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We consider the half-wave equation

(HW)
(
i∂t − D

)
u = |u|p−1u − |u|q−1u

where
u : Rt × Rx → C

A traveling-wave solution is

u(t, x) = ψ(x − tv)e−iωt

where ψ is a solution of the equation

Dψ + ivψ′ − ωψ = −|ψ|p−1ψ + |ψ|q−1ψ

where 2 < p < q < 4.

Half-wave equations in dimension three and other non-linearities arise in
stars collapse (Fröhlich, Jonsson and Lenzmann, Comm. Pure Appl.
Math., 2007).
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The existence is obtained by variational method.

We define the energy functional

Ev (ψ) = Hv (ψ)− 1

p + 1
‖ψ‖p+1

Lp+1 +
1

q + 1
‖ψ‖q+1

Lq+1

on the constraint

S(λ) = {ψ ∈ H1/2(R) | ‖ψ‖2
L2 = λ}

where

Hv (ψ) =
1

2

‖ψ‖2
Ḣ1/2(R)

+ i

+∞∫
−∞

ψ∇ψ · v
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By Dψ we mean the unique L2 function such that

F (Dψ)(ξ) = |ξ|F (ψ)(ξ)

or

P.V.

+∞∫
−∞

ψ(x)− ψ(y)

|x − y |2
dy

The term Hv (ψ) is real and

Hv (ψ) ≥ (1− |v |)‖ψ‖2
Ḣ1/2(R)
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Define
I (λ) := inf

S(λ)
Ev

We prove that if |v | < 1 and I (λ) < 0, then Ev achieves its infimum.

Moreover, given a minimising sequence

E(ψn)→ I (λ)

there exists a sequence (yn) ⊆ RN such that

ψn(·+ yn)→ ψ

in H1/2(R).

We have concentrated-compactness of minimising sequences.
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Facts about I (λ)

1 On S(λ) the functional Ev is bounded from below

2 there exists λ∗ such that

λ > λ∗ ⇒ I (λ) < 0.

It follows from the rescaling ψϑ := ϑ−1/2ψ(xϑ−1)

3

I (λ) < I (λ0) + I (λ− λ0)

for every 0 < λ0 < λ (sub-additivity property of I ).

Likewise problems of concentrated compactness are handled in NLS
(Benci and Ghimenti, Adv. Nonlinear Stud., 2007) and HW (Guo and
Huang, J. Math. Phys., 2012).
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Theorem

For every 2 < p < q < 4 and every |v | < 1

Ev (ψ) = I (λ)

for every λ such that I (λ) < 0. Given a minimising sequence (ψn) there
exists a sequence (yn) ⊆ RN and ψ ∈ H1/2 such that

ψn(·+ yn)→ ψ.
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Suppose that for every sequence (yn), ψn(·+ yn) does not converge in
H1/2(R).

We still have a weak limit

ψn(·+ yn) ⇀ ψ

Define
λ0 := ‖ψ‖2

L2 .

By the lower-semicontinuity of the norm

0 ≤ λ0 < λ = lim inf
n→∞

‖ψn‖2
L2
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λ0 > 0 for some (yn)

I (λ) = o(1) + Ev (ψn(·+ yn))

= Ev (ψn(·+ yn)− ψ) + Ev (ψ) + o(1)

≥ I (λ0) + I (λ− λ0) + o(1)

while the strict inequality

I (λ) < I (λ0) + I (λ− λ0)

holds instead. So, this case is ruled out.
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λ0 = 0 for every (yn)

Proposition

Suppose that (ψn) ⊆ H1(R) is a bounded sequence such that

ψn(·+ yn) ⇀ 0

for every sequence (yn) ⊆ RN . Then

‖ψn‖Lp → 0

for every 2 < p < 4.

If that happens,
I (λ) ≥ 0.

yielding a contradiction.
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If 2 < p < q < 4, the non-linear half-wave equation is globally well-posed.

Definition

A set Γ ⊆ H1/2(R) is said orbitally stable if and only if for every δ > 0
there exists ε > 0 such that

dist(ψ, Γ) < δ ⇒ dist(u(t, ·), Γ) < ε

for every t ≥ 0.

For u
u(0, x) = ψ(x)

and u solves the half-wave equation.
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Theorem

Given λ and v, we define the ground state

Γ(λ, v) = {ψ ∈ S(λ) | Ev (ψ) = I (λ)}

The proof follows from the concentrated-compactness of minimising
sequences and the conserved quantities

N (ψ) = ‖ψ‖L2(RN ), Ev (ψ)

orbital stability of Γ(λ, v).
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By contradiction: suppose that there are sequences

(ψn) ⊂ H1/2(R), (tn) ⊂ R

and ε0 > 0

dist(ψn, Γ(λ, v))→ 0, dist(ψn(tn, ·), Γ(λ, v)) ≥ ε0.

We define

φn := ψn(tn, ·), E(φn) = E(ψn), N (φn) = N (ψn)

a rescaling
(snψn(tn, ·)) ⊆ S(λ), sn → 1

gives a minimising sequence in I (λ). Then there exists φ ∈ Γ(λ, v) such
that

ψn(tn, ·+ yn)→ φ

which contradicts the first assumption.
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Suppose that E(ψ) = I (λ). Then

Dψ + iψ′v = ωψ − |ψ|p−1ψ + |ψ|q−1ψ

and
φ(t, x) = ψ(x + y)e−iωte iαt

is another traveling-wave solution; N , Ev did not change.

So, at least the subset

Γv ,λ(ψ) = {zψ(x + y) | y ∈ R, z ∈ C, |z | = 1}

is contained in Γv ,λ.

We wonder whether
Γv ,λ(ψ) = Γv ,λ
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The orbital stability of traveling-waves

Definition

A traveling-wave is orbitally stable if Γv ,λ(ψ) is orbitally stable

The inclusion
Γ(ψ) ⊆ Γ

does not imply the stability of Γ(ψ) (Cazenave and Lions, Comm. Math.
Phys., 1982).

Unless
Γ = Γ(ψ)

or
Γ = Γ(ψ1) ∪ · · · ∪ Γ(ψk)
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Pure power |u|p−1u type

The equality is related to the uniqueness of positive solutions to

Dψ + iψ′v = ωψ − |ψ|p−1ψ + |ψ|q−1ψ

up to space translation.

When v = 0 and ω = 1

(p > 1) Dψ − ψ + ψp = 0

from Frank and Lenzmann, arXiv:1009.4042.

And
∆ψ − ψ + ψp = 0

by Man Kam Kwong, ARMA, 1989 (Orbital stability of NLS and NLKG)
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Combined power-type |u|p−1u − |u|q−1u

In dimension N = 1 (NLS, NLKG)

−ψ′′ = f (ψ)

positive solutions are unique if f (0) = 0, f ′(0) < 0 and the first positive
zero ζ0 is simple f ′(ζ0) > 0 (Berestycki-Lions, 1983).

When the non-linearity is a combined power-type do we have finitely
many (or uniqueness of) solutions to

Dψ = ωψ − |ψ|p−1ψ + |ψ|q−1ψ

up to translation and multiplication by e iα?


	Existence of traveling waves
	Orbital stability of the ground state
	Orbital stability of traveling-waves
	Uniqueness of positive solutions


