2016 February 29, Week 1 - Lecture 1

- 1. Sets, subsets, membership relations, page 3
- 2. equality between sets, page 3
- 3. distributive laws of the intersection with respect to the union
- 4. difference between sets $A B$, page 4
- 5. De Morgan's Laws, page 4
- 6. collections of sets
- 7. the power set 2^A , page 3

8. notations: $\mathscr{P}(A):=2^{A}, \ \mathscr{P}(A)^{*}:=\mathscr{P}(A)-\{\emptyset\}$

- 9. generalized unions and intersections, Definition 1
- 10. Choice function, Definition 2
- 11. Choice Axiom 1
- 12. equivalence relations, page 5
- 13. the quotient set, page 5.

2016 March 3, Week 1 - Lecture 2

- 14. Properties of the quotient set, Proposition 1
- 15. partial orderings, page 6
- 16. fully ordered sets, Definition 3
- 17. the Class Construction Axiom 2
- 18. axiomatic definition of the set of real numbers
- 18.1. Field Axioms, page 7
- 18.2. Positivity Axioms, page 8
- 18.3. Completeness Axiom, page 9

19. the uniqueness (up to isomorphism) of the set of real numbers, Theorem 1

Definition 1 (Generalized unions and intersection, from (9.)). Given a collection of sets $\mathscr{B} \neq \emptyset$, we define ∩ \mathscr{B} and ∪ \mathscr{B} as follows:

$$
x \in \bigcup \mathscr{B} \Leftrightarrow \exists A \text{ s.t. } x \in A \in \mathscr{B}
$$

$$
x \in \cup \mathscr{B} \Leftrightarrow \forall A \in \mathscr{B}(x \in A).
$$

Definition 2 (Choice functions, from (10.)). Given a set $A \neq \emptyset$, a choice function ϕ is a function $\phi \colon \mathscr{P}(A)^* \to A$ such that $\phi(B) \in B$ for every $B \in \mathscr{P}(A)^*$.

Axiom 1 (Choice Axiom, from (11.)). Every non-emptyset A has a choice function.

Proposition 1 (Properties of the quotient set, from (14)). Given an equivalence relation (A, R) the following properties hold:

(i) for every $H \in A/R$, the set H is non-empty

(ii) $\cup A/R = A$

Date: 2016, May 2.

(iii) given H, G in A/R there holds

$$
(H \cap G \neq \emptyset) \Rightarrow (H = G).
$$

Proof.

(i). Let $x \in A$ be such that $H = G_x$. From (R) , $x \in R_x$, therefore, H is non-empty. (ii). Since A/R is a collection of subsets of A, we have

$$
\cup A/R \subseteq A.
$$

Now, given $x \in A$, from (i), we have $x \in G_x$. From

$$
x\in G_x\in A/R
$$

we have $x \in A/R$.

(iii). Let x and y be such that $H = R_x$ and $G = R_y$. Suppose that $H \cap G$ is non-empty and let z in A be such that $z \in R_x \cap R_y$. Let $w \in R_x$ then. From (S),

$$
xRw \Rightarrow wRx.
$$

Since $z \in R_x$, we have xRz From (T),

$$
(wRx) \wedge (xRz) \Rightarrow wRz.
$$

Since $z \in R_y$, we have zRy . Again, from (T) and (S)

$$
(wRz)\wedge (zRy)\Rightarrow wRy\Rightarrow yRw\Rightarrow w\in R_y.
$$

By switching the role of x and y, we obtain the reversed inclusion $R_y \subseteq R_x$. Then $R_x = R_y$, implying $G = H$.

Definition 3 (Fully orderings, from (16.)). A partial ordering (A, R) , is a full ordering if for every $x, y \in A$ either xRy or yRx .

Axiom 2 (Class Construction Axiom of Zermelo-Fraenkel, from (17.)). Given a sentence $p(x)$ and a set A there exists a set $S \subseteq A$ such that $x \in S \Leftrightarrow x \in A \wedge p(x)$.

