CONTENT OF THE LECTURE OF MAY 30TH, 2014

Part 1. Partially Ordered Classes

Theorem 1 (Hausdörff Maximum Principle). Given a p.o.c (A, \leq) , if *A* is a set, then there exists a maximal chain.

Definition 1 (Inductive property). A p.o.c (A, \leq) has the inductive property if every chain has a l.u.b (least upper bound).

Example 1. Given an order relation (A, \leq) , we can define

$$S := \{ B \subseteq A \mid B \text{ is a chain } \}.$$

In *S*, there is an order relation given by $B_1 \leq B_2$ if and only $B_1 \subseteq B_2$. Then (S, \leq) has the inductive property. In fact, in Proposition 1, we proved that if $C \subseteq S$ is a chain, then

$$\sup_{S}(C) = \bigcup C$$

Example 2. (N, \leq) does not have the inductive property: for instance, N and 2N (even numbers) are chains, but have no upper bound (check Example 2).

Theorem 2 (Zorn's Lemma). A partially ordered set (A, \leq) with the inductive property has a maximal element.

Proof. By the Hausdörff Maximal Principle, there exists a maximal chain, *B*.

Since (A, \leq) has the inductive property, there exists $u := \sup_{A}(B)$.

We claim that $u \in B$ and is a maximal element of A, that is

$$\forall y \in A (u \le y \Rightarrow u = y).$$

Define $C := B \cup \{y\}$. We show that *C* is a chain.

Given $x_1, x_2 \in C$, we have four different cases:

- (i) $x_1, x_2 \in B$. Since *B* is a chain, x_1 is comparable to x_2 .
- (ii) $x_1 \in B, x_2 \in \{y\}$. Then $x_2 = y$. Since *u* is an upper bound of *B* and $u \leq y$, we have $x_1 \leq u \leq y = x_2$
- (iii) $x_1, x_2 \in \{y\} \Rightarrow x_1 = x_2$. Then the two elements are comparable because they are equal
- (iv) the last case $x_2 \in B$ and $x_1 \in \{y\}$ is similar to the second case.

Then *C* is a chain and $B \subseteq C$. Since *B* is a maximal chain, we have B = C. Then

$$y \in B$$
.

Since *u* is an upper bound of *B*, $y \le u$ which, together with $u \le y$, give u = y. \Box

Part 2. Natural numbers

Definition 2. Given a set *y*, we call $y^+ := y \cup \{y\}$ the successor set of *y*.

Example 3.

 $\emptyset^+ = \emptyset \cup \{\emptyset\} = \{\emptyset\} = \{0\} = 1.$ 1⁺ = 1 \cup \{1\} = \{0\} \cup \{1\} = \{0,1\} = 2. That is 0^{++} = 2.

Clearly, y^+ can be taken as a the definition of "y + 1" by means of sets.

Part 3. Solutions of exercises 1 and 3 of Week Thirteen

Exercise 1. Prove, by showing an example (A, \leq) , that even when there is only one maximal element *m*, it is not the greatest element.

Solution. Let (N, R) be the usual partial ordering on the set of natural numbers.

We consider the set $\omega = \mathbf{N} \cup \{0\}$ and $T := R \cup \{(0,0), (1,0)\}$. The order relation (ω, T) has a unique maximal element, namely 0.

In fact, $0 \le y \Rightarrow (0, y) \in T$. Since $(0, y) \notin R$, there holds

$$(0,y) \in \{(0,0), (1,0)\}.$$

Then (0, y) = (0, 0) (because $0 \neq 1$). Then y = 0.

Exercise 2. Express in terms of graph inclusions the statement: (A, R) is a fully ordered class (for instance, the symmetry is expressed in terms of graphs inclusions by the property $id_A \subseteq R$).

Solution. (*A*, *R*) is a fully ordered class if and only if $A \times A \subseteq R \cup R^{-1}$.