SOLUTIONS OF EXERCISES OF WEEK ONE

Exercise 1. Let \mathscr{A} be a non-empty collection of sets and $X \in \mathscr{A}$ be a set. Show that $\cap \mathscr{A} \subseteq X \subseteq \cup \mathscr{A}$.

For both inclusions, you can start with the usual first step "Let $x \in ...$ ".

Proof. Let *x* be an element of $\cap \mathscr{A}$. Then, for every $Y \in \mathscr{A}$, there holds $x \in Y$. In particular, $x \in X$. Now, let *x* be an element of *X*. Since $X \in \mathscr{A}$, there holds

$$x \in X \in \mathscr{A}$$

which means $x \in \bigcup \mathscr{A}$.

Exercise 2. We checked that the set $N_3 := \{1, 2, 3\}$ has exactly 24 choice functions. How many choice functions does the set $N_4 := \{1, 2, 3, 4\}$ have?

Proof. We have two choices for every pair, and there are $\binom{4}{2} = 6$ pairs. Then, we have three choices for every triple, and $\binom{4}{3} = 4$ triples. Finally, four choices for N₄. Then, there are $2^{6} \times 3^{4} \times 4 = 20736$

choice functions.

Exercise 3. An equivalence relation xRy on A is just a subset $R \subseteq A \times A$ such that R is reflexive, symmetric and transitive. Let R be an equivalence relation on $N_k := \{1, 2, 3, ..., k\}$. Show that k is even if and only if #R is even.

Proof. We count *R* by dividing it into two subsets, the diagonal

$$D:=\{(x,y)\in R\mid x=y$$

and its complement D^c . Then $\#R = \#D + \#(D^c)$. Since *R* is reflexive, #D = k. Since *R* is symmetric, $\#(D^c)$ is an even number. Therefore, *k* is even if and only if #R is even.

Exercise 4. Is it true that $2^{\cup \mathscr{B}} = \mathscr{B}$ for every non-empty collection of sets \mathscr{B} ?

Proof. It is false. For instance consider $\mathscr{B} = \{\{0\}, \{1\}\}$. Then

$$\cup \mathscr{B} = \{0,1\}, \quad 2^{\cup \mathscr{B}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\} \neq \mathscr{B}.$$

It is not difficult to find a lot of examples where this equality fails, especially in finite sets: in fact, if both \mathscr{B} and $\cup \mathscr{B}$ are finite, then

$$#2^{\cup \mathscr{B}} = 2^n, (1, 2, 4, ...)$$

while $\#\mathscr{B}$ is completely arbitrary.

Exercise 5. Find the generalized unions and intersections of the following collections

- $(1) \qquad \qquad \mathscr{A}_1 := \{x\}$
- (2) $\mathscr{A}_2 := \{ [0, 1+1/n) \mid n \ge 1 \}$

where [a, b) is the interval of real numbers *t* such that $a \le t < b$ and *x* is a set.

Date: 2016, March 11.

Proof.

$$\cup \mathscr{A}_1 = x = \cap \mathscr{A}_1 = \{x\}.$$

 $\cup \mathscr{A}_2 = [0,2), \quad \cap \mathscr{A}_2 = [0,1].$

SOLUTIONS OF EXERCISES OF WEEK TWO

Exercise 1. Let $A := \mathbf{R} - \mathbf{Z}$. Prove that A is dense in **R**.

Proof. Given a < b in **R**, we consider two cases: 0 < b - a < 1. Then $\mathbb{Z} \cap (a, b) = \emptyset$, therefore $x_* := (a + b)/2 \in A$ and $a < x_* < b$. On the other case, we have $b - a \ge 1$, then

$$a \leq b-1 < b$$

and we choose $x_* = (2b - 1)/2$.

Exercise 2 (*). When we consider the usual sum and multiplication in the complex field \mathbb{C} , the Field Axioms are satisfied. Prove that the Positive Set Axiom are not satisfied; in other words, prove that given a non-empty subset $P \subseteq \mathbb{C}$, at least one between P1) and P2) is false.

Proof. If P2) is true, then only one between $i \in P$ or $-i \in P$ (we ruled out i = 0) is true. If $i \in P$, then by P1), $-i = i^3 \in P$ and we obtain a contradiction. If $-i \in P$, then, by P1), $i = (-i)^3 \in P$ and we obtain another contradiction.