Theorem 1 (Uniqueness up to isomorphism, from (19.)). Let $(R_1, +, \cdot)$ and $(R_2, +, \cdot)$ two sets satisfying the field, positivity and completeness Axioms. Then there exists a bijective function $g: R_1 \to R_2$ such that

$$
g(a + b) = g(a) + g(b), \quad g(ab) = g(a)g(b), \quad g(P_1) \subseteq P_2
$$

where P_1 and P_2 are the positive sets.

2016 March 7, Week 2 - Lecture 1

20. Injective, surjective and bijective functions, page 4

21. direct and inverse images, page 4

22. equipotent set, $A \approx B$ or $\#A = \#B$

- 23. the positive set gives an order relation in R, Proposition 2
- 24. intervals, page 9

25. bounded sets, lower bounds and upper bounds, page 9

26. least and greatest elements, Definition 4

27. definition of least upper bound and greatest lower bound, page 9

28. the Completeness Axiom

29. if E is bounded from below, then $\inf(E) = -\sup(-E)$, exercise 6, page 11

30. inductive sets, page 11

31. the set of natural numbers, page 11

32. Principle of Mathematical Induction, page 11

33. $n \geq 1$ for every n.

2016 March 10, Week 2 - Lecture 2

- 34. N \cap $(0,1) = \emptyset$, Exercise 1
- 35. given $n, m \in \mathbb{N}$ such that $n > m$, $n m \in \mathbb{N}$, ex. 9, page 13 and Exercise 2
- 36. the set of Natural numbers is well-ordered, Theorem 1, page 11
- 37. subsets of N bounded from above have maximum, Proposition 3
- 38. Archimedean property, page 11
- 39. integers, Definition 5
- 40. rational numbers, page 12
- 41. dense subsets, page 12
- 42. the set of rational numbers is dense, page 12
- 43. the set N_k , Definition 6
- 44. finite sets, page 13
- 45. countable sets, page 13
- 46. the Bernstein's Lemma, Lemma 1 .

Proposition 2. (\mathbf{R}, \leq) is an ordered set.

Proof. The reflectivity holds, because $x \leq x \Rightarrow x = x$. (T). Given $x \leq y$ and $y \leq z$, we have

$$
(1) \qquad \qquad (x = y) \vee (y - x \in P)
$$

and

(2) $(y = z) \vee (z - y \in P).$

We have to show that $x \leq z$, in all the four cases. If equalities hold in (1) and (2), then

 $(x = y) \wedge (y = z) \Rightarrow x = z \Rightarrow x \leq z.$

If equality holds in (1) but not in (2), then

$$
(x = y) \land (z - y \in P) \Rightarrow z - x \in P.
$$

The case where the equality holds in (2) but not in (1) is similar. Finally, we consider the case where we have two strict inequalities:

$$
(y-x\in P)\wedge(z-y\in P)\Rightarrow(z-y)+(y-x)=z-x\in P.
$$

We used P1).

(A). Let $x, y \in \mathbb{R}$ be such that $x \leq y \wedge y \leq x$. If equality holds in one of the two inequalities, then, clearly, $x = y$. So, we study only the case $x < y \wedge (y < x)$. We have

$$
y-x,-(y-x)\in F
$$

which gives a contradiction with P2). \Box

Definition 4 (Least and greatest element, from $(26.)$). Let M be an upper bound for E; if $M \in E$ we call it greatest element. Similarly, a least element m for E is a lower bound which belongs to E.

Exercise 1 (from $(34.$)). $N \cap (0, 1)$.

Proof. This follows from the fact that $n \geq 1$ for every $n \in \mathbb{N}$, (47.).

Exercise 2 (from (35.), ex. 9, page 13). Given $n, m \in \mathbb{N}$ such that $n > m, n - m \in \mathbb{N}$.

Proof. Here I am writing a slightly different proof from the one I showed you during the lectures. We consider the property $p(n) : n - 1 \in \mathbb{N}$ and define

$$
S:=\{n\in\mathbf{N}\mid p(n)\}\cup\{1\}
$$

and prove that $S = N$. Clearly, $1 \in S$, by definition. Now, suppose that $n \in S$. Then

 $(n+1) - 1 = n \in \mathbb{N}$.

