
SOLUTIONS OF EXERCISES OF WEEK ONE

Exercise 1. Let A be a non-empty collection of sets and X ∈ A be a set. Show that

∩A ⊆ X ⊆ ∪A .

For both inclusions, you can start with the usual first step ”Let x ∈ . . . ”.

Proof. Let x be an element of ∩A . Then, for every Y ∈ A , there holds x ∈ Y. In
particular, x ∈ X. Now, let x be an element of X. Since X ∈ A , there holds

x ∈ X ∈ A

which means x ∈ ∪A . �

Exercise 2. We checked that the set N3 := {1, 2, 3} has exactly 24 choice functions.
How many choice functions does the set N4 := {1, 2, 3, 4} have?

Proof. We have two choices for every pair, and there are (4
2) = 6 pairs. Then, we

have three choices for every triple, and (4
3) = 4 triples. Finally, four choices for N4.

Then, there are
26 × 34 × 4 = 20736

choice functions. �

Exercise 3. An equivalence relation xRy on A is just a subset R ⊆ A × A such
that R is reflexive, symmetric and transitive. Let R be an equivalence relation on
Nk := {1, 2, 3, . . . , k}. Show that k is even if and only if #R is even.

Proof. We count R by dividing it into two subsets, the diagonal

D := {(x, y) ∈ R | x = y}
and its complement Dc. Then #R = #D + #(Dc). Since R is reflexive, #D = k.
Since R is symmetric, #(Dc) is an even number. Therefore, k is even if and only if
#R is even. �

Exercise 4. Is it true that 2∪B = B for every non-empty collection of sets B?

Proof. It is false. For instance consider B = {{0}, {1}}. Then

∪B = {0, 1}, 2∪B = {∅, {0}, {1}, {0, 1}} 6= B.

It is not difficult to find a lot of examples where this equality fails, especially in
finite sets: in fact, if both B and ∪B are finite, then

#2∪B = 2n, (1, 2, 4, . . . )

while #B is completely arbitrary. �

Exercise 5. Find the generalized unions and intersections of the following collec-
tions

A1 := {x}(1)

A2 :=
{
[0, 1 + 1/n) | n ≥ 1

}
(2)

where [a, b) is the interval of real numbers t such that a ≤ t < b and x is a set.
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Proof.
∪A1 = x = ∩A1 = {x}.
∪A2 = [0, 2), ∩A2 = [0, 1].

�



SOLUTIONS OF EXERCISES OF WEEK TWO

Exercise 1. Let A := R− Z. Prove that A is dense in R.

Proof. Given a < b in R, we consider two cases: 0 < b− a < 1. Then Z∩ (a, b) = ∅,
therefore x∗ := (a + b)/2 ∈ A and a < x∗ < b. On the other case, we have
b− a ≥ 1, then

a ≤ b− 1 < b
and we choose x∗ = (2b− 1)/2. �

Exercise 2 (*). When we consider the usual sum and multiplication in the complex
field C, the Field Axioms are satisfied. Prove that the Positive Set Axiom are not
satisfied; in other words, prove that given a non-empty subset P ⊆ C, at least one
between P1) and P2) is false.

Proof. If P2) is true, then only one between i ∈ P or −i ∈ P (we ruled out i = 0) is
true. If i ∈ P, then by P1), −i = i3 ∈ P and we obtain a contradiction. If −i ∈ P,
then, by P1), i = (−i)3 ∈ P and we obtain another contradiction. �

Exercise 3. Given a set X and A a non-empty subset. Prove that the following

xRy⇔ (x, y ∈ A) ∨ (x, y ∈ Ac)

is an equivalence relation. What are the equivalence classes? In which cases is also
an order relation?

Proof. We show that R is symmetric, transitive and reflexive.

(R) xRx means that either x ∈ A or x ∈ Ac. This is true for every x ∈ X,
because X = A ∪ Ac

(S) if x, y ∈ A, clearly y, x ∈ A. The same applies to Ac

(T) suppose xRy ∧ yRz. Then xRz.

xRy⇒ x, y ∈ A ∨ x, y ∈ Ac.

yRz⇒ y, z ∈ A ∨ y, z ∈ Ac.

We have to check four different cases: firstly, we notice that the two cases

(x, y ∈ A) ∧ (y, z ∈ Ac), (y, z ∈ A) ∧ (x, y ∈ Ac)

are not possible because both would imply y ∈ A ∩ Ac. We discuss the
remaining cases

(x, y ∈ A) ∧ (y, z ∈ A)⇒ x, z ∈ A⇒ xRz

(x, y ∈ Ac) ∧ (y, z ∈ Ac)⇒ x, z ∈ Ac ⇒ xRz.

So, R is an equivalence relation. Now we address the questions whether R is an
order relation. Since we already know that R is an order relation (so it is reflexive
and transitive) we suppose that R is antisymmetric

(A) xRy ∧ yRx ⇒ x = y.
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We wish to draw some conclusions about the sets A and Ac. Given x, y ∈ A, we
have

xRy⇒ yRx
by (S). By (A),

(xRy ∧ yRx)⇒ x = y.
Therefore,

x, y ∈ A⇒ x = y.
Which means that A is a singleton. Now, suppose that x, y ∈ Ac. Similarly, we can
show that x = y. The conclusion of this argument is: if R is an order relation, then
A and Ac are singletons. Therefore,

(a) R is an equivalence relation
(b) if R is also an order relation, then A and Ac are singletons. And #X = 2.