Exercise 3. Given a set *X* and *A* a non-empty subset. Prove that the following

$$xRy \Leftrightarrow (x, y \in A) \lor (x, y \in A^c)$$

is an equivalence relation. What are the equivalence classes? In which cases is also an order relation?

Proof. We show that *R* is symmetric, transitive and reflexive.

- (R) xRx means that either $x \in A$ or $x \in A^c$. This is true for every $x \in X$, because $X = A \cup A^c$
- (S) if $x, y \in A$, clearly $y, x \in A$. The same applies to A^c
- (T) suppose $xRy \wedge yRz$. Then xRz.

$$xRy \Rightarrow x, y \in A \lor x, y \in A^c$$
.

$$yRz \Rightarrow y, z \in A \lor y, z \in A^c$$
.

We have to check four different cases: firstly, we notice that the two cases

 $(x, y \in A) \land (y, z \in A^c), (y, z \in A) \land (x, y \in A^c)$

are not possible because both would imply $y \in A \cap A^c$. We discuss the remaining cases

$$(x, y \in A) \land (y, z \in A) \Rightarrow x, z \in A \Rightarrow xRz$$

 $(x, y \in A^c) \land (y, z \in A^c) \Rightarrow x, z \in A^c \Rightarrow xRz.$

So, R is an equivalence relation. Now we address the questions whether R is an order relation. Since we already know that R is an order relation (so it is reflexive and transitive) we suppose that R is antisymmetric

(A) $xRy \wedge yRx \Rightarrow x = y$.

Date: 2016, March 17.

We wish to draw some conclusions about the sets *A* and *A^c*. Given $x, y \in A$, we have $xRy \Rightarrow yRx$

by (S). By (A),

$$(xRy \wedge yRx) \Rightarrow x = y$$

Therefore,

$$x,y\in A\Rightarrow x=y.$$

Which means that *A* is a singleton. Now, suppose that $x, y \in A^c$. Similarly, we can show that x = y. The conclusion of this argument is: if *R* is an order relation, then *A* and A^c are singletons. Therefore,

- (a) *R* is an equivalence relation
- (b) if *R* is also an order relation, then *A* and A^c are singletons. And #X = 2.

Exercise 4. Let \mathscr{B} be a non-empty collection of sets. Prove or find a counterexample to each of the following statements:

- (i) \mathscr{B} is a finite set implies $\cup \mathscr{B}$ is a finite set
- (ii) $\cup \mathscr{B}$ is a finite set implies \mathscr{B} is a finite set.

Proof.

- (i) It is not true: consider, for instance, $\mathscr{B} = \{N\}$. The collection is finite, but $\cup \mathscr{B} = N$ which is the set of natural numbers, not finite
- (ii) it is true: in fact, we have

Given $A \in \mathscr{B}$, there holds $A \subseteq \bigcup \mathscr{B}$. Then $A \in 2^{\bigcup \mathscr{B}}$; since $\bigcup \mathscr{B}$ is finite, its Power Set is finite, so \mathscr{B} is finite (thanks to Hyeong-Jun for suggesting this solution).

EXERCISES OF WEEK THREE

Exercise 1 (ex. 16, page 16 of [1]). Prove that **Z** is countable.

Exercise 2. Write explicitly a Choice Function for the set of natural numbers N (do not use the Choice Axiom!).

Exercise 3. Prove that $\mathbf{R} \approx \mathbf{R} - \{0\}$.

Exercise 4. Given two natural numbers $h, k \ge 1$, use the induction principle to show that

(i) there exists $f: \mathbf{N}_h \to \mathbf{N}_k$ INJ $\Leftrightarrow h \le k$ (ii) there exists $g: \mathbf{N}_h \to \mathbf{N}_k$ SURJ $\Leftrightarrow k \le h$.

Exercise 5. Let *A* and *B* be two subsets of **R**. Then

 $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}, \quad \overline{A \cup B} = \overline{A} \cup \overline{B}.$

Exercise 6. Let *E* be a closed set bounded from below. Then

 $inf(E) \in E$.

Exercise 7. Let *E* be a closed set such that

$$\inf(E \cap [a, +\infty)) = a$$

for every *a* real number. Then $E = \mathbf{R}$.

Exercise 8. Prove that if A is an open and closed set, then A is either \emptyset or **R** (use Exercise 5).

REFERENCES

1. P. M. Fitzpatrick and H. L. Royden, Real analysis, fourth ed., Pearson, 2010.

SOUTIONS OF EXERCISES OF WEEK FOUR

Exercise 1. Write explicitly a Choice Function for **Z**. Write explicitly a Choice Function for the set of natural numbers **N** which is not $\phi(A) = \min(A)$ (and do not use the Choice Axiom!).