Now we consider the property

$$
q(m): n>m \Rightarrow n-m \in \mathbf{N}
$$

and the set $T := \{m \mid q(m)\}\.$ We proved that $1 \in T$. Now, suppose that $m \in T$. We will show that $m + 1 \in T$. Given $n > m + 1$, clearly $n \neq 1$. Then $n - 1 \in N$. We have

$$
n > m + 1 \Rightarrow n - 1 > m.
$$

Since $m \in T$ and $n - 1 \in \mathbb{N}$, $n - (m + 1) \in \mathbb{N}$.

Proposition 3 (from (37.)). Subsets of N bounded from above have a maximum.

Proof. Let $E \subseteq N$ be a non-empty subset bounded from above. From the Completeness Axiom there exists $c := \sup(E)$. We prove that $c = \max(E)$. On the contrary, we consider $c - 1$. Since c is the least upper bound, $c - 1$ is not an upper bound. Then there exists $n \in E$ such that

$$
c-1 < n < c.
$$

Clearly $n \neq c$ because, otherwise, we would have $c \in E$. Since $n < c$, it is not an upper bound of E. Then, there exists $m \in E$ such that

 $n < m < c$.

We set $k := m - n$. By Exercise 2, $k \in \mathbb{N}$ and $0 \le k \le 1$. Therefore, we obtained a contradiction with (34) .

Definition 5 (Integers, from (39.)). The set of integers Z is defined by the property

$$
p(m) : (m = 0) \vee (m \in \mathbf{N}) \vee (-m \in \mathbf{N}).
$$

Definition 6 (Definition of N_k , from (43.)). We define N_k the subset of N of the natural numbers satisfying $1 \leq n \leq k$.

Lemma 1 (Bernstein's Lemma, from $(46.)$). Given two non-empty sets A and B such that there exists $f: A \to B$ injective and $g: B \to A$ injective, there exists $h: A \to B$ bijective.

2016 March 14, Week 3 - Lecture 1

47. If $g: A \to B$ is bijective, then $A - \{x\} \approx B - \{g(x)\}\)$, Lemma 2

48. if $k \geq 2$, then $N_k - \{x\} \approx N_{k-1}$ for every, $x \in N_k$, Lemma 3

49. $N_h \approx N_k$ if and only if $h = k$, Proposition 4

50. given $B \neq \emptyset$, if $B \subseteq N$ is not finite, then $B \approx N$, Theorem 3, page 13

51. $N \approx N - \{x\}$ for every $x \in N$. Then N is not finite, Proposition 5

52. if $n = ab$, then $n \geq a, b$

53. $N \times N$ is countable, Corollary 4, 14

54. the continuum, **R**, and functional cardinality, $\mathcal{P}(R)$.

Lemma 2 (From (47.)). If A and B are non-empty and there exist $g: A \rightarrow B$ bijective, then $A - \{x\} \approx B - \{g(x)\}\,$, provided the two sets are non-empty.

Proof. We set $A' := A - \{x\}$ and $B' := B - \{g(x)\}\$. We define $g' : A' \to B'$ as $g'(a) = a$. Firstly, $g'(a) \in B'$, otherwise, $g'(a) = g(x)$, hence $a = x$ because g is injective; however, this contradicts the assumption $a \in A'$. Clearly, g is an injective function; given $y \in B'$, there exists $x' \in A$ such that $g(x') = y$. We show that $x' \neq x$; on the contrary, $B' \ni y = g(x') = g(x) \notin B'$ we obtain a contradiction.

Lemma 3 (From (48.)). If $k \geq 2$, then $N_k - \{x\} \approx N_{k-1}$ for every $x \in N_k$.

Proof. We define the function $g: \mathbb{N}_k - \{x\} \to \mathbb{N}_{k-1}$ as follows: $g(y) = y$ if $y \leq x - 1$, $g(y) = x + 1$ if $y \ge x + 1$.

Proposition 4 (From (49.)). Given $h, k \in \mathbb{N}$, $\mathbb{N}_h \approx \mathbb{N}_k$ if and only if $h = k$.

