Corollary 3.1. Let f a locally Lip_y function. And let (y_1, I_1) and (y_2, I_2) are two solutions of *the differential equation*

 $y'(x) = f(x, y(x)).$ *Suppose that there exists* x_* *in* $I_1 \cap I_2$ *such that* $y_1(x_*) = y_2(x_*)$ *, then y*₁(*x*) = *y*₂(*x*) *for every x* ∈ *I*₁ ∩ *I*₂.

4. LINEAR DIFFERENTIAL EQUATIONS

An ordinary differential equation

$$
F(x, y(x), y'(x), \ldots, y^{(n)}) = 0
$$

is said linear of order *n* if

$$
F(x, z, p_1, ..., p_n) = a_n(x)p_n + ... + a_1(x)p_1 + a_0(x)z - g(x)
$$

for some functions

$$
a_n, a_{n-1}, \ldots, a_0, g \colon J \to \mathbb{R}
$$

defined on a given open interval *J* ⊂ **R** and

 $a_n \neq 0$.

The functions a_i are called *coefficients* and g is called non-homogeneous term.

Definition 4.1. A linear differential equation (d.e.) is said homogeneous if $g \equiv 0$

Definition 4.2. A linear d.e. is called constant coefficients d.e. if a_i are constant functions for every $0 \le i \le n$.

We will assume that the coefficients are constant functions and that the equation is homogeneous. Then, the equation can be written as

$$
a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_{n-2} y^{(n-2)} + \cdots + a_0 y = 0
$$

and $a_n \neq 0$. Up to divide by a_n , we can suppose that the equation is

$$
y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \cdots + a_0y = 0.
$$

We introduce the following notation for the derivative

$$
Dy:=y'.
$$

Given a function $a: J \rightarrow \mathbb{R}$, we define

$$
(D-a)y(x) := y'(x) - a(x)y(x).
$$

Moreover,

$$
D0y := y
$$

$$
Dky := D(Dk-1y) \quad k \ge 1.
$$

for every $\alpha \in \mathbb{R}$. From the notation above it follows the relation

$$
(D - \alpha)(D - \beta)y = D^2y - (\alpha + \beta)Dy + \alpha\beta y
$$

for every *α*, *β* real numbers. In fact,

$$
(D - \alpha)(D - \beta)y = (D - \alpha)(y' - \beta y) = D(y' - \beta y) - \alpha(y' - \beta y)
$$

= $y'' - \beta y' - \alpha y' + \alpha \beta y = y'' - (\alpha + \beta)y' + \alpha \beta y$.

For the sake of simplicity, we will denote a linear differential equation with $Ly = g$.

Proposition 4.1 (The Superposition Principle)**.** *Given a nth homogeneous order linear d.e.* $Ly = 0$, if y and z are solutions, then $cy + dz$ is a solution for every real numbers c, d.

Proof. We have

$$
L(cy + dz) = \sum_{k=0}^{n} a_k(x)(cy + dz)^{(k)} = \sum_{k=0}^{n} a_k(x)(cy^{(k)} + dz^{(k)})
$$

= $c \sum_{k=0}^{n} a_k(x)y^{(k)}(x) + d \sum_{k=0}^{n} a_k(x)z^{(k)}(x) = cLy + dLz.$

So, if *y* and *z* are solutions, then $Ly = Lz = 0$. Then $L(cy + dz) = 0$.

Definition 4.3. To a linear homogeneous ODE with constant coefficients, we can associate its *characteristic polynomial* given by

$$
p(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0.
$$

Theorem 4.1. *The solutions to the differential equation* $(D - \alpha)(D - \beta)y = 0$ *are*

