Orbital Stability of Standing-Wave Solutions to the Non-Linear Schrödinger Equation in dimension one

Daniele Garrisi^{* 1} Vladimir Georgiev²

 $¹$ Inha University, College of Mathematics Education</sup>

²Università degli Studi di Pisa, Dipartimento di Matematica "Leonida Tonelli"

2016 Joint Mathematics Meeting January 7

Slides: <http://poisson.phc.unipi.it/~garrisi/jmm-2016.pdf>

YO A REPART ARM YOUR

This work was supported by the Inha University Research Grant

When we search standing-wave solutions

$$
\phi(t,x) = e^{i\omega t} u(x), \quad \omega \in \mathbb{R}, \quad u \in H^1(\mathbb{R}^n; \mathbb{R})
$$

to the non-linear Schrödinger equation

$$
i\partial_t \phi + \Delta_x \phi - g(\phi) = 0, \ (t, x) \in [0, +\infty) \times \mathbb{R}^n, \ \phi \in \mathbb{C}
$$

we need to solve the equation $\Delta u(x) - g(u(x)) - \omega u(x) = 0$. A pair (u, ω) can be obtained as a critical point to

$$
E: H^{1}(\mathbb{R}^{n}; \mathbb{C}) \to \mathbb{R}
$$

$$
E(v) := \frac{1}{2} \int_{\mathbb{R}^{n}} |\nabla v(x)|^{2} dx + \int_{\mathbb{R}^{n}} G(v(x)) dx, \quad G' = g
$$

on the constraint $S(\lambda) = \{v \in H^1(\mathbb{R}^n; \mathbb{C}) \mid ||v||_{L^2}^2 = \lambda\}.$

$$
G_{\lambda} := \{ v \in H^1(\mathbb{R}^n; \mathbb{C}) \mid v \in S(\lambda), \ E(v) = \inf_{S(\lambda)} E \}.
$$

KORKARYKERKE POLO

Stable subsets of $H^1(\mathbb{R}^n;\mathbb{C})$

Given $v \in H^1(\mathbb{R}^n;\mathbb{C})$ and $t \geq 0$, we define

$$
U_t(v)(x) := \phi(t, x), \quad U_t \colon H^1 \to H^1
$$

where *φ* solves the initial value problem

$$
i\partial_t \phi(t,x) + \Delta_x \phi(t,x) - g(\phi(t,x)) = 0, \quad \phi(0,x) = v(x).
$$

Definition (Stable subsets of $H^1(\mathbb{R}^n;\mathbb{C}))$

 $\mathcal{S} \subseteq H^1(\mathbb{R}^n; \mathbb{C})$ is stable if $\forall \varepsilon > 0 \,\, \exists \delta > 0$ such that

$$
dist(v, S) < \delta \Rightarrow dist(U_t(v), S) < \epsilon
$$

YO A REPART ARM YOUR

for every $t\geq 0$ and $v\in H^1(\mathbb{R}^n;\mathbb{C})$.

The equality $E(zv(\cdot+y))=E(v)$ for every $(z,y)\in S^1\times\mathbb{R}^n$ gives $G_{\lambda}(u) := \{zu(\cdot + y) \mid z \in S^1, y \in \mathbb{R}^n\} \subseteq G_{\lambda}.$

If $G_{\lambda}(u)$ is stable, we say that $u(x)e^{i\omega t}$ is *orbitally stable*.

V. Benci et al. 2007, Adv. Nonlinear Studia The set G*^λ* is non-empty and stable, provided $\left|g(s)\right| \leq c(|s|^{p-1} + |s|^{q-1}), \quad 2 < p < 2 + \frac{4}{q}$ $\frac{4}{n}$, inf(G) < 0.

(gc) is considered the minimum requirement to have G*λ*. It follows from the Concentration-Compactness Lemma (Lions). We are interested on the stability of $G_{\lambda}(u)$ when (gc) is satisfied.

YO A REAGEMENT

T. Cazenave and P. L. Lions, CMP, 1982, $n > 1$

If $g(s) = -a|s|^{p-1}$ (pure power), then $G_\lambda(u)$ is stable.