Proof. If $h = k$, then $N_h = N_k$. Then $N_h \approx N_k$. In order to prove the converse implication, we apply the Mathematical Induction Principle to the set

$$
S := \{ h \in \mathbf{N} \mid \forall k (\mathbf{N}_h \approx \mathbf{N}_k \Rightarrow h = k) \}.
$$

(i) $1 \in S$. If $N_1 \approx N_k$, then there exists a bijective function $g: N_1 \to N_k$. Thus, g is surjective and

$$
\mathbf{N}_k = g(\mathbf{N}_1) = \{g(1)\}.
$$

Since $1, y \in \mathbf{N}_k$, we have $1 = y = g(1)$.

(ii) $h \in S \Rightarrow h+1 \in S$. Suppose that $\mathbf{N}_{h+1} \approx \mathbf{N}_k$. Firstly, we notice that $k \geq 2$. In fact, if $k = 1$, we have

$$
\mathbf{N}_{h+1}\approx \mathbf{N}_1.
$$

We can, then, apply the case $1 \in S$ and conclude that $h + 1 = 1$ which contradicts the assumption that $h \in \mathbb{N}$. There exists a bijective function $g: \mathbb{N}_{h+1} \to \mathbb{N}_k$. Since $k \geq 2$, we can apply Lemma 2 and obtain

$$
N_h = N_{h+1} - \{h+1\} \approx N_k - \{g(h+1)\}
$$

In fact, both sets are non-empty, because $k \geq 2$. Then, from Lemma 3

$$
\mathbf{N}_{k}-\{g(h+1)\}\approx\mathbf{N}_{k-1}.
$$

Then $\mathbf{N}_h \approx \mathbf{N}_{k-1}$. Since $h \in S$, we have $h = k - 1$. Then $h + 1 = k$.

Proposition 5 (From (51.)). $N \approx N - \{x\}$ for every $x \in N$. Then N is not finite.

Proof. The bijective function is defined as $g(k) = k$ if $k \leq x - 1$ and $g(k) = k + 1$ if $k \geq x$. Now, if N was finite, then $N \approx N_k$ for some $k \geq 1$. Since $1, 2 \in N$ we can suppose that $N - \{x\}$ is non-empty. Then, from Lemma 2 and Lemma 3, we obtain

$$
\mathbf{N}_k \approx \mathbf{N} \approx \mathbf{N} - \{x\} \approx \mathbf{N}_k - \{y\} \approx \mathbf{N}_{k-1}
$$

which implies $k = k - 1$, from Proposition 4 and we obtain a contradiction.

2016 March 17, Week 3 - Lecture 2

55. Q is countable, Proposition 6

56. non-degenerate intervals in R are uncountable, Theorem 7, page 15

57. $I_r(x) := (x - r, x + r)$

- 58. open sets, Definition page 16
- 59. union and finite intersections of open sets are open, Proposition 8
- 60. closure points, Definition, page 17
- 61. closed sets, page 17
- 62. convex sets, Definition 7
- 63. intervals are convex, Proposition 7

64. bounded convex sets are intervals, Proposition 8.

Proposition 6 (From (55.)). Q is countable.

Proof. Given $q \in Q$, we define

 $E_q := \{q \in \mathbf{N} \mid qx \in \mathbf{Z}\}.$

Since q is a rational number, $E_q \neq \emptyset$. Then, by the Well Ordering Theorem, the set has a minimum. We define

$$
h\colon Q\to \mathbf Z\times \mathbf N,\quad h(q):=(q\min(E_q),\min(E_q)).
$$

This function is injective: given q, q' such that $h(q) = h(q')$, we have

$$
q \min(E_q) = q' \min(E_{q'}), \quad \min(E_q) = \min(E_{q'}).
$$

If we substitute the equality on the right in the left equality, we obtain $q = q'$. Then, we have a chain of injective functions

$$
\mathbf{Q} \to \mathbf{Z} \times \mathbf{N} \to \mathbf{N} \times \mathbf{N} \to \mathbf{N}
$$

which is injective. Thus, by (50.), **Q** is countable. \Box

Definition 7 (Convex sets, from (62.)). A subset $S \subseteq \mathbb{R}$ is convex if for every $x \leq y \in S$, there holds $[x, y] \subseteq S$.