$$
(\alpha \neq \beta) \qquad \qquad y = c_1 e^{\alpha x} + c_2 e^{\beta x}
$$

$$
(\alpha = \beta) \qquad \qquad y = c_1 e^{\alpha x} + c_2 x e^{\alpha x}.
$$

Proof. We use the substitution $z = (D - \beta)y$. Then

$$
(D - \alpha)z = 0 \implies z = ce^{\alpha x}.
$$

Then

$$
(D - \beta)y = ce^{\alpha x}
$$

whence

$$
e^{-\beta x}(D - \beta)y = ce^{(\alpha - \beta)x}
$$

$$
D(e^{-\beta x}y) = ce^{(\alpha - \beta)x}.
$$

Now, we need to integrate both sides of the equation. If $\alpha \neq \beta$, then

$$
\int e^{(\alpha-\beta)x} = \frac{1}{\alpha-\beta}e^{(\alpha-\beta)x}.
$$

Then

$$
e^{-\beta x}y = \frac{c}{\alpha - \beta}e^{(\alpha - \beta)x} + d
$$

whence

$$
y(x) = \frac{c}{\alpha - \beta}e^{\alpha x} + de^{\beta x}.
$$

If we set $c_1 = c/(\alpha - \beta)$ and $c_2 = d$, then we obtain the solutions in the first case. Now, suppose that $\alpha = \beta$. Then (13) becomes

$$
D(e^{-\beta x}y)=c.
$$

Then

$$
e^{-\beta x}y = cx + d
$$

and

$$
y(x) = cxe^{\beta x} + de^{\beta x}.
$$

We set $c_1 = d$ and $c_2 = c$. Since $\alpha = \beta$, we obtain the solutions in (13).

4.1. **Non factorizable characteristic polynomial.** We start by considering the case where

(10)
$$
y'' + y = 0, \quad p(X) = X^2 + 1.
$$

We can see that there are at least two solutions

$$
y_1(x) = \sin x \quad y_2(x) = \cos x
$$

and, by the Superposition Principle, all the linear combinations

$$
(11) \t\t\t y = c_1 \sin x + c_2 \cos x
$$

are also solutions. In the next proposition, we show that all the solutions are as in (11).

Proposition 4.2. *Let* $(y, (a, b))$ *be a solution to*

$$
y'' + y = 0.
$$

Then, there are two (unique) constants c₁ and c₂ such that

$$
y(x) = c_1 \cos x + c_2 \sin x.
$$

Therefore, the solution can be defined on $(-\infty, +\infty)$ *.*

Proof. Let us fix a point x_0 in (a, b) . We define

$$
z(x) = y(x + x_0).
$$

Clearly $(z, (a - x_0, b - x_0))$ is a solution to (10). We prove that

$$
z(x) = z(0)\cos x + z'(0)\sin x.
$$

We define

$$
w(x) := z(x) - z(0) \cos x - z'(0) \sin x.
$$

By the Superposition principle, *w* satisfies

$$
w''+w=0.
$$

Moreover,

(12)
$$
w(0) = 0, \quad w'(0) = 0.
$$

We claim that $w = 0$ on $(a - x_0, b - x_0)$. In fact, if we multiply by $2w'$ and obtain

$$
2w''w + 2ww' = 0 \implies D((w')^{2} + w^{2}) = 0.
$$

Then, there exists a constant *c* such that

$$
(w'(x))^2 + w^2(x) = c.
$$

From (12), this constant is equal to zero. Then

$$
(w'(x))^2 + w^2(x) = 0
$$

for every *x* in $(a - x_0, b - x_0)$, which implies $w = 0$. Hence

$$
y(x) = z(x + x_0) = z(0) \cos(x + x_0) + z'(0) \sin(x + x_0)
$$

= (z(0) cos x₀ - z'(0) sin x₀) cos x + (z'(0) cos x₀ - z(0) sin x₀) sin x.

Then we can choose

$$
c_1 = z(0)\cos x_0 - z'(0)\sin x_0, \quad c_2 = z'(0)\cos x_0 - z(0)\sin x_0.
$$

We show that, if the equality (11) holds for another pair of constants (d_1, d_2) , then $c_1 = d_1$ and $c_2 = d_2$. In fact, since

(13)
$$
(c_1 - d_1)\cos x + (c_2 - d_2)\sin x = 0
$$

for every x in (a, b) , there holds

$$
(c_1 - d_1)\cos x_0 + (c_2 - d_2)\sin x_0 = 0
$$

-(c₁ - d₁) sin x₀ + (c₂ - d₂) cos x₀ = 0.

