
EXERCISES OF WEEK FOUR (2014/09/29, 11:00AM)

Exercise 1. Given three vectors a, b, c ∈ E3, let A be the matrix defined column-wise

A := (a|b|c).

Show that det(A) = a · (b × c).

Solution.
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= a1(b2c3 − c2b3)− a2(b1c3 − b3c1) + a3(b1c2 − c1b2)

= a · b × c.
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Exercise 2. Let

ℓ1 := ℓ(P, v), ℓ2 := ℓ(Q, w)

be two non-degenerate lines such that v × w = 0. Show that either

ℓ1 = ℓ2 or ℓ1 ∩ ℓ2 = ∅.

Solution. Since v and w are non-degenerate, there exists c in R − {0} such that v = cw.
Suppose that

ℓ1 ∩ ℓ2 6= ∅.

Then, there exists R such that R belongs to ℓ1 ∩ ℓ2. Then

ℓ1 = ℓ(P, v) = ℓ(R, v) = ℓ(R, cw) = ℓ(R, w) = ℓ(Q, w) = ℓ2.
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Exercise 3. Suppose that we have two non-degenerate lines

ℓ := ℓ(P, v), ℓ
′ := ℓ(Q, w).

in the plane. We can define a distance between ℓ and ℓ′

d(ℓ, ℓ′) := inf{d(R, R′) | R ∈ ℓ, R′ ∈ ℓ
′}.

Try to express the distance in terms of P, Q, v, w.

Solution. If v × w 6= 0, then there exists R in ℓ ∩ ℓ′. Hence

dist(ℓ, ℓ′) = 0.

Then, suppose that v × w = 0. That is

w = cv, c 6= 0.

We claim that

dist(P, ℓ′) = dist(ℓ, ℓ′).
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Clearly, the inequality dist(P, ℓ′) ≥ dist(ℓ, ℓ′) holds. We can write

dist(ℓ, ℓ′) = inf
R∈ℓ

dist(R, ℓ′).

Given R ∈ ℓ, we have
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Since R is in ℓ, there exists t such that
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Exercise 4. Find the area of the polygon with vertices given by the points

P(0, 0), Q(2, 3), R(5, 6), T(1, 5).
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