Proposition 7 (Intervals are convex, from (63.)). Intervals are convex.

Proof. Let [a, b] be a closed bounded interval. Given $x, y \in [a, b]$, we have $a \leq x \leq b$ and $a \le y \le b$. Then if $x \le z \le y$, we have $a \le x \le z \le y \le b$, so $z \in [a, b]$.

Proposition 8 (Convex sets are interval, from (64.)). Convex sets are intervals.

Proof. Now, suppose that S is convex. We divide the proof into four cases:

(1), S is bounded. By the Completeness Axiom there are $a := \inf(S)$ and $b := \sup(S)$. Clearly, $S \subseteq [a, b]$. Now, we show that $(a, b) \subseteq S$. In fact, let x be an element of (a, b) . Then

 $a < x$.

Since a is the g.l.b., x is not a lower bound of S. Therefore, there exists $x' \in S$ such that $x' < x$. We also have $x < b$. Since b is the l.u.b., x is not an upper bounded for S. Then, there exists $x'' \in S$ such that $x < x''$. Since S is convex, $[x', x''] \subseteq S$. Since $x' < x < x''$, also $x \in S$. Since $a \leq x'$ and $x'' \leq b$, then the set S satisfies

$$
(a,b)\subseteq S\subseteq [a,b].
$$

There are only four sets satisfiying the inclusions above:

$$
[a,b],\quad (a,b],\quad [a,b),\quad (a,b).
$$

 (2) . S is unbounded from below and bounded from above. We define

 $b := \sup(S)$.

We can prove that

(3)
$$
(-\infty, b) \subseteq S \subseteq (-\infty, b].
$$

Suppose that $x < b$. Then x is not the l.u.b. Then, there exists $x' \in S$ such that $x < x'$. Since S is not bounded from below, $-(|x|+1)$ is not a lower bound. Then, there exists $x'' \in S$ such that

$$
x'' < -(|x|+1) < x < x'.
$$

Since S is convex.

$$
x\in [x',x'']\subseteq S.
$$

Then $x \in S$. Sets satisfying (3) are only

$$
(-\infty, b), \quad (-\infty, b].
$$

The cases (3) and (4) where S is unbounded from above and bounded from below, or S is unbounded from below and from above, are similar to the case (2) .

2016, March 21 - Week 4, Lecture 1

65. Generalized intersection of convex sets, Proposition 9

66. generalized union of convex sets, Proposition 10

67. convex sets are intervals, Proposition 11

68. open sets are countable unions of pairwise disjoint intervals, Theorem 2

69. open covers, page 18

70. compact sets, Definition 8 .

Proposition 9 (From (65.)). If \mathscr{C} is a collection of convex set such that $\cap \mathscr{C} \neq \emptyset$, then ∩^{*C*} is convex.

Proof. Let x, y be two elements of ∩C. Then $x, y \in C$ for every $C \in \bigcap C$. Since C is convex, $[x, y] \subseteq C$ for every $C \in \bigcap \mathscr{C}$, which implies $[x, y] \subseteq \bigcap \mathscr{C}$.

Proposition 10 (From (66.)). If \mathscr{D} is a collection of convex set such that $\cap \mathscr{D} \neq \emptyset$, then $\cup \mathscr{D}$ is convex.

Proof. Let x_0 be an element of ∩ \mathscr{D} . Let $x, y \in D := \cup \mathscr{D}$ be two elements. Then, there are D_1 and D_2 such that $x \in D_1$ and $y \in D_2$. Here we consider different cases:

 $x_0 \leq x \leq y$. Then $[x, y] \subseteq [x_0, y] \subseteq D_2 \subseteq D$ because D_2 is convex. If $x \leq y \leq x_0$, then $[x, y] \subseteq [x, x_0] \subseteq D_1 \subseteq D$ because D_1 is convex. Finally, if $x \le x_0 \le y$, we have

$$
[x, x_0] \subseteq D_1
$$
 and $[x_0, y] \subseteq D_2 \Rightarrow [x, y] \subseteq D_1 \cup D_2$.

 \Box

Proposition 11 (From (67.)). Convex sets are intervals.

