Figure 2. Scalar product in terms of cos ¢

2. SCALAR PRODUCT IN EUCLIDEAN SPACES

In this section, we introduce the definition of segment. Given two points P,Q € R",
the segment between P and Q is a subset of R” defined as

{P+tPQ|0<t<1} CR"
Definition 2.1. Given two vectors v, w € E, we define the real number
n
v-wi= ) viw;.
i=1
It is called scalar product or dot product.

The scalar product satisfies the following equalities for every v,w,z € E, and c,d € R

(8) (cv+dw)-z=cv-z+cv-z
) V-wWw=w-0v
(10) v-v>0andv-v=0<0v=0.

Definition 2.2 (Norm and unit vectors). Given v € E we define the norm of v as
||| := /v -v. A vector w € E is a unit vector if ||w| = 1.

We can always write a vector v # 0 as product of a real number and a unit vector

v
(11) v=—7"|7]-
o]

The norm of a vector (also called magnitude) can be represented as the length of the
segment between P and P + v; the scalar product v - w has a geometric interpretation
in terms of the cosinus of the angle between v and w.

In Figure 2 we wrote the length of each side of the triangle PQR. By the Cosinus
Theorem, there holds

lo —wl|* = [[o]|* + w]|* - 2[|v]| |w]| cos 8
whence
[0 + llw]* = 20w = [jo]|* + ||w]|* — 2{|o]|||w]| cos
= v-w = ||v||||w] cos 9.

If ||o]|||w]| > 0, then
0-w

cost = ————.
[o]|||zw]]

Definition 2.3 (Parallel and orthogonal vectors).



(i) Two vectors v, w € E are parallel to each other if either w = 0 or there exists
¢ € R such that v = cw. We use the notation v || w
(ii) vis orthogonal to w if and only if v - w = 0. We use the notation v L w.

Proposition 2.1 (The Cauchy-Schwarz inequality). Given v, w € R" there holds
(@) |v-w| < [|off[[w]]
(b) if the equality holds and w # 0, then there exists ¢ in R such that v = cw.

Before giving the proof of this proposition, we notice that the geometric interpretation
of the cosinus provides us with a proof: (a) follows from the fact that |cos ¢| < 1; if
the equality holds, we have cos # = 41 which means that # is a multiple of 77 and (b)
follows.

Now, we give a proof based only on the definition of the scalar product without any
appeal to the geometric intuition.

Proof of the Cauchy-Schwarz inequality. If w = 0, then the inequality turns into 0 < 0,
which is true. Suppose that w # 0. Then, we define

p— o (_W) "
|wl||?)

In the Figure 2, a corresponds to the vector RTQ)
(12) A= [lall”
is non-negative from property (10). We have

(0-w)? 20w 2 (0-w)?
(13) 0< A= off* + [w]* =2 = [loll” = S

Jeo]]* ] ]
Then
(0-w)?
(14) o]|* - >0
lwl]?

which implies
(15) ol [w]|* > |o - w]?
whence
(16) [ol[llw]l = |o-wl.

If the equality holds in (16), then the term in (14) is equal to zero. Then, from (12),
A = 0. Again, by property (10),

v= " w
Ils
so v := cw with the choice
v
lw]|?
implying, again v || w. O

Proposition 2.2 (The triangular inequality). Given v, w € E,, there holds
lo+wlf < o] + [[wl].

4



Proof. We take the square of ||v + w|| and obtain
lo+wl|? = (v +w) - (v+w) = [Jof|* + w||* + 20 w
< ol + ol + 2ol o],
]

Such inequality takes its name from the following geometric property: given a triangle
PQR, each edge is smaller than the sum of the two other edges:

IPQ[l = IPR+ RQJ| < [[PR]| + [[RQ]|.
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