latter is caused by unmodeled solar radi-
ation pressure. Whereas the error in the initial conditions will be corrected during
the fit, the solar radiation pressure will be taken into account by determining a
semi-empirical parameter representing a constant force in the radial direction. The
choice of the radial component is due to the fact that the solar radiation pressure
has approximately the same direction.

Post-fit residuals

Since a single arc in cruise phase is not enough to determine the six components
of the state of the spacecraft, we constrained it to its nominal value with apriori
uncertainty of 1 km in position and 1 cm/s in velocity.

Fig. 5.13 shows the residuals of the DOY056 Ka-band data at convergence. The
standard deviation (STD) is 10.3 mHz, which corresponds to∼ 90µm/s. The result
obtained by the Radio-Science Laboratory - Università La Sapienza in Rome (cf.
(Durante and Iess, 2015)), using the Jet Propulsion Laboratory software MONTE,
for the same data set is STD=19 mHz, so almost 2 times worse than the result
obtained with ORBIT14.

The AD of the ORBIT14 residuals is in Fig. 5.14. By comparing the AD curve of
the residuals with the AD curve of a White Noise stochastic process (given by the
function of the time τ−1/2, see Section 5.3.2), we remark that the two curves are
almost parallel except for the smallest and largest considered times. As regards
the smallest times, this is due to the noise contained in the observables: the ob-
servables and the residuals have indeed the same AD. As far as the largest times
are concerned, a part of the difference stems from noise in the tropospheric cor-
rections supplied by the AWVR. If we look at the Allan Deviation of the residuals
of the same pass, obtained applying tropospheric corrections based on a seasonal
model (Fig. 5.15), indeed we see that the difference in slope for large times has
now diminuished and its value at 1000 sec is 6 × 10−15, the same value obtained
for the observables (Fig. 5.10). Investigation on the possible sources accounting
for the remaining difference is still going on.

Finally, we computed the Power Spectral Density of the residuals (Fig. 5.16). The
main feature is the peak at ∼ 0.33 Hz, corresponding to twice the rotation period
of the spacecraft. It is not known what this stems from: it might be caused by
an antenna phase pattern that has two maxima per rotation. A possible way to
deal with this problem is to correct the position of the antenna in the software
by reading its relative position with respect to the spin axis from the SPICE C-
kernel, the component of SPICE about the attitude of the spacecraft and the
instruments. Another way to cope with it is by applying a suitable filter to the
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Figure 5.14: Allan Deviation at times τ = 1, . . . , 1000 of the residuals in Fig. 5.13 versus
Allan Deviation of a White Noise process (curve τ−1/2).

Doppler observables (cf. (Carpino et al., 1987)) in such a way that the effect
described above is deleted. According to our estimates, a 20-second low-pass filter
(Fig. 5.17) is able to eliminate both the peak and the higher-frequency noise. We
have not yet explored in detail such possibility, yet we intent on doing it in the
near future.

5.3 Mathematical background

In this section we provide the mathematical details about Chebyshev polynomials
and the definition and basic properties of the Allan Deviation, much used for the
analysis of the Juno data.

5.3.1 Chebyshev polynomials

The Chebyshev polynomials of the first kind are a set of polynomials defined on
the interval [−1, 1]. They form a set of orthogonal polynomials with respect to the
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scalar product

〈f, g〉 =

∫ 1

−1

(1− x2)−
1
2f(x)g(x)dx.

The following can be taken as a definition:

Definition 1. The Chebyshev polynomial of degree n is defined by the recurrence
relation 

T0(x) = 1

T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2

It can be proved that the roots of the degree-n polynomial Tn are all distinct and
are given by

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n.

The importance of knowing the expression of such roots is in that the polynomial
interpolation of a function made using as nodes the Chebyshev roots produces
an interpolation error somewhat minimal. In fact, the interpolation error of a
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function f ∈ Cn+1([−1, 1]) approximated by a degree-n polynomial P (x) in the
nodes (xj)j=0,...,n is

f(x)− P (x) =
f (n+1)(ξ)

(n+ 1)!

n∏
j=0

(x− xj), ξ ∈ [−1, 1],

where f (n+1) is the derivative of order n+ 1 of f . Therefore, taking the maximum,
we have

max
x∈[−1,1]

|f(x)− P (x)| = 1

(n+ 1)!
max
x∈[−1,1]

∣∣f (n+1)(ξ)
∣∣ max
x∈[−1,1]

∣∣∣∣∣
n∏
j=0

(x− xj)

∣∣∣∣∣ .
One is interested in having the minimum possible value for maxx∈[−1,1]

∣∣∣∏n
j=0(x− xj)

∣∣∣.
It can be shown that

max
x∈[−1,1]

∣∣∣∣∣
n∏
j=0

(x− xj)

∣∣∣∣∣ ≥ 2−n.

Moreover, since |Tn+1| = 2n, then choosing the roots of a degree-n+ 1 Chebyshev
polynomial as interpolation nodes leads to having

max
x∈[−1,1]

∣∣∣∣∣
n∏
j=0

(x− xj)

∣∣∣∣∣ = 2−n,

that is the minimum value achievable.

