
3. CROSS PRODUCT

3.1. Cross product in dimension two. Given v, w ∈ E2 we define the cross product

v × w = v1w2 − v2w1 ∈ E1.

The cross product can be taken as test of pararellism:

Proposition 3.1. Given v, w ∈ E2, there holds

v × w = 0 ⇔ v  w.

Proof.

Proof of ⇐. Suppose that v  w. Then, according to Definition 2.3, either w is the zero
vector or there exists c in R such that v = cw. If w = 0, then

v × w = v1 · 0 − v2 · 0 = 0.

If v = cw, then
(v × w) = (cw)× w = cw1w2 − cw2w1 = 0.

Proof of ⇒. If v × w = 0, then
v1w2 = v2w1.

We want to show that v  w. If w = (0, 0) it is true. Then, we suppose that w = (0, 0)
which means that one between w1 and w2 is different from zero. If w1 = 0, we have

(17) v2 =
v1

w1
· w2.

We set

c :=
v1

w1
.

Then, from (17)

(18) v2 = cw2.

From

v1 =
v1

w1
· w1 = cw1

and (18), we can conclude that v = cw. If w2 = 0 the proof is similar and c = v2/w2.
�

3.2. Cross product in dimension three. Given v, w, z ∈ E3, we define the cross prod-
uct v × w ∈ E3 component-wise as follows

(v × w)1 := v2w3 − v3w2(19)

(v × w)2 := v3w1 − v1w3(20)

(v × w)3 := v1w2 − v2w1.(21)

We propose an alternative definition which will be useful for computations.

Notation 3.1 (The Kronecker’s delta). Given 1 ≤ n, we define

δij =



1 if i = j

0 if i = j

Notation 3.2. Given i, j, k ∈ {1, 2, 3} such that

i = j, j = k, i = k

we call the symbol (ijk) permutation.
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Permutations are usually defined as bijections of the set {1, 2, 3} with itself, but for our
purposes, permutations will be just symbols.

Given a permutation, for instance (123), we can obtain another permutation, (132), by
switching two numbers, here 2 and 3. Such operation is called transposition.

Definition 3.1 (Even and odd permutations). A permutation is even if we obtain (123)
after an even number of transpositions. Otherwise, it is said odd.

Example 3.1. From the permutation (321) we obtain (123) with the following steps:

(321) −→ (312) −→ (132) −→ (123).

In the first step, we transposed 1 with 2. In the second step, 1 with 3. In the third step,
2 with 3. Since three steps were required, (321) is odd; (312) is even (because two
steps away from (123)) and (132) is odd; (123) is even. From the transpositions made
below

(231) −→ (213) −→ (123)

we obtain that (231) is even and (213) is odd. Since the number of permutations is six,
we determined the ”evenness” (or the ”oddness”) of all the permutations.

Before introducing the next symbol, it is useful to notice that the condition

i, j, k ∈ {1, 2, 3}, i = j, i = k, k = i

we introduced in Notation 3.2 is equivalent to

(22) {i, j, k} = {1, 2, 3}.

Notation 3.3 (The Levi-Civita symbol). For every i, j, k ∈ {1, 2, 3} we define

εijk =











0 if {i, j, k} = {1, 2, 3}
1 if the permutation (ijk) is even

−1 if the permutation (ijk) is odd.

Proposition 3.2. Given v, w ∈ E3, there holds

(v × w)i =
3

∑
j=1

3

∑
k=1

εijkvjwk.

for every 1 ≤ i ≤ 3.

Proof. We will check the equality only for i = 1. The double sum

(23)
3

∑
j=1

3

∑
k=1

ε1jkvjwk

has nine different terms. However, most of these are zero. In fact,

ε1jk = 0 ⇔ {1, j, k} = {1, 2, 3}.

So, we have only the cases

j = 2, k = 3 and j = 3, k = 2.

Then, the term in (23) is equal to

ε123v2w3 + ε132v3w2 = 1 · v2w3 + (−1) · v3w2.

�
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We recall some properties of the Levi-Civita symbol:

εijk = −εikj = εkij ∀i, j, k(24)

∑
j

ε jikε jab = δiaδkb − δibδka.(25)

Proof. We prove the first equality of (24). We address separately the two cases: when
all the indexes are different from each other and when they are not. On the first case,
(ijk) and (ikj) are two permutations where the second can be obtained from the first
by transposing j with k; this changes the sign of the symbol.

On the second case, both symbols are zero and the equality holds in view of

0 = −0.

We prove (25). For the sake of simplicity, we call A the left member and B the right
member. If i = k (or a = b), then ε jik (or ε jab) is equal to zero, while the right member
is

B = δiaδib − δibδia = 0.

Now, suppose that i = k and a = b. Suppose that {i, k} = {a, b}. Then

(26) {i, k} ∪ {a, b} = {1, 2, 3}.

We show that

ε jikε jab = 0 ∀j.

Since j is in {1, 2, 3}, from (26), either

j ∈ {i, k}
implying ε jik = 0, or

j ∈ {a, b}
implying ε jab = 0. Thus, A = 0. We show that B = 0. Since {i, k} = {a, b}, there is
an element of the left set which does not belong to the right set. Suppose that such
element is i. Then in B, δia and δib = 0.

