Traveling wave solutions to the half-wave equations

Daniele Garrisi*¹ Vladimir Georgiev²

¹ Inha University, College of Mathematics Education

 2 Università degli Studi di Pisa, Dipartimento di Matematica "Leonida Tonelli"

2013 KMS Fall Meeting October 26

KORK EX KEY KEY YOUR

This work was supported by the Inha University Research Grant

We consider the half-wave equation

(HW)
$$
(i\partial_t - D)u = |u|^{p-1}u - |u|^{q-1}u
$$

where

$$
u\colon \mathbb{R}_t\times \mathbb{R}_x\to \mathbb{C}
$$

A traveling-wave solution is

$$
u(t,x) = \psi(x - tv)e^{-i\omega t}
$$

where ψ is a solution of the equation

$$
D\psi + i\mathbf{v}\psi' - \omega\psi = -|\psi|^{p-1}\psi + |\psi|^{q-1}\psi
$$

where $2 < p < q < 4$.

Half-wave equations in dimension three and other non-linearities arise in stars collapse (Fröhlich, Jonsson and Lenzmann, Comm. Pure Appl. Math., 2007).

KORK EX KEY KEY YOUR

The existence is obtained by variational method.

We define the energy functional

$$
\mathcal{E}_{\nu}(\psi) = \mathcal{H}_{\nu}(\psi) - \frac{1}{\rho+1} \|\psi\|_{L^{\rho+1}}^{\rho+1} + \frac{1}{q+1} \|\psi\|_{L^{q+1}}^{q+1}
$$

on the constraint

$$
S(\lambda) = \{ \psi \in H^{1/2}(\mathbb{R}) \mid ||\psi||^2_{L^2} = \lambda \}
$$

where

$$
\mathcal{H}_{\mathbf{v}}(\psi) = \frac{1}{2} \left(\|\psi\|_{\dot{H}^{1/2}(\mathbb{R})}^2 + i \int\limits_{-\infty}^{+\infty} \overline{\psi} \nabla \psi \cdot \mathbf{v} \right)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ → 할 → 900

By $D\psi$ we mean the unique L^2 function such that

$$
\mathscr{F}(D\psi)(\xi)=|\xi|\mathscr{F}(\psi)(\xi)
$$

or

$$
\text{P.V.} \int_{-\infty}^{+\infty} \frac{\psi(x) - \psi(y)}{|x - y|^2} dy
$$

The term $\mathcal{H}_{\nu}(\psi)$ is real and

$$
\mathcal{H}_\mathsf{v}(\psi) \geq (1-|\mathsf{v}|) \|\psi\|_{\dot{H}^{1/2}(\mathbb{R})}^2
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Define

$$
I(\lambda):=\inf_{S(\lambda)}\mathcal{E}_v
$$

We prove that if $|v| < 1$ and $I(\lambda) < 0$, then \mathcal{E}_v achieves its infimum. Moreover, given a minimising sequence

 $\mathcal{E}(\psi_n) \to I(\lambda)$

there exists a sequence $(\mathsf{y}_n) \subseteq \mathbb{R}^N$ such that

$$
\psi_n(\cdot+y_n)\to\psi
$$

KORKARYKERKE PROGRAM

in $H^{1/2}(\mathbb{R})$.

We have concentrated-compactness of minimising sequences.

Facts about $I(\lambda)$

1 On $S(\lambda)$ the functional \mathcal{E}_{ν} is bounded from below **2** there exists λ_* such that

$$
\lambda > \lambda_* \Rightarrow I(\lambda) < 0.
$$

It follows from the rescaling $\psi_{\vartheta}:=\vartheta^{-1/2}\psi(x\vartheta^{-1})$

3

$$
I(\lambda) < I(\lambda_0) + I(\lambda - \lambda_0)
$$

for every $0 < \lambda_0 < \lambda$ (sub-additivity property of *I*).

Likewise problems of concentrated compactness are handled in NLS (Benci and Ghimenti, Adv. Nonlinear Stud., 2007) and HW (Guo and Huang, J. Math. Phys., 2012).

Theorem

For every $2 < p < q < 4$ and every $|v| < 1$

 $\mathcal{E}_{\nu}(\psi) = I(\lambda)$

for every λ such that $I(\lambda) < 0$. Given a minimising sequence (ψ_n) there exists a sequence $(y_n)\subseteq \mathbb{R}^N$ and $\psi\in H^{1/2}$ such that

 $\psi_n(\cdot + y_n) \to \psi$.

KED KAD KED KED E MAG

Suppose that for every sequence (y_n) , $\psi_n(\cdot + y_n)$ does not converge in $H^{1/2}(\mathbb{R})$.

We still have a weak limit

$$
\psi_n(\cdot+y_n)\rightharpoonup\psi
$$

Define

$$
\lambda_0:=\|\psi\|_{L^2}^2.
$$

By the lower-semicontinuity of the norm

$$
0\leq \lambda_0<\lambda=\liminf_{n\to\infty}\|\psi_n\|_{L^2}^2
$$

KORKARYKERKE PROGRAM

 $\lambda_0 > 0$ for some (y_n)

$$
I(\lambda) = o(1) + \mathcal{E}_v(\psi_n(\cdot + y_n))
$$

= $\mathcal{E}_v(\psi_n(\cdot + y_n) - \psi) + \mathcal{E}_v(\psi) + o(1)$
 $\geq I(\lambda_0) + I(\lambda - \lambda_0) + o(1)$

while the strict inequality

$$
I(\lambda) < I(\lambda_0) + I(\lambda - \lambda_0)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

holds instead. So, this case is ruled out.

