SOLUTIONS OF EXERCISES OF WEEK ONE

Exercise 1. Let $\mathscr A$ be a non-empty collection of sets and $X \in \mathscr A$ be a set. Show that ∩A ⊆ *X* ⊆ ∪A .

For both inclusions, you can start with the usual first step "Let $x \in \ldots$ ".

Proof. Let *x* be an element of ∩ $\mathscr A$. Then, for every $Y \in \mathscr A$, there holds $x \in Y$. In particular, $x \in X$. Now, let *x* be an element of *X*. Since $X \in \mathscr{A}$, there holds

$$
x\in X\in\mathscr{A}
$$

which means $x \in \bigcup \mathscr{A}$.

Exercise 2. We checked that the set $N_3 := \{1, 2, 3\}$ has exactly 24 choice functions. How many choice functions does the set $N_4 := \{1, 2, 3, 4\}$ have?

Proof. We have two choices for every pair, and there are $\binom{4}{2} = 6$ pairs. Then, we have three choices for every triple, and $\binom{4}{3} = 4$ triples. Finally, four choices for N_4 . Then, there are

 $2^6 \times 3^4 \times 4 = 20736$

choice functions. $\hfill \square$

Exercise 3. An equivalence relation *xRy* on *A* is just a subset $R \subseteq A \times A$ such that *R* is reflexive, symmetric and transitive. Let *R* be an equivalence relation on $\mathbf{N}_k := \{1, 2, 3, \ldots, k\}.$ Show that k is even if and only if #R is even.

Proof. We count *R* by dividing it into two subsets, the diagonal

$$
D:=\{(x,y)\in R\mid x=y\}
$$

and its complement D^c . Then $\#R = \#D + \#(D^c)$. Since *R* is reflexive, $\#D = k$. Since *R* is symmetric, #(*D^c*) is an even number. Therefore, *k* is even if and only if $#R$ is even. \Box

Exercise 4. Is it true that $2^{\cup \mathcal{B}} = \mathcal{B}$ for every non-empty collection of sets \mathcal{B} ?

Proof. It is false. For instance consider $\mathscr{B} = \{ \{0\}, \{1\} \}$. Then

$$
\cup \mathscr{B} = \{0,1\}, \quad 2^{\cup \mathscr{B}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\} \neq \mathscr{B}.
$$

It is not difficult to find a lot of examples where this equality fails, especially in finite sets: in fact, if both $\mathscr B$ and ∪ $\mathscr B$ are finite, then

$$
\#2^{\cup \mathscr{B}}=2^n, \quad (1,2,4,\dots)
$$

while $\#\mathscr{B}$ is completely arbitrary.

Exercise 5. Find the generalized unions and intersections of the following collections

- (1) $\mathscr{A}_1 := \{x\}$
- $\mathscr{A}_2:=\left\{\left[0,1+1/n\right)\mid n\geq 1\right\}$ (2)

where $[a, b)$ is the interval of real numbers *t* such that $a \le t < b$ and *x* is a set.

$$
f_{\rm{max}}
$$

Date: 2016, March 11.

Proof.

$$
\bigcup \mathscr{A}_1 = x = \bigcap \mathscr{A}_1 = \{x\}.
$$

$$
\bigcup \mathscr{A}_2 = [0,2), \quad \bigcap \mathscr{A}_2 = [0,1].
$$

 \Box

SOLUTIONS OF EXERCISES OF WEEK TWO

Exercise 1. Let $A := \mathbf{R} - \mathbf{Z}$. Prove that A is dense in \mathbf{R} .

Proof. Given $a < b$ in **R**, we consider two cases: $0 < b - a < 1$. Then $\mathbb{Z} \cap (a, b) = \emptyset$, therefore $x_* := (a + b)/2 \in A$ and $a < x_* < b$. On the other case, we have $b - a \geq 1$, then

$$
a\leq b-1
$$

and we choose $x_* = (2b-1)/2$.

Exercise 2 (*)**.** When we consider the usual sum and multiplication in the complex field **C**, the Field Axioms are satisfied. Prove that the Positive Set Axiom are not satisfied; in other words, prove that given a non-empty subset $P \subseteq \mathbb{C}$, at least one between P1) and P2) is false.

Proof. If P2) is true, then only one between $i \in P$ or $-i \in P$ (we ruled out $i = 0$) is true. If *i* ∈ *P*, then by P1), $-i = i^3 ∈ P$ and we obtain a contradiction. If $-i ∈ P$, then, by P1), $i = (-i)^3 ∈ P$ and we obtain another contradiction. $□$

Exercise 3. Given a set *X* and *A* a non-empty subset. Prove that the following

$$
xRy \Leftrightarrow (x, y \in A) \vee (x, y \in A^c)
$$

is an equivalence relation. What are the equivalence classes? In which cases is also an order relation?