We multiply the first equation by $\cos x_0$ and the second equation by $\sin x_0$ and take the difference. Then

$$
(c_1 - d_1)\cos^2 x_0 + (c_2 - d_2)\sin x_0 \cos x_0 = 0
$$

-(c_1 - d_1)\sin x_0 \sin x_0 + (c_2 - d_2)\cos x_0 \sin x_0 = 0.

Now, we take the difference between the first and the second equation.

$$
(c_1 - d_1)(\cos^2 x_0 + \sin^2 x_0) = 0
$$

which implies $c_1 = d_1$. Together with (13) we obtain $c_2 = d_2$.

Finally, since the domain of sin *x* and cos *x* is $(-\infty, +\infty)$, then we can choose $(-\infty, +\infty)$ as existence interval for *y*.

4.2. **Second case:** $p(X) = X^2 + \beta^2$ **with** $\beta \neq 0$. Now, we wish to solve the differential equation

$$
y'' + \beta^2 y = 0
$$

with *β* > 0. Clearly, cos *βx* and sin *βx* are solutions to (14), and, by the Superposition Principle, for every c_1 , c_2 real numbers

$$
c_1 \cos \beta x + c_2 \cos \sin \beta x
$$

is a solution to (14).

Proposition 4.3. *Let* $(y, (a, b))$ *be a solution to* (14)*. Then there exists a unique pair* (c_1, c_2) *such that*

$$
y(x) = c_1 \cos \beta x + c_2 \sin \beta x.
$$

and the existence interval can be extended to $(-\infty, +\infty)$ *.*

Proof. We set

$$
(15) \qquad \qquad z(x) := y(\beta^{-1}x)
$$

Then

$$
z'(x) = \beta^{-1} y'(\beta^{-1} x)
$$

and

$$
z''(x) = \beta^{-2}y''(\beta^{-1}x) = \beta^{-2}(-\beta^2y(\beta^{-1}x)) = -y(\beta^{-1}x) = z.
$$

Then

 $z'' + z = 0$.

By Proposition 4.2, there are two constants c_1 and c_2 such that

$$
z(x) = c_1 \sin x + c_2 \cos x.
$$

From (15),

$$
y(x) = z(\beta x) = c_1 \sin \beta x + c_2 \cos \beta x.
$$

Since this pair of constants is unique for *z*, it is also unique for *y*. \Box

4.3. Last case: $p(X) = (X - \alpha)^2 + \beta^2$ with $\beta \neq 0$. We wish to reduce to problem to the previous case where the polynomial is $X^2 + \beta^2$. We have

$$
(D - \alpha)^2 y = (D - \alpha)(D - \alpha)y
$$

=
$$
(D - \alpha)[e^{\alpha x}e^{-\alpha x}(D - \alpha)y] = (D - \alpha)[e^{\alpha x}D(e^{-\alpha x}y)].
$$

We use the substitution

$$
(16) \t z(x) = e^{-\alpha x}y.
$$

Then the last term of the equality above can be written as

$$
(D - \alpha)(e^{\alpha x}Dz) = D(e^{\alpha x}Dz) - \alpha(e^{\alpha x}Dz)
$$

= $\alpha e^{\alpha x}Dz + e^{\alpha x}D^2z - \alpha e^{\alpha x}Dz = e^{\alpha x}D^2z$.

Then

$$
(D - \alpha)^2 y + \beta^2 y = e^{\alpha x} D^2 z + e^{\alpha x} \beta^2 z = e^{\alpha x} (D^2 z + \beta^2 z)
$$

and

$$
e^{\alpha x}(D^2z + \beta^2z) = 0 \implies (D^2 + \beta^2)z = 0.
$$

From Proposition 4.3,

$$
z(x) = c_1 \cos \beta x + c_2 \sin \beta x.
$$

By (16),

$$
y(x) = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x.
$$