SOLUTIONS OF THE ASSIGNMENT OF WEEK FOURTEEN

Exercise (Exercise 4, Week Thirteen).

- (i) If a = b, then $S_a = S_b$.
- (ii) is it true that if $S_a = S_b$, then a = b?

Solution.

- (i) $x \in S_a \Rightarrow x < a \Rightarrow (x, a) \in R$ and $x \neq a$. Since a = b, (x, a) = (x, b) and $x \neq b$. Hence, x < b
- (ii) in general, it is not true. For instance, let

$$A = \{0, 1, 2\}, \quad R := id_A \cup \{(0, 1), (0, 2)\}.$$
 Then $S_1 = S_2 = \{0\}$, but $1 \neq 2$.

Exercise (Exercise 3, page 98 of the book). Let *G* be an equivalence relation on *A*. Then $G \circ G = G$.

Solution. Since *G* is an equivalence relation, it is transitive and $G \circ G \subseteq G$. We show the converse inclusion: let $(x, y) \in G$. Since *G* is reflexive, $(x, x) \in G$. Then, we can obtain (x, y) as composition of the two ordered pairs $(x, x), (x, y) \in G$. Then $(x, y) \in G \circ G$.

Exercise (Exercise 1, page 146 of the book). Let (A, \leq) be a f.o.c. (fully ordered class) define *B* the class

 $S \in B \Leftrightarrow S$ is a set and a section.

Then, (B, \leq) is a f.o.c with the order relation $S_1 \leq S_2 \Leftrightarrow S_1 \subseteq S_2$.

Solution. We argue by contradiction. Let S_1 and S_2 be two sections which are not comparable. Then, there are

 $y \in S_1 \cap S'_2$, $z \in S_2 \cap S'_1$.

Since (A, \leq) is a f.o.c, either $y \leq z$ or $z \leq y$. If $y \leq z$, then $z \in S_2 \Rightarrow y \in S_2$, because S_2 is a section, and we obtain a contradiction with $y \notin S_2$. Similarly, if $z \leq y$, we obtain a contradiction with $z \notin S_1$.

Date: 2014, June 11.