Proof. Let C be a convex non-empty set and let $x_0 \in C$ be an element of C. We define $C_n := C \cap (-n+x_0, n+x_0)$ for every natural number $n \geq 1$. We also define the collection of intervals

$$
\mathscr{C} := \{C_n \mid n \geq 1\}, \quad C = \cup \mathscr{C}.
$$

From Proposition 9, C_n is convex. Moreover, $\bigcap \mathscr{C} = (-1 + x_0, 1 + x_0) \neq \emptyset$. By Proposition 10, ∪ is convex. \Box

Theorem 2 (From (68.)). Let Ω be an open non-empty set of **R**. Then Ω is countable union of open intervals which are disjoint from each other.

Proof. Let x be an element of Ω . Since Ω is open, there exists $r > 0$ such that $I_r(x) \subseteq \Omega$. We define the collection

(4)
$$
\mathscr{A}_x := \{J \text{ open interval } \mid x \in J \subseteq \Omega\}.
$$

Clearly, \mathscr{A}_x is non-empty, because $I_r(x) \in \mathscr{A}_x$. We also define $J_x := \cup \mathscr{A}_x$ The sets J_x satisfy some properties that we list below

(i) $x \in J_x$

(ii) J_x is an open set

- (iii) J_x is an interval
- (iv) given $x, y \in \Omega$, either $J_x = J_y$ or $J_x \cap J_y = \emptyset$

(i). Since $I_r(x) \in \mathscr{A}_x$ and $x \in I_r(x)$, then $x \in J_x$ by definition of generalized union. (ii) J_x is open because is the union of a collection of open sets, namely \mathscr{A}_x . (iii) J_x is an interval: \mathscr{A}_x is a collection of intervals, that is, convex sets. Each of these sets contain x, from (i). Thus, $\cap \mathscr{A}_x \neq \emptyset$. From Proposition 10, J_x is a convex set. From Proposition 11, J_x is an interval.

(iv). Let us suppose that $J_x \cap J_y \neq \emptyset$. Then there exists z in the intersection. Therefore, by Proposition 10 and Proposition 11, $J_x \cup J_y$ is an interval. It is open, because is the union of two open sets. Since $x \in J_x \cup J_y$, there holds.

$$
J_x\cup J_y\in\mathscr{A}_x.
$$

Then

$$
J_x\cup J_y\subseteq \cup\mathscr{A}_x=J_x
$$

therefore $J_y \subseteq J_x$. Similarly, from $y \in J_x \cup J_y$, we can show that $J_y \subseteq J_x$. Thus, $J_x = J_y$. We define the collection G as follows:

 $J \in G \Leftrightarrow \exists x \in \Omega \text{ s.t. } H = J_x.$

From (i), $\bigcup G = \Omega$. We claim that G is countable. Since Q is dense in **R**, for every $J \in G$, the set $J \cap \mathbf{Q}$ is non-empty. We define the following function

$$
f\colon G\to\mathbf{Q},\quad f(J)=\phi(J\cap Q)
$$

where ϕ is a Choice Function for R. This function is injective. In fact, given $J_1, J_2 \in G$, there holds

 $f(J_1) = f(J_2) \Rightarrow \phi(J_1 \cap Q) = \phi(J_2 \cap Q).$

We define $w := \phi(J_1 \cap Q) = \phi(J_2 \cap Q)$. Since ϕ is a choice function,

 $w \in (J_1 \cap Q) \cap (J_2 \cap Q) \subseteq J_1 \cap J_2.$

From (iv), $J_1 = J_2$.

Definition 8 (Compact sets, from (70.)). A non-empty set $E \subseteq \mathbb{R}$ is compact if for every open cover $\mathscr U$ there exists a finite sub-cover $\mathscr U' \subseteq \mathscr U$.

