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The spectral flow is an integer associated to a continuous path of
operators on a Hilbert space H

A : [0, 1] → L (H)

A(t) is a Fredholm operator and A(t) = A(t)∗

sf(A) ∈ Z.

It appeared first in the series of papers of M. F. Atiyah, V. K. Patodi and
I. M. Singer (Math. Proc. Cam. Phil. Soc., 1975–1976) and ascribed to
a joint study of Atiyah and G. Lusztig.

The spectral flow is described as “net number of eigenvalues that change
sign (from − to +) while the parameter of the family is completing a
period” (M. F. Atiyah, 1976).

In the same paper is defined as the intersection index of the two subsets
of [0, 1]× R

T := {(t, λ) |λ ∈ σ(A(t))}

{(t, 0) | 0 ≤ t ≤ 1}.
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In literature, the spectral flow is strictly related to

1 K -theory (M. F. Atiyah and I. M. Singer, 1969);

2 the Maslov index in Floer Homology (J. Robbin and S. Salamon,
1995);

3 the winding number of the determinant π1(U(∞)) → Z (J. Phillips,
1996) where

U(∞) :=

∞
⋃

n=1

U(n,C).

4 bifurcation for Strongly-Indefinite functionals (P. M. Fitzpatrick and
J. Pejsachowicz, JFA, JDE).
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Fredholm operators

We recall that an operator A : E → F is Fredholm if

ker(A) ⊂ E has finite dimension,

im(A) ⊂ F is closed and has finite co-dimension

and the Fredholm index of A is, by definition

ind(A) := dim
(

ker(A)
)

− codim
(

im(A)
)

.

We denote with F (E ,F ) the set of Fredholm operators.

The notation
F

sa(H) = {A |A∗ = A, A ∈ F (H)}.

is used.
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Theorem (M. F. Atiyah, J. Robbin and D. Salamon (1995), J. Phillips
(1996))

The spectral flow
sf : ΩF

sa(H) → Z

is invariant by fixed-endpoints homotopies.

If H is a separable, there is a unique non simply-connected component of
F sa(H), denoted by F sa

∗
(H), where

sf : π1(F
sa
∗
(H)) → Z

is an isomorphism.
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The essentially hyperbolic operators

We wish to determine what are the properties of the group
homomorphism when H is replaced by an arbitrary Banach space.

We use the definition of spectral flow given by Y. Long and C. Zhu
(CAM, 1999) for Banach spaces.
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The essentially hyperbolic operators

Given A : E → E , we define the essential spectrum

σe(A) = {λ ∈ σ(A) |A − λI 6∈ F (E )} ⊂ C.

An operator A ∈ L (E ) is called essentially hyperbolic if

σe(A) ∩ {re (z) = 0} = ∅.

Thus, the spectrum of σ(A) can be written as

σ(A) = σe(A) ∪ {λ1, . . . , λk}

where λk are eigenvalues of finite multiplicity

eH (E ) =
{

A ∈ L (E ) |σe(A) ∩ {re (z) = 0} = ∅
}

.
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The essentially hyperbolic operators

Properties of eH(E )

1 eH (E ) ⊂ L (E ) is an open subset;

2 in every connected component there a symmetry 2P − I (that is, P
is a projector)

3 given a pair of projectors P and Q, 2P − I and 2Q − I belong to the
same component if and only if there exists an invertible operator
T ∈ GL(E ) such that

T is path-connected to I and TPT−1 − Q is compact.
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The space of projectors

Given a Banach space E , we say that P ∈ L (E ) is a projector if

P2 = P .

We use the notation

P(E ) := {P ∈ L (E ) |P2 = P}.

1 It is a closed, locally path-connected subset;

2 inherits a structure of analytical sub-manifold;

3 π1(P(E ),P) ∼= π0(GL(ker(P)), I )× π0(GL(im(P))).
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The relative dimension

Given two projectors P ,Q such that P − Q is a compact, the operator

Q ∈ L (im(P), im(Q))

is Fredholm. We denote

[P − Q] := ind
(

Q : im(P) → im(Q)
)

.

