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Given N ≥ 1 and k ≥ 1, a system of non-linear Klein-Gordon equations is

v i
tt −∆vi + m2

i vi + ∂ziG (v) = 0(k-NLKG)

where
v : R× RN → Ck

and mi > 0, and
G : Ck → R

is continuously differentiable.
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Standing-wave solutions

A standing-wave is a solution to (k-NLKG)

vi (t, x) = ui (x)e−iωi t

where ui ∈ H1(RN ;R) and ωi ∈ R. If

(G0) G (z) = G (|z1|, . . . , |zk |)

then v solves (k-NLKG) if and only if

−∆ui + (m2
i − ω2

i )ui + ∂ziG (u) = 0 1 ≤ i ≤ k

Our goal is to prove the existence of standing-wave solutions which are
radially symmetric

|x | = |y | ⇒ ui (x) = ui (y)

and positive
ui > 0.
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Conserved quantities

If v is a solution to (k-NLKG), then we have conserved quantities
associated to it: the energy, the charges and the hylenic charge.

E(t) =
1

2

ˆ
RN

(
|∂tv(t, x)|2 + |Dv(t, x)|2

)
dx +

ˆ
RN

F (v(t, x))dx

Ci (t) = −Im

ˆ
RN

∂tvi (t, x)vi (t, x)dx

Λ(t) :=
E(t)

|
∑k

i=1 Ci (t)|
.

When Λ < min{mi | 1 ≤ i ≤ k}, solutions to (k-NLKG) do not disperd

lim inf
t→+∞

‖v(t, ·)‖L∞(RN ) > 0.
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Energy and charges of standing-waves

If we define the conserved quantities on standing-wave solutions, we
obtain

E(t) = E (u, ω) :=
1

2

ˆ
RN

|Du(x)|2dx

+
1

2

k∑
i=1

ω2
i

ˆ
RN

ui (x)2dx +

ˆ
RN

F (u(x))dx

Ci (t) = Ci (u, ω) := ωi

ˆ
RN

ui (x)2dx

Λ(t) = Λ(u, ω) :=
E (u, ω)

|
∑k

i=1 Ci (u, ω)|
.

Λ enters in the variational method.
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Variational approach

We define
H r

1 =
{
f ∈ H1 | |x | = |y | ⇒ fi (x) = fi (y)

}
.

E and Ci are defined between the spaces

E ,Ci : H1
r × Rk → R 1 ≤ i ≤ k .

We seek solutions of the elliptic system among the minima of the
functional E over the constraint

M r
σ = {(u, ω) ∈ H1

r × Rk | Ci (u, ω) = σi}

Ci (u, ω) = ωi

ˆ
RN

u2i .
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The sub-critical growth conditions

We require

(G1) |DG (u)| ≤ C (|u|p−1 + |u|q−1)

where

2 < p ≤ q <
2N

N − 2

if N ≥ 3 and
2 < p ≤ q

if N ≥ 2. Then E is well-defined on M r
σ.

(G2) F (z) :=
1

2

k∑
i=1

m2
i z

2
i + G (z) ≥ 0.
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Properties of E

Properties of E

1. Minima of E over M r
σ are solutions to the elliptic system

2. E is coercive

3. if (un, ωn) ∈ H1
r (RN ;Rk)× Rk is a Palais-Smale sequence of E over

M r
σ such that

ωi
n → ωi < m := min{mi | 1 ≤ i ≤ k}

then (un)n≥1 has a converging subsequence.

3. Follows from the Radial Lemma (W. Strauss, Comm. Pure and App.
Math., 1977).

The role of Λ is providing estimates from above of ωi .
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Properties of Λ

Properties of Λ

1. Λ > 0

2. inf Λ =
√

2α where

α := inf
F (z)

|z |2
.

3.