2016, March 24 - Week 4, Lecture 2

71. Solutions of the exercises of Week Three

72. Heine-Borel Theorem, page 18.

Week 5, Lecture 1 - 2016, March 28

- 73. σ -algebras, Definition 9
- 74. σ-algebras generated by collections, Definition 10 and Proposition 12
- 75. the Borel's σ -algebra, Definition, page 20
- 76. G_{δ} sets and F_{σ} sets, page 20
- 77. properties of measures $m: \mathscr{B} \to [0, +\infty]$
- 77.1. translation invariance $m(A + y) = m(A)$
- 77.2. finite additivity, $m(A \cup B) = m(A) + m(B)$
- 77.3. σ -additivity: if (A_n) is a disjoint countable collection

$$
m(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} m(A_n)
$$

77.4. σ -sub-additivity: if (A_n) is a countable collection

$$
m(\bigcup_{n=1}^{+\infty} A_n) \leq \sum_{n=1}^{+\infty} m(A_n)
$$

77.5. $m^*(I) = \ell(I)$

- 78. length of intervals
- 78.1. bounded intervals: $I \in \{(a, b), [a, b), (a, b], [a, b]\}, \quad \ell(I) := b a$
- 78.2. unbounded intervals: $\ell(I) = \infty$
- 79. length of collection of intervals, Definition 11
- 80. the Lebesgue outer measure, §2.2, page 31.

Definition 9 (σ -algebras, from (73.)). A collection of sets \mathscr{B} is a σ -algebra if it satisfies the following properties:

(i) $\emptyset \in \mathscr{B}$

(ii)
$$
E \in \mathscr{B} \Rightarrow E^c \in \mathscr{B}
$$

(iii) given a countable collection $G \subseteq \mathscr{B}$, there holds $\cup G \in \mathscr{B}$.

Definition 10 (Length of collection, from (74.)). Given a collection $A \subseteq \mathscr{P}(\mathbb{R})$, we define

$$
\mathscr{F}_A=\{\mathscr{B}\mid (A\subseteq\mathscr{B})\wedge(\mathscr{B}\text{ is a σ-algebra}\}\subseteq\mathscr{P}(\mathscr{P}(\mathbf{R})).
$$

We define $\mathscr{B}(A) := \cap \mathscr{F}_A$.

Proposition 12 (From (74.)). $\mathscr{B}(A)$ is a σ -algebra.

Proof.

- (i) For all \mathscr{B} we have $\emptyset \in \mathscr{B} \in \mathscr{F}_A$. Then $\emptyset \in \mathscr{B}(A)$
- (ii) $E \in \mathscr{B}(A)$ implies $E \in \mathscr{B} \in \mathscr{F}_A$ for every \mathscr{B} . Then $E^c \in \mathscr{B}$, hence $E^c \in \mathscr{F}_A$
- (iii) let $G \subseteq \mathscr{B}(A)$ be a countable collection. Then, $G \subseteq \mathscr{B}$ for every $\mathscr{B} \in \mathscr{F}_A$. Then $\mathscr{B} \subseteq \cap \mathscr{F}_A$.

Definition 11 (Length of collection, from (79.)). Given a countable collection of intervals J, we define its length as $L(J) := \sum_{n=1}^{+\infty} \ell(I_n)$, where $I_n \in J$.

Week 10, Lecture 1 - 2016, May 2

- 81. Monotonicity of the outer measure, page 31
- 82. the outer-measure of a countable set is zero, Example in page 31
- 83. given two bounded intervals $I_1, I_2, \ell(I_1 \cup I_2) \leq \ell(I_1) + \ell(I_2)$
- 84. Proposition 13
- 85. the outer measure of an interval is equal to its length, Theorem 3.

Proposition 13 (From (84.)). If $[a, b] \subseteq \cup J$ there J is a disjoint collection of open interval, then there exists $I \in J$ such that $[a, b] \subseteq I$.

Proof. Suppose that there are two intervals $I_1 \neq I_2$ such that $a \in I_1$ and $b \in I_2$. Without loss of generality we can suppose that I_1 is bounded from above, I_2 is bounded from below and sup $(I_1) = s \leq S = \inf(I_2)$. Since all the intervals are open, $s \notin \cup J$. Since $a \in I_1$, we have $a < s$. Since $b \in I_2$, we also have $s < b$. Therefore, $s \in [a, b] \subseteq \cup J$ gives a contradiction. \Box

Theorem 3 (From (85.)). If A is an interval, then $m^*(A) = \ell(A)$.