Proof. We show that *R* is symmetric, transitive and reflexive.

- (R) *xRx* means that either $x \in A$ or $x \in A^c$. This is true for every $x \in X$, b ecause *X* = *A* ∪ *A*^{*c*}
- (S) if $x, y \in A$, clearly $y, x \in A$. The same applies to A^c
- (T) suppose *xRy* ∧ *yRz*. Then *xRz*.

$$
xRy \Rightarrow x, y \in A \lor x, y \in A^c.
$$

$$
yRz \Rightarrow y, z \in A \lor y, z \in A^c.
$$

We have to check four different cases: firstly, we notice that the two cases

 $(x, y ∈ A) ∧ (y, z ∈ A^c), (y, z ∈ A) ∧ (x, y ∈ A^c)$

are not possible because both would imply $y \in A \cap A^c$. We discuss the remaining cases

$$
(x, y \in A) \land (y, z \in A) \Rightarrow x, z \in A \Rightarrow xRz
$$

$$
(x, y \in A^c) \land (y, z \in A^c) \Rightarrow x, z \in A^c \Rightarrow xRz.
$$

So, *R* is an equivalence relation. Now we address the questions whether *R* is an order relation. Since we already know that *R* is an order relation (so it is reflexive and transitive) we suppose that *R* is antisymmetric

(A) $xRy \wedge yRx \Rightarrow x = y$.

Date: 2016, March 17.

We wish to draw some conclusions about the sets A and A^c . Given $x, y \in A$, we have $xRy \Rightarrow yRx$

by (S). By (A),

$$
(xRy \wedge yRx) \Rightarrow x = y.
$$

Therefore,

$$
x, y \in A \Rightarrow x = y.
$$

Which means that *A* is a singleton. Now, suppose that $x, y \in A^c$. Similarly, we can show that $x = y$. The conclusion of this argument is: if \overline{R} is an order relation, then *A* and *A ^c* are singletons. Therefore,

- (a) *R* is an equivalence relation
- (b) if *R* is also an order relation, then *A* and A^c are singletons. And $#X = 2$.

 \Box

Exercise 4. Let \mathscr{B} be a non-empty collection of sets. Prove or find a counterexample to each of the following statements:

- (i) $\mathscr B$ is a finite set implies ∪ $\mathscr B$ is a finite set
- (ii) $\cup \mathscr{B}$ is a finite set implies \mathscr{B} is a finite set.

Proof.

- (i) It is not true: consider, for instance, $\mathscr{B} = \{N\}$. The collection is finite, but ∪B = **N** which is the set of natural numbers, not finite
- (ii) it is true: in fact, we have

$$
\mathscr{B}\subseteq 2^{\cup\mathscr{B}}.
$$

Given $A \in \mathscr{B}$, there holds $A \subseteq \cup \mathscr{B}$. Then $A \in 2^{\cup \mathscr{B}}$; since $\cup \mathscr{B}$ is finite, its Power Set is finite, so $\mathscr B$ is finite (thanks to Hyeong-Jun for suggesting this solution).

 \Box

EXERCISES OF WEEK THREE

Exercise 1 (ex. 16, page 16 of [1])**.** Prove that **Z** is countable.

Exercise 2. Write explicitly a Choice Function for the set of natural numbers **N** (do not use the Choice Axiom!).

Exercise 3. Prove that $\mathbf{R} \approx \mathbf{R} - \{0\}$.

Exercise 4. Given two natural numbers $h, k \geq 1$, use the induction principle to show that

(i) there exists $f: \mathbf{N}_h \to \mathbf{N}_k$ INJ $\Leftrightarrow h \leq k$

(ii) there exists $g: \mathbb{N}_h \to \mathbb{N}_k$ SURJ $\Leftrightarrow k \leq h$.

Exercise 5. Let *A* and *B* be two subsets of **R**. Then

 $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$, $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Exercise 6. Let *E* be a closed set bounded from below. Then

 $inf(E) \in E$.

Exercise 7. Let *E* be a closed set such that

$$
\inf(E\cap [a,+\infty))=a
$$

for every *a* real number. Then $E = \mathbf{R}$.

Exercise 8. Prove that if *A* is an open and closed set, then *A* is either \emptyset or **R** (use Exercise 5).

REFERENCES

1. P. M. Fitzpatrick and H. L. Royden, *Real analysis*, fourth ed., Pearson, 2010.

SOUTIONS OF EXERCISES OF WEEK FOUR

Exercise 1. Write explicitly a Choice Function for **Z**. Write explicitly a Choice Function for the set of natural numbers **N** which is not $\phi(A) = \min(A)$ (and do not use the Choice Axiom!).

