EXERCISES OF WEEK ELEVEN

Exercise 1.

1. Given a function
$$f \colon A \to B$$
 and $C_1, C_2 \subseteq A$ and $D_1, D_2 \subseteq B$, show that $\overline{f}(C_1 \cup C_2) = \overline{f}(C_1) \cup \overline{f}(C_2)$

and

$$\bar{f}(C_1 \cap C_2) \subseteq \bar{f}(C_1) \cap \bar{f}(C_2)$$

2. show that in some case the equality does not hold. That is, there are $f, A, B, C_1, C_2 \subseteq A$ such that $\overline{f}(C_1 \cap C_2) \neq \overline{f}(C_1) \cap \overline{f}(C_2)$

3. let $C \subseteq A$ be non-empty. Then $\overline{f}(C) \neq \emptyset$

4.
$$\bar{\bar{f}}(D_1 \cup D_2) = \bar{\bar{f}}(D_1) \cup \bar{\bar{f}}(D_2)$$

5. $\bar{\bar{f}}(D_1 \cap D_2) = \bar{\bar{f}}(D_1) \cap \bar{\bar{f}}(D_2)$

Solution.

1. Since
$$C_1, C_2 \subseteq C_1 \cup C_2$$
, we have $\overline{f}(C_1), \overline{f}(C_2) \subseteq \overline{f}(C_1) \cup \overline{f}(C_2)$. Then
 $\overline{f}(C_1) \cup \overline{f}(C_2) \subseteq \overline{f}(C_1 \cup C_2)$.

Let $y \in \overline{f}(C_1 \cup C_2)$. Then, there exists $x \in C_1 \cup C_2$ such that f(x) = y. If $x \in C_1$, then $y \in \overline{f}(C_1)$. Otherwise, $y \in \overline{f}(C_2)$

2. let $y \in \overline{f}(C_1 \cap C_2)$. Then, there exists $x \in C_1 \cap C_2$ such that f(x) = y; $x \in C_1 \cap C_2 \Rightarrow x \in C_1$ which implies $y = f(x) \in \overline{f}(C_1)$. Since $x \in C_2$, $y \in \overline{f}(C_2)$. The equality does not hold, in general. If we choose

 $A = 2, \quad B = 1, \quad f := \{(0,0), (1,0)\}, \quad C_1 = \{0\}, \quad C_2 = \{1\}$

then $C_1 \cap C_2 = \emptyset$ and $\overline{f}(\emptyset) = \emptyset$. However,

$$\bar{f}(C_1) = \bar{f}(C_2) = \{0\}$$

which implies $\overline{f}(C_1) \cap \overline{f}(C_2) = \{0\}$ 3. since $C \neq \emptyset$ there exists $x \in C$. Then $f(x) \in \overline{f}(C)$. Then $\overline{f}(C) \neq \emptyset$ 4.

$$\begin{aligned} x \in \bar{f}(D_1 \cup D_2) \Leftrightarrow f(x) \in D_1 \cup D_2 \Leftrightarrow (f(x) \in D_1) \lor (f(x) \in D_2) \\ \Leftrightarrow (x \in \bar{f}(D_1)) \lor (x \in \bar{f}(D_2)) \Leftrightarrow x \in \bar{f}(D_1) \cup \bar{f}(D_2) \end{aligned}$$

5.

$$\begin{aligned} x \in \bar{f}(D_1 \cap D_2) \Leftrightarrow f(x) \in D_1 \cap D_2 \Leftrightarrow (f(x) \in D_1) \land (f(x) \in D_2) \\ \Leftrightarrow (x \in \bar{f}(D_1)) \land (x \in \bar{f}(D_2)) \Leftrightarrow x \in \bar{f}(D_1) \cap \bar{f}(D_2) \end{aligned}$$

Date: 2014, May 16.

Exercise 2. Let *A* be a set and $f: A \rightarrow A$ be an invertible function. Prove that there exists a function *g* such that

$$f \circ g = \emptyset = g \circ f$$

Solution. Since *A* is a set, $A' \neq \emptyset$. We define $g := id_{A'}$. Then $f \circ g = g \circ f = \emptyset$ because $\operatorname{ran}(g) \cap \operatorname{dom}(f) = \operatorname{ran}(f) \cap \operatorname{dom}(g) = \emptyset$.

Exercise 3. Show that there are classes *A*, *B* such that $\cup A \subseteq \cup B$ and $A \not\subseteq B$.

Solution. Let $A = \{\{0,1\}\}$ and $B = \{\{0\}, \{1\}\}$. Then $\cup A = \cup B = \{0,1\}$

but $A \not\subseteq B$.