The main ingredients, are the symmetry $g(ts)=t^{\rho-1}g(s)$ and

M. K. Kwong, ARMA 1989

Given $\omega > 0$, there is only one solution $u \in H^1_{r,+}$ to

$$
\Delta u + a u^{p-1} - \omega u = 0.
$$

By definition, $u \in H^1_{r,+}$ if u is real valued, symmetric, non-negative. In their paper, Cazenave and Lions proved that $G_{\lambda}(u) = G_{\lambda}$.

Byeon, Jeanjean and Mariș, Calc. Var., 2009

 $G_{\lambda}(u)$ has a unique positive and symmetric representative in $H^1_{r,+}(\mathbb{R}^n)$.

If we define

$$
P:=G_\lambda\cap H^1_{r,+}
$$

KORKARYKERKE POLO

then T. Cazenave and P.L. Lions proved that $\#P=1$.

Lemma (G. and Georgiev, (gc))

If P is finite, then $G_\lambda(u)$ is stable for every $u \in G_\lambda$.

Kwong's result has been extented by Serrin and Tang (IUMJ 2000). However,

$$
g(s) = -a|s|^{p-1} + b|s|^{q-1}, \quad a, b > 0.
$$

does not satisfy their requirement. And symmetry fails.

So far, we have a weak uniqueness result

G. and Georgiev, $n > 1$

$$
g
$$
 is C^1 and $g(0) = 0 = g'(0)$. If $u_1, u_2 \in H^1_{r,+}$ solve

$$
\Delta u - g(u) - \omega u = 0,
$$

KORKARYKERKE POLO

and $||u_1||_2^2 = ||u_2||_2^2$, then $u_1 = u_2$.

We do not know whether $E(u_1) = E(u_2) \Rightarrow \omega_1 = \omega_2$.

Conjecture 1, $n = 1$

We think that the functional E over $S(\lambda) \cap H^1_r$ is non-degenerate.

Then $P = G_\lambda \cap H^1_r$ is a finite set.

It was proved by M. Weinstein (CMP, 1986) for solutions to

$$
u''-g(u)-\omega u=0
$$

under the additional a-priori assumptions on μ

$$
\int_{-\infty}^{+\infty} \left(\frac{g(u(x))}{u(x)} + \left(g'(u(x)) - \frac{g(u(x))}{u(x)} \right) u'(x)^2 \right) dx \neq 0.
$$

We wish to remove this assumption.

Conjecture 2, $n = 1$

If E is non-degenerate on $S(\lambda) \cap H^1_r$, then $\#P = 1$.

Pure-power non-linearities enjoy special rescalings.

Given $\omega > 0$, if u solves

$$
\Delta u - \omega u + |u|^{p-2}u = 0
$$

then

$$
u(x) = \omega^{1/(p-1)} u_0(\omega^{1/2} x), \quad ||u||_{L^2}^2 = \omega^{\frac{2}{p-1} - \frac{n}{2}} ||u_0||_{L^2}^2.
$$

So, the solution is unique for every *ω*.

If $||u||_{L^2}$ is λ , there is only the pair

$$
\left(\omega^{1/(p-1)}u_0(\omega^{1/2}x),\omega\right)
$$

where

$$
\omega = (\lambda \|u_0\|_{L^2}^{-1})^{2\alpha}, \quad \alpha := \frac{2(p-1)}{4-n(p-1)}.
$$

KO > KA > KE > KE > E AQA

Serrin and Tang (IUMJ, 2000) generalized Kwong's result.

However, they require

$$
2G(s)+\omega s^2
$$

to have a unique zero.

Berestycki and Lions • Arch. Ration. Mech. Anal., 1983 • $n = 1$ If the first positive zero of 2 $G+\omega s^2$ is simple, then the solution to $u'' - g(u) - \omega u = 0$

YO A REPART ARM YOUR

is unique.

If the H^1 is replaced by (V), the uniqueness fails:

Del Pino, Guerra, Davila • Proc. Lond. Math. Soc., 2013 • $n = 3$ For every $1 < p < 3$, there exists (a, q) such that $\Delta u - u + u^p + au^q = 0$ has at least three solutions in $H^{1,+}_{loc,r}\cap V.$