Proof. Firstly, we consider bounded intervals and, in particular, the closed bounded interval $[a, b]$. For every natural number n, we have the collection

$$
J_n := \{(a-1/2n, b+1/2n)\}, \quad [a, b] \subseteq \cup J_n.
$$

 \Box

Then $m^*([a, b]) \le L(J_n) = b - a + 1/n$. The last inequality holds for every $n \in \mathbb{N}$. Then $m^*([a, b]) \leq b - a.$

We prove the converse inequality. Given $n \in \mathbb{N}$, there exists J_n such that $[a, b] \subseteq J_n$ and $L(J_n) \leq m^*(A) + 1/n$. By the Heine-Borel's theorem, there exists a finite subcover J'_n . We claim that $L(J'_n) \geq b - a$ and prove the claim by induction on $k := \# J'_n$. If $k = 1$, then J'_n contains exactly one interval, namely, $I = (c, d)$. Since $[a, b] \subseteq (c, d)$ we have

$$
c
$$

Then $L(J'_n) = \ell(I) = d - c > b - c > b - a = \ell([a, b])$. Now, we prove that $k \Rightarrow k + 1$. We consider the two different cases:

First case. J'_n is a disjoint collection of open intervals. Then, by Proposition 13, there exists $I \in J'_n$ such that $[a, b] \subseteq I$. Then

$$
\ell([a,b])\leq \ell(I)\leq L(J'_n).
$$

Second case. There are two intervals $I', I'' \in J'_n$ such that $I' \neq I''$ and $I' \cap I'' \neq \emptyset$. Then we define $\tilde{I} := I' \cup I''$ which is interval because the intersection is non-empty. We define

$$
J''_n:=J'_n\cup\{\tilde I\}-\{I',I''\}
$$

which is an open cover of $[a, b]$ and $\# J''_n = k$. Then, by the inductive hypothesis,

$$
b-a\leq L(J''_n)\leq L(J'_n)
$$

The second inequality follows from $\ell(\tilde{I}) \leq \ell(I') + \ell(I'')$. This settles the second case. Finally,

$$
b-a \le L(J'_n) \le L(J_n) \le m_*([a,b]) + \frac{1}{n}.
$$

Taking the limit, we obtain $b - a \leq m_*([a, b]).$

Other bounded intervals. Given $n \geq 1$, we consider the set $[a + 1/2n, b - 1/2n]$. Then $(a, b) \supseteq [a + 1/2n, b - 1/2n]$. Since the outer measure is monotone, from the inclusions

$$
[a,b] \supseteq [a,b), (a,b] \supseteq (a,b) \supseteq [a+1/2n, b-1/2n].
$$

We obtain

$$
m^*([a,b]) \geq m^*([a,b)), m^*((a,b]) \supseteq m^*((a,b)) \supseteq m^*([a+1/2n,b-1/2n])
$$

then

$$
b-a\geq m^*([a,b)), m^*((a,b])\geq m^*((a,b))\geq b-a-1/n.
$$

Taking the limit, we obtain

$$
b-a = m^{\ast} ([a,b)) = m^{\ast} ((a,b]) = m^{\ast} ((a,b))
$$

which is equal to the length of each of those intervals.

Unbounded intervals. We use the monotonicity property of the outer-measure. From the inclusions

$$
[a,+\infty)\supseteq(a,+\infty)\supseteq(a,n]
$$

we obtain that $m^*((a, +\infty)) \geq n-a$ for every $n \in \mathbb{N}$. Then $m^*((a, +\infty)) = m^*((a, +\infty)) =$ ∞.

$$
(-\infty,b] \supseteq (-\infty,b) \supseteq (-n,b].
$$

Then $m^*((-\infty, b) \ge b + n$. Then $m^*((-\infty, b)) = m^*((-\infty, b]) = \infty$. Finally,

$$
(\forall n \in \mathbf{N}): \ \mathbf{R} \supseteq (-n/2, n/2) \Rightarrow m^*(\mathbf{R}) \geq n
$$

which implies that $m^*(\mathbf{R}) = \infty$.