5.3.2 Allan Deviation

The Allan Deviation has been introduced in (Allan, 1966) in order to study the
frequency stability of an oscillator. It is used nowadays as a powerful instrument
to study the intrinsic noise of a frequency signal.

Let us suppose to have a frequency measurement ν(t) : R→ R. Starting from this
function, we can define the fractional frequency fluctuations function

y(t) :=
ν(t)− ν0

ν0

,

where ν0 is a reference frequency.

Let us fix T0 ∈ R a generic instant of time and, for a given τ ∈ R+, let (Tk)k be
the sequence of M + 1 time instants defined by

Tk = T0 + (k − 1)τ, k = 1, . . . ,M + 1.
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Let us define yk, the average value of y over the interval (Tk, Tk+1):

yk =
1

τ

∫ Tk+1

Tk

y(s)ds.

Definition 2. The Allan Variance of the signal y at the analysis time τ ∈ R+ is
given by

σ2
y(τ) =

1

2M

M−1∑
k=0

(yk+1 − yk)2. (5.3)

The Allan Deviation is σy(τ) :=
√
σ2
y(τ).

Let us now consider the case of a discrete frequency signal (yi)i=0,...,N in the interval
[t0, t0 + T ], with discretization rate τ0. Let m ∈ R+ and τ = mτ0, the analysis
time. If we define

M :=

[
T

τ

]
− 1,

the average values yk, k = 0, . . . ,M , simply read

yk =
1

m

m∑
j=1

yk+j−1.

The Allan Variance of the discrete signal y at the analysis time τ has the same
expression (5.3).

The Allan Deviation of a signal as a function of the analysis time can be used to
analyse the noise contained in the signal by comparing it to the Allan Deviation
of the most common stochastic processes. In this work we will consider only white
noise and random walk. It can be shown (cf. (Tehrani, 1983)) that the Allan
Deviation of such processes is proportional to a power of τ , namely

σWN(τ) ∝ τ−
1
2 , σRW(τ) ∝ τ−1,

where σWN indicates the Allan Deviation of White Noise and σRW that of Random
Walk.

5.4 Reading the ODF data file

The observables and all the other tracking data are saved in ODF (Orbital Data
File) format files, created by the DSN. In order to be used by the ORBIT14
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software, the data had to be extracted and converted in the ORBIT14 format.
Following the guidelines contained in (Shin, 2008), the Matlab function odf2orb.m
has been designed, coded and tested.

The routine reads a given ODF file and:

• writes the information in a number of .txt files for consultation;

• produces the files .obs and .trackinfo, in the ORBIT14 format.

The script uses two functions called swapbits.m and convbi.m, which respectively
write the bits in the byte in the reverse order and convert a sequence of bits in
decimal number. The script also produces a number of auxiliary files (frqncy.txt,
obsvbl.txt, band.txt, timetags.txt) used for writing the ORBIT14 files.

If filename is the name of the ODF file, the files generated by odf2orb.m are:

Files containing orbit data

• data_filename.txt : contains all the data extracted by the file. See later
for the details.

• data_filename_X.txt : contains all the X-band data extracted by the file
(if any).

• data_filename_Ka.txt : contains all the Ka-band data extracted by the
file (if any).

• data_filename_1way.txt : contains all the 1-way type data extracted by
the file (if any).

• data_filename_2way.txt : contains all the 2-way type data extracted by
the file (if any).

The information held is the same for all the previous files. The files are organized
in rows, each one containing the same number of fields. Each row contains:

Time tag time of the observable, expressed as seconds past Jan 1, 1950, hh:00:00:00.

Data type type of the doppler observable (11=one-way, 12=two-way, 13=three-
way)

Observable doppler observable (Hz)
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Reference frequency the reference frequency used to compute the sky-frequency
(Hz)

Downlink band 0=N/A or Ku-band, 1=S-band, 2=X-band, 3=Ka-band

Uplink band 0=N/A or Ku-band, 1=S-band, 2=X-band, 3=Ka-band

Downlink delay (sec)

Uplink delay (sec)

Spacecraft ID (61=Juno)

Files containing RAMP info

• ramp_filename.txt : contains all the information about the ramped fre-
quencies (if any).

For each station, the ramp file contains the following information (organized in
rows):

Station ID

Ramp start time expressed as seconds past Jan 1, 1950, hh:00:00:00.

Ramp end time expressed as seconds past Jan 1, 1950, hh:00:00:00.

Ramp start frequency frequency at the ramp start time (Hz)

Ramp rate derivative of the frequency wrt time (Hz/s)

Files for ORBIT14

• o14_filename.obs : contains the observables as well as the time tags, the
type of observable, the station ID, the compression time.

• o14_filename.trackinfo : contains information such as uplink and down-
link delays and the RAMP tables.

For the time being, the routine odf2orb can only read doppler data, since the
ORBIT14 software can only process that kind of observables.
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