
Sometimes, given a differential equation, we can show that there are two solutions on
two different intervals

(y, [x0, b)), (z, (a, x0])

and both of them satisfy some differential equation

(1) F(x, y(x), y′(x)) = F(x, z(x), z′(x)) = 0.

A natural question one can ask is whether it is possible to find a solution w on the
interval (a, c) such that

w(x) = y(x), x ∈ (a, b)

w(x) = z(x), x ∈ (b, c).

This is possible when the following conditions hold:

1. y(b) = z(b) =: L
2. y and z are derivable in b and

y′(b) = z′(b) =: L1.

If conditions 1 and 2 hold, we can define

w(x) = y#z(x) :=

{

z(x) if a < x ≤ x0

y(x) if x0 < x < b

We show that w is derivable at x0. We define

α(h) :=
w(x0 + h)− w(x0)

h
for h 6= 0. We prove that the limit of α exists when α converges to zero. In fact, if h > 0,
then

α(h) =
w(x0 + h)− w(x0)

h
=

w(x0 + h)− y(x0)

h
=

y(x0 + h)− y(x0)

h
.

As h → 0+, α(h) converges to y′(x0). If h < 0,

α(h) =
w(x0 + h)− w(x0)

h
=

z(x0 + h)− z(x0)

h
=

z(x0 + h)− z(x0)

h
.

As h → 0−, α(h) converges to z′(x0). Since z′(x0) = y′(x0) the two limits (with h
negative and h positive) are equal, so the limit of α exists. Hence

w′(x0) = L1.

Finally, we show that (w, (a, b)) is a solution to the differential equation (1). In fact,
when x ≥ x0

F(x, w(x), w′(x)) = F(x, y(x), y′(x)) = 0,

while for x > x0 we have

F(x, w(x), w′(x)) = F(x, z(x), z′(x)) = 0.

In the next example, we use this method to find all the solutions to the differential
equation

(2) xy′(x) = 2y(x).

This equation can be integrated by using the separable variables method: we divide
by x

(3) y′(x) =
2y(x)

x



we divide by y

(4)
y′(x)

y(x)
=

2

x

and obtain

ln |y(x)| = ln |x|2 + C

for every C ∈ R. Then

|y(x)| = c|x|2

for every c > 0. Clearly, there is a one-parameter family of solutions

(5) (yd(x) = dx2, (−∞,+∞)), d 6= 0.

But we also notice, that z = 0 is a solution to (2) and it does not appear in (5). It seems
that when we divide by y, we lose the solution y = 0. Also, we should notice that (5)
are solutions to (2), but not solutions to (4). In conclusion, dividing by x and y triggers
a lost of solutions.

Now, we expose an argument whose purpose is to find all the solutions to (2): sup-
pose that (y, I) is a solution to (2). Then

(y, I ∩ (0,+∞)), (y, I ∩ (−∞, 0))

are solutions to (2). We use the notations

I+ := I ∩ (0,+∞), I− := I ∩ (−∞, 0).

We use the notations y+ and y− for the function on I+ and I−. Then

(y+, I+), (y−, I−)

are solutions to (2). Since I− and I+ do not containt x = 0, these are also solutions to
(3). We show that on I+ the function y does not have zeroes, unless y = 0 on I+. In
fact, suppose that there exists x∗ ∈ I+ such that y(x∗) = 0. On the domain

(0,+∞)× R

the function

g(x, y) =
2y

x
has partial derivative ∂yg = 2/x, locally bounded. Then g is locally Lipy. Hence, the
solution to the initial value problem

{

y′(x) = g(x, y(x))
y(x∗) = 0

is unique. Since (y = 0, I+) is a solution to the initial value problem, we have y+ = 0.

Suppose that y+ is different from zero at every point. Then (y+, I+) is a solution to
(5). Then, there exists c 6= 0 such that

y+ = cx2

Similarly, there exists d 6= 0 such that

y− = dx2.

Now, we try to paste the two solutions (cx2, [0,+∞)) and (dx2, (−∞, 0]) together.
Clearly,

y+(0) = 0 = y−(0)
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and
y′+(0) = y′−(0) = 0.

Then
y = y−#0y+.

In conclusion, if (y, I) is a solution to (2), then there are c and d such that

y = cx2#0dx2.

Then, we are able to list all the solutions to (2)

(cx2#0dx2, (−∞,+∞)), c, d ∈ R.
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