Proof. For **Z**, we define

$$\phi(A) := \begin{cases} \min(A \cap \mathbf{N}) & \text{if } A \cap \mathbf{N} \neq \emptyset \\ -\min(-A \cap \mathbf{N}) & \text{if } A \cap \mathbf{N} = \emptyset. \end{cases}$$

For N, we define

$$\psi(A) := egin{cases} \min(A) & ext{if } A
eq \{1,2\} \\ 2 & ext{if } A = \{1,2\}. \end{cases}$$

Exercise 2. Prove that $[0,1] \approx [0,1)$.

Proof. We define

$$g(x) := \begin{cases} x & \text{if } x \neq \frac{1}{n} \text{ for every } n \in \mathbf{N} \\ \frac{1}{n+1} & \text{if } x = \frac{1}{n}. \end{cases}$$

Exercise 3. Prove that a non-empty compact set *E* is is closed and bounded.

Proof. We prove that *E* is bounded. We consider the open cover

$$E \subseteq \cup \mathscr{U}, \quad \mathscr{U} := \{(-n,n) \mid n \geq 1\}.$$

Since *E* is compact, there exists a finite sub-cover $\mathscr{U}' \subseteq \mathscr{U}$. Since \mathscr{U}' is finite, there exists n_0 such that

$$E\subseteq \mathscr{U}'=(-n_0,n_0).$$

We prove that *E* is closed. On the contrary, let x_0 be a point in $\overline{E} - E$. Since $x_0 \notin E$,

$$\mathscr{V}:=\left\{\left(x_0-\frac{1}{n},x_0+\frac{1}{n}\right)\mid n\geq 1\right\}$$

is an open cover. Since *E* is compact, there exists a finite sub-cover $\mathscr{V}' \subseteq \mathscr{V}$. Then, there exists n_1 such that

$$E\subseteq\left(x_0-\frac{1}{n_1},x_0+\frac{1}{n_1}\right)$$

Exercise 4. Let \mathscr{B} be a finite σ -algebra. Show that $\#\mathscr{B}$ is even.

Proof. Since \mathscr{B} is a σ -algebra, whenever $E \in \mathscr{B}$, the complement also belongs to \mathscr{B} . Since $E \neq E^c$, then $\#\mathscr{B}$ is even.

Exercise 5 (Ex. 36, page 20 of [1]). Let *J* be the collection of the bounded intervals [a, b) with a < b. Show that $\mathscr{B}(J) = \mathscr{B}(\Omega)$, the Borel's collection.

Date: 2016, April 4.

Proof. The σ -algebra generated by a collection is obtained as the generalized intersection of

$$\mathscr{B}(A) := \cap \mathscr{F}_A.$$

Then, we have to prove that

$$\cap \mathscr{F}_{\Omega} = \cap \mathscr{F}_{J}$$

Actually, we will prove that

$$\mathscr{F}_{\Omega} = \mathscr{F}_{J}.$$

Firstly, we show that $\mathscr{F}_{\Omega} \subseteq \mathscr{F}_{J}$. Let \mathscr{B} a σ -algebra which contains Ω . We prove that $\mathscr{B} \supseteq J$. Let [a, b) be in J. Then

$$[a,b) = \bigcap_{n=1}^{\infty} (a-1/n,b).$$

Since $(a - 1/n, b) \in \Omega \subseteq \mathscr{B}$, [a, b) is countable union of sets in \mathscr{B} . Then $[a, b) \in \mathscr{B}$. Now, let \mathscr{B} be a σ -algebra which contains *J*. We prove that $\Omega \subseteq \mathscr{B}$. Let *O* be an open set. Then, there exists a countable collection of open intervals I_n such that

$$O=\bigcup_{n=1}^{\infty}I_n.$$

We prove that $I_n \in J$. In fact, if I_n is a bounded interval, we have $I_n = (a, b)$ and

$$(a,b) = \bigcup_{k=1}^{\infty} [a+1/k,b)$$

while a similar expression holds for unbounded intervals. Since [a + 1/k, b) is in $J \subseteq \mathscr{B}, (a, b) \in \mathscr{B}$. Then, *O* is countable union of sets of \mathscr{B} . Then $O \in \mathscr{B}$.

REFERENCES

1. P. M. Fitzpatrick and H. L. Royden, Real analysis, fourth ed., Pearson, 2010.