CONTENT OF THE LECTURE OF MAY 27TH, 2014

Notation 1. Suppose that (A, \leq) is a p.o.c (partially ordered class) and $B \subseteq A$ is a non-empty subclass. Then

- (i) if *B* has a least element, we denote it with $\min(B)$ ("minimum of *B"*)
- (ii) if *B* has a greatest element, we denote it with $max(B)$ ("maximum of B")

Definition 1 (Upper bound). (A, \leq) p.o.c, $B \subseteq A$ non-empty.

 $u \in A$ is an upper bound (u.b.) of *B* if

$$
x \le u(\forall x \in B).
$$

Example 1. $A = \{x, y, z\}$, $B = \{x, y\}$ and *R* = id_A ∪ {(*x*, *y*), (*y*, *z*), (*x*, *z*)}

y and *z* are upper bounds of *B*.

Example 2 (Upper bounds may not exist). $(A, \leq) = (\mathbf{N}, \leq)$. If $B = 2\mathbf{N}$, then *B* does not have upper bounds. On the contrary,

$$
x \le u(\forall x \in 2\mathbf{N}).
$$

Then, $2u \in 2N \Rightarrow 2u \leq u$ which is false.

Definition 2 (Classes bounded from above). $B \subseteq A$ is bounded from above, if there exists an u.b. for *B* in *A*.

Notation 2. Given, $B \subseteq A$, $u(B)$ is the class of upper bounds of *B* in *A*.

Then, *B* bounded from above implies $u(B) \neq \emptyset$.

Definition 3 (Supremum). Let *B* \subseteq *A* be such that *u*(*B*) \neq \emptyset . If *u*(*B*) has the least element, then $min(u(B))$ is called *least upper bound* (l.u.b) of *B* in *A* or supremum of *B* in *A*.

Notation 3 (l.u.b.). For the l.u.b., the notation $\sup_A(B)$ is used.

Example 3. In Example [1,](#page-0-0) $u(B) = \{y, z\}$ and $min(u(B)) = sup_A B = y$.

Example 4 (Classes bounded from above without a l.u.b.). $A = \{a, b, c, d, u_1, u_2\}$, $B = \{a, b, c, d\}$ and

 $R = id_A \cup \{(a, c), (b, d), (a, u_1), (a, u_2), (b, u_1), (b, u_2), (c, u_1), (c, u_2)\}\$

 $u(B) = {u_1, u_2}$ but $\text{Im}(u(B))$ because u_1 and u_2 are not comparable.

Definition 4. (A, \leq) p.o.c, $B \subseteq A$

- (i) $\ell \in A$ is a lower bound (l.b.) of *B* if $\ell \leq x(\forall x \in B)$
- (ii) *B* is bounded from below if it has a lower bound
- (iii) $\lambda(B)$ is the class of lower bounds of *B* ("lambda of *B*")
- (iv) if $\lambda(B) \neq \emptyset$ and max($\lambda(B)$) exists, it is called infimum of *B* in *A* and the notation inf_{*A*} *B* is used.

Example 5. In Example [1,](#page-0-0) instead of (A, R) , we consider (A, R^{-1}) . Then $B =$ ${x, y}$ is bounded from below.

Example 6. In Example [4,](#page-0-1) we consider (A, R^{-1}) , then *B* is bounded from below but \exists inf_{*A*}(*B*).

Given a (A, \leq) p.o.c, we consider

 $S := \{ B \subseteq A \mid B \text{ is a chain of } A \}$

and the order relation

 $B_1 \leq B_2 \Leftrightarrow B_1 \subseteq B_2$.

Proposition 1. Every chain in (S, \subseteq) has a supremum.

Proof. C chain.

We define

$$
m:=\cup C\subseteq A.
$$

We claim that

(1)
$$
m \in S
$$

(2) $m \in u(C)$
(3) $m = \sup_S C$.

Proof of the claim:

(1) *m* is a chain: $x, y \in m$

$$
x \in m \Rightarrow \exists B_1 \in C \cdot \exists \cdot x \in B_1
$$

and

$$
y \in m \Rightarrow \exists B_2 \in C \cdot \ni \cdot y \in B_2.
$$

C is a chain. Then $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. For instance, if $B_1 \subseteq B_2$

 $x, y \in B_2$.

 B_2 is a chain implies *x* is comparable to *y*.

- (2) $m \in u(C) \Leftrightarrow B \subseteq m(\forall B \in C)$, that is $B \subseteq \cup C(\forall B \in C)$. This follows from the definition of generalized union.
- (3) let *u* be an u.b. of *C*. We claim that $m \le u$.

$$
\forall B \in C (B \subseteq u) \Rightarrow \cup C \subseteq u \Rightarrow m \subseteq u.
$$

 \Box

Definition 5 (Well-ordered class). A (A, \leq) p.o.c is a well-ordered class (w.o.c) if and only $min(B)$ exists for every *B* \subseteq *A* non-empty.

Example 7 (A w.o.c)**.** In Example [1,](#page-0-0) we have a w.o.c. For instance

$$
min(A) = x
$$
, $min({x,y}) = x$, $min({x,z}) = x$...

Example 8 (A p.o.c. which is not a w.o.c.). $A = \{x, y, z, t\}$ and

$$
R = id_A \cup \{(z,y), (z,x), (t,y), (t,x), (y,x)\}.
$$

 $\overrightarrow{\pm}$ min({*z*, *t*}) and $\overrightarrow{\pm}$ min({*z*, *t*, *y*}).

Example 9 (A f.o.c which is not a w.o.c). (Z, \leq) , relative integers. Is a fully ordered class. However, it is not a w.o.c.

$$
B:=2\mathbf{Z}\subseteq \mathbf{Z}.
$$

B is not bounded from below.

On the contrary,

$$
\ell \leq x(\forall x \in 2\mathbf{Z})
$$

the integer

The integer

\n
$$
-2(|\ell| + 1) \in 2\mathbb{Z}
$$
\nthen

\n
$$
\ell \le -2(|\ell| + 1)
$$
\nwhich is false.

F.o.c. are not w.o.c, however

Proposition 2 (W.o.c are f.o.c). (A, \leq) p.o.c . Then (A, \leq) w.o.c \Rightarrow f.o.c.

Proof. $x, y \in A \Rightarrow x$ is comparable to *y*.

$$
B:=\{x,y\}
$$

A w.o. $c \Rightarrow \exists min(B)$.

 $min(B) = x \Rightarrow x \leq y$

 $min(B) = y \Rightarrow y \leq x.$