CONTENT OF THE LECTURE OF MAY 27TH, 2014

Notation 1. Suppose that (A, \leq) is a p.o.c (partially ordered class) and $B \subseteq A$ is a non-empty subclass. Then

- (i) if *B* has a least element, we denote it with min(B) ("minimum of *B*")
- (ii) if *B* has a greatest element, we denote it with max(B) ("maximum of B")

Definition 1 (Upper bound). (A, \leq) p.o.c , $B \subseteq A$ non-empty.

 $u \in A$ is an *upper bound* (u.b.) of *B* if

$$x \leq u(\forall x \in B).$$

Example 1. $A = \{x, y, z\}, B = \{x, y\}$ and

$$R = id_A \cup \{(x, y), (y, z), (x, z)\}$$

y and *z* are upper bounds of *B*.

Example 2 (Upper bounds may not exist). $(A, \leq) = (\mathbf{N}, \leq)$. If $B = 2\mathbf{N}$, then *B* does not have upper bounds. On the contrary,

$$x \leq u(\forall x \in 2\mathbf{N}).$$

Then, $2u \in 2\mathbf{N} \Rightarrow 2u \leq u$ which is false.

Definition 2 (Classes bounded from above). $B \subseteq A$ is bounded from above, if there exists an u.b. for *B* in *A*.

Notation 2. Given, $B \subseteq A$, u(B) is the class of upper bounds of *B* in *A*.

Then, *B* bounded from above implies $u(B) \neq \emptyset$.

Definition 3 (Supremum). Let $B \subseteq A$ be such that $u(B) \neq \emptyset$. If u(B) has the least element, then min(u(B)) is called *least upper bound* (l.u.b) of *B* in *A* or *supremum* of *B* in *A*.

Notation 3 (l.u.b.). For the l.u.b., the notation $\sup_{A}(B)$ is used.

Example 3. In Example 1, $u(B) = \{y, z\}$ and $\min(u(B)) = \sup_A B = y$.

Example 4 (Classes bounded from above without a l.u.b.). $A = \{a, b, c, d, u_1, u_2\}, B = \{a, b, c, d\}$ and

 $R = id_A \cup \{(a, c), (b, d), (a, u_1), (a, u_2), (b, u_1), (b, u_2), (c, u_1), (c, u_2)\}$

 $u(B) = \{u_1, u_2\}$ but $\nexists \min(u(B))$ because u_1 and u_2 are not comparable.

Definition 4. (A, \leq) p.o.c , $B \subseteq A$

- (i) $\ell \in A$ is a lower bound (l.b.) of *B* if $\ell \leq x (\forall x \in B)$
- (ii) *B* is bounded from below if it has a lower bound
- (iii) $\lambda(B)$ is the class of lower bounds of *B* ("lambda of B")
- (iv) if $\lambda(B) \neq \emptyset$ and max($\lambda(B)$) exists, it is called *infimum* of *B* in *A* and the notation inf_{*A*} *B* is used.

Example 5. In Example 1, instead of (A, R), we consider (A, R^{-1}) . Then $B = \{x, y\}$ is bounded from below.

Example 6. In Example 4, we consider (A, R^{-1}) , then *B* is bounded from below but $\nexists \inf_A(B)$.

Given a (A, \leq) p.o.c , we consider

 $S := \{B \subseteq A \mid B \text{ is a chain of } A\}$

and the order relation

 $B_1 \leq B_2 \Leftrightarrow B_1 \subseteq B_2.$

Proposition 1. Every chain in (S, \subseteq) has a supremum.

Proof. C chain.

We define

$$m := \cup C \subseteq A.$$

We claim that

(1)
$$m \in S$$

(2) $m \in u(C)$
(3) $m = \sup_{S} C$.

Proof of the claim:

(1) *m* is a chain: $x, y \in m$

$$x \in m \Rightarrow \exists B_1 \in C \cdot \ni \cdot x \in B_1$$

and

$$y \in m \Rightarrow \exists B_2 \in C \cdot \ni \cdot y \in B_2.$$

C is a chain. Then $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. For instance, if $B_1 \subseteq B_2$

 $x, y \in B_2$.

 B_2 is a chain implies *x* is comparable to *y*.

- (2) $m \in u(C) \Leftrightarrow B \subseteq m(\forall B \in C)$, that is $B \subseteq \cup C(\forall B \in C)$. This follows from the definition of generalized union.
- (3) let *u* be an u.b. of *C*. We claim that $m \le u$.

$$\forall B \in C(B \subseteq u) \Rightarrow \cup C \subseteq u \Rightarrow m \subseteq u.$$

Definition 5 (Well-ordered class). A (A, \leq) p.o.c is a well-ordered class (w.o.c) if and only min(*B*) exists for every $B \subseteq A$ non-empty.

Example 7 (A w.o.c). In Example 1, we have a w.o.c. For instance

$$\min(A) = x$$
, $\min(\{x, y\}) = x$, $\min(\{x, z\}) = x$...

Example 8 (A p.o.c. which is not a w.o.c.). $A = \{x, y, z, t\}$ and

$$R = id_A \cup \{(z, y), (z, x), (t, y), (t, x), (y, x)\}.$$

 $\nexists \min(\{z, t\}) \text{ and } \nexists \min(\{z, t, y\}).$

Example 9 (A f.o.c which is not a w.o.c). (\mathbf{Z}, \leq) , relative integers. Is a fully ordered class. However, it is not a w.o.c.

$$B := 2\mathbf{Z} \subseteq \mathbf{Z}$$
.

B is not bounded from below.

On the contrary,

$$\ell \leq x (\forall x \in 2\mathbf{Z})$$

the integer

then $\begin{aligned} -2(|\ell|+1) \in 2\mathbb{Z} \\ \ell \leq -2(|\ell|+1) \end{aligned}$ which is false. F.o.c. are not w.o.c, however **Proposition 2** (W.o.c are f.o.c). (A, \leq) p.o.c. Then (A, \leq) w.o.c \Rightarrow f.o.c.

Proof. $x, y \in A \Rightarrow x$ is comparable to y.

$$B:=\{x,y\}$$

A w.o.c $\Rightarrow \exists \min(B)$. $\min(B) = x \Rightarrow x \le y$

 $\min(B) = y \Rightarrow y \le x.$