Proof. For **Z**, we define

$$
\phi(A) := \begin{cases} \min(A \cap \mathbf{N}) & \text{if } A \cap \mathbf{N} \neq \emptyset \\ -\min(-A \cap \mathbf{N}) & \text{if } A \cap \mathbf{N} = \emptyset. \end{cases}
$$

For **N**, we define

$$
\psi(A) := \begin{cases} \min(A) & \text{if } A \neq \{1,2\} \\ 2 & \text{if } A = \{1,2\}. \end{cases}
$$

 \Box

 \Box

Exercise 2. Prove that $[0, 1] \approx [0, 1]$.

Proof. We define

$$
g(x) := \begin{cases} x & \text{if } x \neq \frac{1}{n} \text{ for every } n \in \mathbb{N} \\ \frac{1}{n+1} & \text{if } x = \frac{1}{n}. \end{cases}
$$

Exercise 3. Prove that a non-empty compact set *E* is is closed and bounded.

Proof. We prove that *E* is bounded. We consider the open cover

$$
E\subseteq \cup \mathscr{U}, \quad \mathscr{U}:=\{(-n,n)\mid n\geq 1\}.
$$

Since *E* is compact, there exists a finite sub-cover $\mathscr{U}' \subseteq \mathscr{U}$. Since \mathscr{U}' is finite, there exists n_0 such that

$$
E\subseteq \mathscr{U}'=(-n_0,n_0).
$$

We prove that *E* is closed. On the contrary, let x_0 be a point in $\overline{E} - E$. Since $x_0 \notin E$,

$$
\mathscr{V}:=\left\{\left(x_0-\frac{1}{n},x_0+\frac{1}{n}\right)\mid n\geq 1\right\}
$$

is an open cover. Since *E* is compact, there exists a finite sub-cover $\mathscr{V}' \subseteq \mathscr{V}$. Then, there exists n_1 such that

$$
E\subseteq \left(x_0-\frac{1}{n_1},x_0+\frac{1}{n_1}\right)
$$

 \Box

Exercise 4. Let \mathscr{B} be a finite σ -algebra. Show that \mathscr{B} is even.

Proof. Since $\mathscr B$ is a σ -algebra, whenever $E \in \mathscr B$, the complement also belongs to \mathscr{B} . Since $E \neq E^c$, then $\#\mathscr{B}$ is even.

Exercise 5 (Ex. 36, page 20 of [1])**.** Let *J* be the collection of the bounded intervals [a , b) with $a < b$. Show that $\mathscr{B}(J) = \mathscr{B}(\Omega)$, the Borel's collection.

Date: 2016, April 4.

Proof. The *σ*-algebra generated by a collection is obtained as the generalized intersection of

$$
\mathscr{B}(A):=\cap \mathscr{F}_A.
$$

Then, we have to prove that

$$
\cap \mathscr{F}_{\Omega} = \cap \mathscr{F}_{J}.
$$

Actually, we will prove that

$$
\mathscr{F}_{\Omega}=\mathscr{F}_{J}.
$$

Firstly, we show that $\mathscr{F}_\Omega \subseteq \mathscr{F}_J.$ Let \mathscr{B} a σ -algebra which contains $\Omega.$ We prove that $\mathscr{B} \supseteq J$. Let $[a, b)$ be in *J*. Then

$$
[a,b)=\bigcap_{n=1}^{\infty}(a-1/n,b).
$$

Since $(a-1/n, b) \in \Omega \subseteq \mathcal{B}$, $[a, b)$ is countable union of sets in \mathcal{B} . Then $[a, b) \in \mathcal{B}$. Now, let $\mathscr B$ be a σ -algebra which contains *J*. We prove that $\Omega \subseteq \mathscr B$. Let *O* be an open set. Then, there exists a countable collection of open intervals *Iⁿ* such that

$$
O=\bigcup_{n=1}^{\infty}I_n.
$$

We prove that *I*_{*n*} \in *J*. In fact, if *I*_{*n*} is a bounded interval, we have *I*_{*n*} = (*a*, *b*) and

$$
(a,b)=\bigcup_{k=1}^{\infty} [a+1/k,b)
$$

while a similar expression holds for unbounded intervals. Since $[a + 1/k, b)$ is in *J* ⊆ \mathscr{B} , $(a, b) \in \mathscr{B}$. Then, *O* is countable union of sets of \mathscr{B} . Then *O* ∈ \mathscr{B} . \Box

REFERENCES

1. P. M. Fitzpatrick and H. L. Royden, *Real analysis*, fourth ed., Pearson, 2010.