Now, suppose that {i, k} = {a, b}. Then, we have two cases: i = a and k = b (then
A = B = 1) and i = b and k = a (then A = B = −1). �

Proposition 3.3. Given v, w, z ∈ E3 and c, d ∈ R, we have

(cv + dw)× z = c(v × w) + d(w × z)(27)

w × v = −v × w.(28)

Proof. From Proposition 3.2, we have


(cv + dw)× z


i
= ∑

j,k

εijk(cv + dw)jzk ∑
j,k

εijkcvjzk + dwjzk

= ∑
j,k

εijkcvjzk +∑
j,k

εijkdwjzk = c(v × z)i + d(v × w)i.

As for (28), from (24)

(w × v)i = ∑
j,k

εijkwjvk = −∑
j,k

εikjwjvk = −∑
j,k

εikjvkwj = −(v × w)i.

�
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A consequence of (28) is

(29) v × v = 0.

In fact,
v × v = −(v × v) ⇒ 2(v × v) ⇒ v × v = 0.

3.3. Triple products. A triple product is any product envolving three vectors and
scalar or cross product.

Proposition 3.4 (Triple products). Given v, w, z ∈ E3, there holds

(v × w) · z = (z × v) · w = (w × z) · v.(30)

(v × w)× z = (v · z)w − (w · z)v.(31)

Proof.

(v × w) · z = ∑
i

(v × w)izi = ∑
i



∑
j,k

εijkvjwkzi



= ∑
k



∑
i,j

εijkvjzi



wk

= ∑
k

wk ∑
i,j

εkijvjzi = ∑
k

vk(z × w) = (z × w) · v.

The fourth equality follows from (24).

[(v × w)× z]i = ∑
j,k

εijk(v × w)jzk = ∑
j,k

εijk(v × w)jzk = ∑
j,k

εijk ∑
a,b

ε jabvawb

= ∑
j,k

∑
a,b

εijkε jabvawbzk = − ∑
k,a,b

vawbzk ∑
j

ε jikε jab.

In the last equality we applied (24). Now, we apply (25). Then the computation carries
on as follows.

− ∑
k,a,b

(δiaδkb − δibδka)vawbzk = ∑
k,a,b

δibδkavawbzk − ∑
k,a,b

δiaδkbvawbzk = A − B.

We address the two terms separately:

A = ∑
k

zk ∑
a,b

δibδkavawb = ∑
k

zk ∑
a

δkava ∑
b

δibwb = ∑
k

zkvkwi = (v · z)wi

B = ∑
k

zk ∑
a,b

δiaδkbvawb = ∑
k

zk ∑
a

δiava ∑
b

δkbwb = ∑
k

zkviwk = (w · z)vi .

Then
[(v × w)× z]i = (v · z)wi − (w · z)vi .

�

From (30) it follows that v × w is orthogonal to v and w:

(v × w) · v = (v × v) · w = 0 · w = 0

from (29). Since the equality above holds for every v and w, we can switch the roles
of v and w with each other and obtain (v × w) · w = 0. We can use (30) and (31) to
evaluate the norm of the cross product: given two vectors v, w ∈ E3, we have

v × w2 = (v × w) · (v × w) = ((v × w)× v) · w

= ((v · v)w − (v · w)v) · w = v2w2 − |(v · w)|2.
(32)

Proposition 3.5. Two vectors v, w ∈ E3 are parallel if and only if v × w = 0.

9



Proof. If v and w are parallel, then either w = 0 (in which case the conclusion follows
rightaway) or there exists a real number c such that

v = cw.

Then
v × w = c(w × w) = 0

by (29). Now, suppose that v × w = 0. Then, the norm of v × w is zero. From (32)

v2w2 = |(v · w)|2.

Then v is parallel to w by Proposition 2.1. �

3.4. Geometric interpretations of the cross product. The cross product can be used
to evaluate area of polygons. Given two points P, Q in R

n, we will use the notation

PQ :=  #   »

PQ.

� �

�

�

�
S

P R

Q

R′ϑ

Figure 3. Area of the triangle and the parallelogram

From (32), we have

v × w2 = v2w2



1 − |(v · w)|2
v2w2



= v2w2(1 − cos2 ϑ)

= v2w2 sin2 ϑ.

Then

(33) v × w = vw| sin ϑ|
From Figure 3, the area of the parallelogram PQSR is equal to

PR · R′Q = PR · PQ| sin ϑ|.
By (33),

PR · PQ| sin ϑ| = PR · PQ ·
#   »

PR × #   »

PQ
PR · PQ

= PR · PQ.

So,

(34) Area(PQSR) =  #   »

PR · #   »

PQ.

The area of the triangle PQR is half the area of the parallelogram PQRS. Then

Area(PQR) =
Area(PQRS)

2
=

1

2
·  #   »

PR × #   »

PQ.

Looking at the Figure 4 we can show that the volume of a parallelepiped is related to
the triple product (30).
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Figure 4. Area of a parallelepiped

Vol(Σ) = Area(PQRS) · h.

From (34),

Area(PQRS) =  #   »

PQ × #   »

PR
while

h = PP′| cos α|.
Since α is the angle between

#    »

PP′ and
#   »

PR × #   »

PQ, we have

| cos α| = (
#   »

PQ × #   »

PR) · #    »

PP′

 #   »

PQ · #   »

PR · PP′

Then

Vol(Σ) =  #   »

PQ × #   »

PR ·
#    »

PP′ · (
#   »

PQ × #   »

PR) · #    »

PP′

 #   »

PQ × #   »

PR · PP′
= (

#   »

PQ × #   »

PR) ·
#    »

PP′.
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