SECONDO COMPITO DI ANALISI MATEMATICA CORSO DI LAUREA IN INFORMATICA, CORSO B

8 Febbraio 2016

Esercizio 1 Siano $z_1 = 3 + i$ e $z_2 = 1 - 3i$. Verificare che il numero complesso

$$w = \frac{z_1 - z_2}{z_1 + z_2}$$

è radice dell'equazione $z^2 + 1 = 0$.

Esercizio 2 Dimostrare che la funzione $f: \mathbb{R} \to \mathbb{R}$ di legge $f(x) = e^{x^3 - 8}$ è invertibile e calcolare la legge della funzione inversa f^{-1} .

Esercizio 3 Sia $f_{\alpha} : (0, +\infty) \to \mathbb{R}$ la famiglia di funzioni definite da

$$f_{\alpha}(x) = \begin{cases} \frac{\sqrt{x} - \cos(x - 1)}{\log x} & 0 < x < 1\\ e^{(\alpha - 1)x} + \arctan[\alpha(x^2 + 2x - 3)] & x \ge 1. \end{cases}$$

- (a) Determinare i valori di $\alpha \in \mathbb{R}$ per cui f_{α} risulta continua in $(0, +\infty)$.
- (b) Per i valori di α di cui al punto (a), dimostrare che è possibile estendere f_{α} a una funzione continua su $[0, +\infty)$ e esibire l'espressione di tale estensione.

Esercizio 4 Si considerino i seguenti sottoinsiemi di \mathbb{R} :

$$A = \left\{ \frac{3}{n+1} \mid n \in \mathbb{N} \right\}, \quad B = \{x \in \mathbb{R} \mid \arctan(x) + x^3 + x + 1 = 0\}.$$

- (a) Determinare estremo superiore, estremo inferiore, massimo e minimo (se esistono) di A.
- (b) Determinare estremo superiore, estremo inferiore, massimo e minimo (se esistono) di $A \cup B$.

Esercizio 5 Calcolare il seguente integrale definito:

$$\int_{-2}^{-\frac{1}{2}} \frac{|x+1| - 1}{x(x+3)} \mathrm{d}x.$$

N.B. Tutte le risposte devono essere adeguatamente giustificate. Non saranno valutate risposte prive di giustificazione.