�

Exercise 4. Let B be a non-empty collection of sets. Prove or find a counterexam-
ple to each of the following statements:

(i) B is a finite set implies ∪B is a finite set
(ii) ∪B is a finite set implies B is a finite set.

Proof.

(i) It is not true: consider, for instance, B = {N}. The collection is finite, but
∪B = N which is the set of natural numbers, not finite

(ii) it is true: in fact, we have
B ⊆ 2∪B .

Given A ∈ B, there holds A ⊆ ∪B. Then A ∈ 2∪B ; since ∪B is finite, its
Power Set is finite, so B is finite (thanks to Hyeong-Jun for suggesting this
solution).

�



EXERCISES OF WEEK THREE

Exercise 1 (ex. 16, page 16 of [1]). Prove that Z is countable.

Exercise 2. Write explicitly a Choice Function for the set of natural numbers N (do
not use the Choice Axiom!).

Exercise 3. Prove that R ≈ R− {0}.

Exercise 4. Given two natural numbers h, k ≥ 1, use the induction principle to
show that

(i) there exists f : Nh → Nk INJ⇔ h ≤ k
(ii) there exists g : Nh → Nk SURJ⇔ k ≤ h.

Exercise 5. Let A and B be two subsets of R. Then

A ∩ B ⊆ A ∩ B, A ∪ B = A ∪ B.

Exercise 6. Let E be a closed set bounded from below. Then

inf(E) ∈ E.

Exercise 7. Let E be a closed set such that

inf(E ∩ [a,+∞)) = a

for every a real number. Then E = R.

Exercise 8. Prove that if A is an open and closed set, then A is either ∅ or R (use
Exercise 5).

REFERENCES

1. P. M. Fitzpatrick and H. L. Royden, Real analysis, fourth ed., Pearson, 2010.

Date: 2016, March 20.



SOUTIONS OF EXERCISES OF WEEK FOUR

Exercise 1. Write explicitly a Choice Function for Z. Write explicitly a Choice
Function for the set of natural numbers N which is not φ(A) = min(A) (and do
not use the Choice Axiom!).

Proof. For Z, we define

φ(A) :=

®
min(A ∩N) if A ∩N 6= ∅
−min(−A ∩N) if A ∩N = ∅.

For N, we define

ψ(A) :=

®
min(A) if A 6= {1, 2}
2 if A = {1, 2}.

�

Exercise 2. Prove that [0, 1] ≈ [0, 1).

Proof. We define

g(x) :=

®
x if x 6= 1

n for every n ∈ N
1

n+1 if x = 1
n .

�

Exercise 3. Prove that a non-empty compact set E is is closed and bounded.

Proof. We prove that E is bounded. We consider the open cover

E ⊆ ∪U , U := {(−n, n) | n ≥ 1}.
Since E is compact, there exists a finite sub-cover U ′ ⊆ U . Since U ′ is finite, there
exists n0 such that

E ⊆ U ′ = (−n0, n0).
We prove that E is closed. On the contrary, let x0 be a point in E− E. Since x0 /∈ E,

V :=
ßÅ

x0 −
1
n

, x0 +
1
n

ã
| n ≥ 1

™
is an open cover. Since E is compact, there exists a finite sub-cover V ′ ⊆ V . Then,
there exists n1 such that

E ⊆
Å

x0 −
1
n1

, x0 +
1
n1

ã
�

Exercise 4. Let B be a finite σ-algebra. Show that #B is even.

Proof. Since B is a σ-algebra, whenever E ∈ B, the complement also belongs to
B. Since E 6= Ec, then #B is even. �

Exercise 5 (Ex. 36, page 20 of [1]). Let J be the collection of the bounded intervals
[a, b) with a < b. Show that B(J) = B(Ω), the Borel’s collection.
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Proof. The σ-algebra generated by a collection is obtained as the generalized inter-
section of

B(A) := ∩FA.
Then, we have to prove that

∩FΩ = ∩FJ .
Actually, we will prove that

FΩ = FJ .
Firstly, we show that FΩ ⊆ FJ . Let B a σ-algebra which contains Ω. We prove
that B ⊇ J. Let [a, b) be in J. Then

[a, b) =
∞⋂

n=1

(a− 1/n, b).

Since (a− 1/n, b) ∈ Ω ⊆ B, [a, b) is countable union of sets in B. Then [a, b) ∈ B.
Now, let B be a σ-algebra which contains J. We prove that Ω ⊆ B. Let O be an
open set. Then, there exists a countable collection of open intervals In such that

O =
∞⋃

n=1

In.

We prove that In ∈ J. In fact, if In is a bounded interval, we have In = (a, b) and

(a, b) =
∞⋃

k=1

[a + 1/k, b)

while a similar expression holds for unbounded intervals. Since [a + 1/k, b) is in
J ⊆ B, (a, b) ∈ B. Then, O is countable union of sets of B. Then O ∈ B. �

REFERENCES
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