Theorem 3.10, page 102: if *P* is a partition of a set *A*, then

$$
xGy \Leftrightarrow \exists B \in P \cdot \exists \cdot x, y \in B
$$

(i) is an equivalence relation and (ii) $A/G = P$.

Proof. G is an equivalence relation.

G is reflexive: let *x* ∈ *A*. Since *P* is a partition, $∪P = A$. Then, there exists *B* ∈ *P* such that $x \in B$. Then $x, x \in B$. Then xGx .

G is symmetric: $xGy \Rightarrow yGx$. Suppose that xGy . Then,

$$
\exists B \in P \cdot \exists \cdot x, y \in B \Rightarrow y, x \in B.
$$

Then *yGx*.

G is transitive: $xGy \land yGz \Rightarrow xGz$.

 $xGy \Rightarrow \exists B \in P \cdot \exists \cdot x, y \in B;$

$$
yGz \Rightarrow \exists B' \in P \cdot \exists \cdot y, z \in B'.
$$

Then $y \in B \cap B'$. Since *P* is a partition, $B = B'$.

(ii). $A/G = P$. We divide the proof in three parts

(ii.1) For every *G*_{*x*} there exists *B* \in *P* such that *G*_{*x*} \subseteq *B*. Since *P* is a partition, there exists *B* \in *P* such that *x* \in *B*. We have *G_{<i>x*} \subseteq *B*:

 $z \in G_x \Rightarrow xGz \Rightarrow \exists C \in P \cdot \exists \cdot x, z \in C$.

Then *x* \in *B* \cap *C*. Then *B* = *C*. Then *z* \in *B*

(ii.2) for every *B* \in *P* there exists *G*_{*x*} \in *A*/*G* such that *B* \subseteq *G*_{*x*}. If $B \in P$, then $B \neq \emptyset$ because *P* is a partition. Then

 $\exists x \in A \cdot \exists \cdot x \in B.$

We prove that *B* \subseteq *G*_{*x*}. Suppose that *y* \in *B*. Then

$$
(y \in B) \land (x \in B) \Rightarrow xGy \Rightarrow y \in G_x
$$

(ii.3) *A*/*G* \subseteq *P*. Given *G*_{*x*} \in *A*/*G*, from (ii.1) there exists *B* \in *P* such that

 $G_r \subset B$.

From (ii.2), there exists $G_v \in A/G$ such that

$$
G_x \subseteq B \subseteq G_y.
$$

Then $G_x \subseteq G_y$. Then $G_x = G_y$. Then

$$
B=G_x.
$$

Hence $G_x \in P$.

P ⊆ *A*/*G*. Given *C* ∈ *P*, from (ii.2) $\exists x \in A \cdot \exists \cdot C \subseteq G_x$. From (ii.1), there exists *B* such that $C \subseteq G_x \subseteq B$. Then $B = C = G_x$. Then $C \in A/G$.

 \Box

EXERCISES OF WEEK ELEVEN

Exercise 1.

1. Given a function $f: A \to B$ and $C_1, C_2 \subseteq A$ and $D_1, D_2 \subseteq B$, show that $\bar{f}(C_1 \cup C_2) =$ $\bar{f}(C_1) \cup \bar{f}(C_2)$ and $\bar{f}(C_1 \cap C_2) \subseteq \bar{f}(C_1) \cap \bar{f}(C_2)$

2. show that in some case the equality does not hold. That is, there are f , A , B , C_1 , $C_2 \subseteq$ *A* such that $\bar{f}(C_1 \cap C_2) \neq \bar{f}(C_1) \cap \bar{f}(C_2)$

3. let $C \subseteq A$ be non-empty. Then $\bar{f}(C) \neq \emptyset$

- $4. \bar{f}(D_1 \cup D_2) = \bar{f}(D_1) \cup \bar{f}(D_2)$
- 5. $\bar{f}(D_1 \cap D_2) = \bar{f}(D_1) \cap \bar{f}(D_2)$

Exercise 2. Let *A* be a set and $f: A \rightarrow A$ be an invertible function. Prove that there exists a function *g* such that

$$
f\circ g=\varnothing=g\circ f
$$

Exercise 3. Show that there are classes *A*, *B* such that $\cup A \subseteq \cup B$ and $A \nsubseteq B$.

Exercise 3.2

Each of the following describes a relation in the set $\mathbb Z$ of integers. State, for each one, whether it has any of the following properties: reflexive, symmetric, transitive.

(1) $G = \{(x, y) | x + y < 3\}.$

(2) $G = \{(x, y) | x \text{ divides } y\}.$

- (3) $G = \{(x, y) \mid x \text{ and } y \text{ are relatively prime}\}.$
- (4) $G = \{(x, y) | x + y \text{ is an even number}\}.$

(5) $G = \{(x, y) \mid x = y \text{ or } x = -y\}.$

(6) $G = \{(x, y) | x + y$ is even number and x is a multiple of y.

- (7) $G = \{(x, y) | y = x + 1\}.$
- 2. Let G be a relation in A . Prove each of the following.
	- (1) G is irreflexive if and only if $G \cap 1_G = \emptyset$.
	- (2) G is asymmetric if and only if $G \cap G^{-1} = \emptyset$.
	- (3) G is intransitive if and only if $(G \circ G) \cap G = \emptyset$.

 $\binom{3}{3}$ Show that if G is an equivalence relation in A, then $G \circ G = G$.

- 4. Let $\{G_i\}_{i\in I}$ be an indexed family of equivalence relations in A. Show that $\bigcap_{i \in I} G_i$ is an equivalence relation in A.
- 5. Let $\{G_i\}_{i\in I}$ be an indexed family of order relations in A. Show that $\bigcap_{i\in I} G_i$ is an order relation in A .
- 6. Let H be a reflexive relation in A . Prove that for any relation G in A , $G \subseteq H \circ G$ and $G \subseteq G \circ H$.
- 7. Let G be a reflexive relation in A and let H be a reflexive and transitive relation in A. Show that $G \subseteq H$ if and only if $G \circ H = H$. (In particular, this holds if G and H are equivalence relations.)
- 8. Show that the inverse of an order relation in A is an order relation in A .
- 9. Let G be a relation in A . Show that G is an order relation if and only if $G \cap G^{-1} = 1_A$ and $G \circ G = G$.
- 10. Let G and H be equivalence relations in A. Show that $G \circ H$ is an equivalence in A if and only if $G \circ H = H \circ G$.
- 11. Let G and H be equivalence relations in A. Prove that $G \cup H$ is an equivalence in A if and only if $G \circ H \subseteq G \cup H$ and $H \circ G \subseteq G \cup H$.
- 12. Let G be an equivalence relation in A and let H and J be arbitrary relations in A. Prove that if $G \subseteq H$ and $G \subseteq J$, then $G \subseteq H \circ J$.