Λ(u, ω) =
1

2

Ç
ξ2(u) +

∑k
i=1 ω

2
i ‖ui‖2L2∑k

i=1 ωi‖ui‖2L2

å
where

ξ(u) =

Ç´
RN |Du|2 + 2

´
RN F (u)´

RN |u|2

å1/2

4. Λ ≥ ξ
5. inf ξ =

√
2α.
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k = 1 (V. Benci and D. Fortunato, Dyn. PDE, 2009)

Λ provides bounds for ω.

4Λ(Λ− ξ) ≥ (ω − ξ)2.

So they assumed that

(G3) inf
F (z)

|z |2
<

m2

2
.

So, ω < m if (Λ− inf(Λ)) is small enough.
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k ≥ 2

We define

(G4) αi := inf
F (z)∑
j 6=i z

2
j

.

For systems we need the following assumption

α < αi for every 1 ≤ i ≤ k .

Lemma (arXiv:1110.6495)

If (G3) and (G4) hold, for every ε > 0 there exists δ > 0 such that

Λ(u, ω) <
√

2α + δ ⇒ |ωi −
√

2α| < (m −
√

2α)/2.

Theorem (arXiv:1110.6495)

If G satisfies assumptions (G0-G4), then there exists an open set Ω ⊂ Rk
+

such that infM r
σ
E is achieved for every σ ∈ Ω.



The existence result when N ≥ 2
Final remarks

Choose δ0 such that

Λ(u, ω) <
√

2α + δ0 ⇒ |ωi −
√

2α| < (m −
√

2α)/2

and (u′, ω′) such that

Λ(u′, ω′) <
√

2α + δ0 σ′i := ω′i

ˆ
RN

(u′i )
2.

Given a minimising Palais-Smale sequence

E (un, ωn)→ inf
M r

σ′
E

then

Λ(un, ωn) =
E (un, ωn)∑

i σ
′
i

≤ E (u′, ω′)∑
i σ
′
i

= Λ(u′, ω′) <
√

2α + δ0.

Thus ωi
n → ωi < m ≤ mi and the property 3 of E applies.
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Minima of Mσ

We compare solutions to

(1) E (u, ω) = inf
M r

σ

E

with solutions to

(2) E (u, ω) = inf
Mσ

E

where
Mσ := {(u, ω) ∈ H1 × Rk | Ci (u, ω) = σi}.

(3) inf
Mσ

E ≤ inf
M r

σ

E .
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Minima of Mσ

infMσ
E = infM r

σ
E

For the minimization problem in higher dimension (E ,Mσ) we account
two references:

V. Benci, C. Bonanno et al., Adv. Nonlinear Stud., 2010 (k = 1)

G., Adv. Nonlinear Stud., 2012 (k = 2)

In both references, it is required that

(S)

ˆ
RN

G (u∗1 , u
∗
2 , . . . , u

∗
k ) ≤

ˆ
RN

G (u1, u2, . . . , uk)

for every ui in L2+(RN) with compact support.

By u∗i we denote the symmetric decreasing rearrangement of ui .
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Minima of Mσ

G is not sensitive to the symmetric rearrangement

Our assumptions (G0-G4) does not include (S). This follows from

Proposition, Arxiv:1110.6495

If k = 2, G is well behaved with respect to the symmetric rearrangement
if and only if the coupling term

G0(u, v) := G (u, v)− G (u, 0)− G (0, v)

is monotonically decreasing on u and v .

G1(u, v) = −u2v2 + u4 + v4(N = 3, k = 2)

G2(u, v) = −u2v2 + u3v3 + u4 + v4.(N = 3, k = 2)

The first non-linearity satisfies (S). The second does not.
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Minima of Mσ

Weaker assumptions than (S)

Despite of examples G2 and G1 we might still have symmetric solutions.
A weaker version of (S) is:

Weaker symmetric rearrangement property

For every u, v ∈ L2+ with compact support there exists y ∈ RN such that

(Sw)

ˆ
RN

G (u∗, v∗(· − y)) ≤
ˆ
RN

G (u, v).

We are interested on a complete characterisation of nonlinearity
satisfying (Sw).

So far, we do not have an example of G where

inf
Mσ

E < inf
M r

σ

E .
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