If im(P), im(Q) have finite dimension

[P − Q] = dim(im(P))− dim(im(Q)).

Pc(E ;P) := {Q ∈ P(E ) |Q − P is compact}.

1 Q is path-connected to P in Pc(E ;P) if and only if [P − Q] = 0.

2 π1(Pc(E ;P),P) ∼= Z2.
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The definition of spectral flow

Lemma (G., TMNA, 2010)

Given a path A ∈ C ([0, 1], eH (E )), there exists a continuous path

P : [0, 1] → P(E )

such that P(t)− P+(A(t)) is compact.

With P+(A(t)) we denote the spectral projector.

Definition of spectral flow

We define

sf(A) := [P(0)− P+(A(0)]− [P(1)− P+(A(1)].

If A is a loop sf(A) = [P(0)− P(1)].
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Some remarks on the definition

The s.f. is invariant for fixed-endpoints homotopies and, for every
P ∈ P(E ), it induces a group homomorphism

sfP : π1(eH (E ), 2P − I ) → Z.

A path P as in the definition is called s-section for {P+(A(t)) | t ∈ R}.

In their paper Y. Long and C. Zhu use s-sections with the additional
requirement

P(t) = P(A(t),Ω(t)).

Thus,

sf(A) =

n
∑

i=1

(

[Pi (ti−1)− Pi (A(ti−1))]− [Pi (ti )− Pi(A(ti ))]
)

.

where Pi are s-section on sub-intervals [ti−1, ti ]
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A characterisation image of sfP

Theorem (G.,TMNA, 2010)

Given a projector P and k ∈ Z, there exists a loop A ∈ Ω(eH (E )) with
base point 2P − I and

sf(A) = k

if and only if P is path-connected to a projector Q such that

im(Q) ⊂ im(P), codim
(

im(Q)
)

= k .
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The image of sfP

sf 6= 0 Every projector P with infinite-dimensional kernel and image in
L∞, Lp, ℓp, ℓ∞, c0,H , . . . , 1 ∈ im(sfP);

sf 6= 0 if E = X × X and

X ∼= Xm, codim(Xm) = m

then im(sf I×0) ∋ m. In particular, when X is isomorphic to closed
subspaces of co-dimension m, but not to subspaces of co-dimension
k for k < m

im(sf I×0) = mZ.

According to W. T. Gowers and B. Maurey (MA, 1997), such Xm

exists at least for m = 2, 7;

sfP = 0 every projector of finite-dimensional image of kernel. If E = Rn or E
is hereditary undecomposable (W. T. Gowers and B. Maurey,
JAMS 1993), sfP = 0 for every P .
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The kernel of sfP

Theorem (G.,TMNA, 2010)

Given a projector P , there exists an exact sequence

π1(Pc(E ;P),P) π1(P(E ),P) π1(eH (E ), 2P − I )
sf

Z.
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The kernel of sfP

When GL(E ) is contractible to a point. For instance, ker(sfP) = 0 in the
cases

1 an infinite-dimensional Hilbert space (N. Kuiper, Topology, 1965)

2 c0 (D. Arlt, Invent. Math., 1966)

3 ℓp (G. Neubauer, Math. Ann., 1967)

4 Lp , L∞, C (K ,C) for a large class of compact K (B. S. Mityagin,
Uspehi Mat. Nauk, 1970).

When E = (ℓ2 × ℓp)× (ℓ2 × ℓp), and P is the projector onto the first
factor,

π1(P(E ),P) ⊇ G ∼= Z

where P is a projector onto ℓ2 × ℓp × 0.

According to A. Douady (Indag. Math., 1968), GL(E ) has infinitely many
connected components.
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Thank you for your attention
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