 $\lambda_0 = 0$ for every (y_n)

Proposition

Suppose that $(\psi_n)\subseteq H^1(\mathbb{R})$ is a bounded sequence such that

 $\psi_n(\cdot + \nu_n) \rightharpoonup 0$

for every sequence $(\mathsf{y}_n) \subseteq \mathbb{R}^N$. Then

 $\|\psi_n\|_{L^p}\to 0$

for every $2 < p < 4$.

If that happens,

 $I(\lambda) \geq 0$.

KOD KAP KED KED E VAR

yielding a contradiction.

If $2 < p < q < 4$, the non-linear half-wave equation is globally well-posed.

Definition

A set $\Gamma\subseteq H^{1/2}(\mathbb{R})$ is said *orbitally stable* if and only if for every $\delta>0$ there exists $\varepsilon > 0$ such that

$$
dist(\psi, \Gamma) < \delta \Rightarrow dist(u(t, \cdot), \Gamma) < \varepsilon
$$

for every $t > 0$.

For u

$$
u(0,x)=\psi(x)
$$

KOD KAP KED KED E VAR

and u solves the half-wave equation.

Theorem

Given λ and v, we define the ground state

$$
\Gamma(\lambda, v) = \{ \psi \in S(\lambda) \mid \mathcal{E}_v(\psi) = I(\lambda) \}
$$

The proof follows from the concentrated-compactness of minimising sequences and the conserved quantities

$$
\mathcal{N}(\psi) = ||\psi||_{L^2(\mathbb{R}^N)}, \quad \mathcal{E}_{\mathsf{v}}(\psi)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

orbital stability of $\Gamma(\lambda, v)$.

By contradiction: suppose that there are sequences

$$
(\psi_n)\subset H^{1/2}(\mathbb{R}),\quad (t_n)\subset\mathbb{R}
$$

and $\varepsilon_0 > 0$

 $dist(\psi_n, \Gamma(\lambda, v)) \to 0$, $dist(\psi_n(t_n, \cdot), \Gamma(\lambda, v)) \geq \varepsilon_0$.

We define

$$
\phi_n := \psi_n(t_n, \cdot), \quad \mathcal{E}(\phi_n) = \mathcal{E}(\psi_n), \quad \mathcal{N}(\phi_n) = \mathcal{N}(\psi_n)
$$

a rescaling

$$
(s_n\psi_n(t_n,\cdot))\subseteq S(\lambda),\quad s_n\to 1
$$

gives a minimising sequence in $I(\lambda)$. Then there exists $\phi \in \Gamma(\lambda, \nu)$ such that

$$
\psi_n(t_n,\cdot+y_n)\to\phi
$$

KED KAD KED KED E YOUR

which contradicts the first assumption.

KED KAD KED KED E YOUR

Suppose that $\mathcal{E}(\psi) = I(\lambda)$. Then

$$
D\psi + i\psi'v = \omega\psi - |\psi|^{p-1}\psi + |\psi|^{q-1}\psi
$$

and

$$
\phi(t,x) = \psi(x+y)e^{-i\omega t}e^{i\alpha t}
$$

is another traveling-wave solution; $\mathcal{N}, \mathcal{E}_{\nu}$ did not change.

So, at least the subset

$$
\Gamma_{v,\lambda}(\psi) = \{ z\psi(x+y) \mid y \in \mathbb{R}, z \in \mathbb{C}, |z| = 1 \}
$$

is contained in $\Gamma_{v,\lambda}$.

We wonder whether

 $\Gamma_{v,\lambda}(\psi) = \Gamma_{v,\lambda}$

[Uniqueness of positive solutions](#page-15-0)

KOD KAP KED KED E VAR

The orbital stability of traveling-waves

Definition

A traveling-wave is orbitally stable if $\Gamma_{v,\lambda}(\psi)$ is orbitally stable

The inclusion

$$
\Gamma(\psi)\subseteq \Gamma
$$

does not imply the stability of $\Gamma(\psi)$ (Cazenave and Lions, Comm. Math. Phys., 1982).

Unless

 $Γ = Γ(ψ)$

or

$$
\Gamma = \Gamma(\psi_1) \cup \cdots \cup \Gamma(\psi_k)
$$

KORK EX KEY KEY YOUR

Pure power $|u|^{p-1}u$ type

The equality is related to the uniqueness of positive solutions to

$$
D\psi + i\psi' \mathbf{v} = \omega \psi - |\psi|^{p-1}\psi + |\psi|^{q-1}\psi
$$

up to space translation.

When $v = 0$ and $\omega = 1$

 $(p > 1)$ $D\psi - \psi + \psi^p = 0$

from Frank and Lenzmann, arXiv:1009.4042. And

$$
\Delta \psi - \psi + \psi^p = 0
$$

by Man Kam Kwong, ARMA, 1989 (Orbital stability of NLS and NLKG)

KOD KAD KED KED E YOUR

Combined power-type $|u|^{p-1}u-|u|^{q-1}u$

In dimension $N = 1$ (NLS, NLKG)

$$
-\psi''=f(\psi)
$$

positive solutions are unique if $f(0)=0, \ f'(0) < 0$ and the first positive zero ζ_0 is simple $f'(\zeta_0)>0$ (Berestycki-Lions, 1983).

When the non-linearity is a combined power-type do we have finitely many (or uniqueness of) solutions to

$$
D\psi = \omega\psi - |\psi|^{p-1}\psi + |\psi|^{q-1}\psi
$$

up to translation and multiplication by $e^{i\alpha}$?