EXISTENCE OF PROPER CLASSES

Suppose that the Class Construction Axiom holds. We define the property

 $P(x): x \notin x$.

By the Class Construction Axiom, there exists a class \mathscr{R} such that

(1) $x \in \mathscr{R} \Leftrightarrow x \text{ is an element and } P(x)$

We refer to such a class as "Russell Class".

Proposition. The Russell Class is a proper class.

Proof. We argue by contradiction. Suppose that \mathcal{R} is an element. Then

(2) $\mathscr{R} \in \mathscr{R} \Rightarrow P(\mathscr{R}) \Rightarrow \mathscr{R} \notin \mathscr{R}$

which is a contradiction.

If $\mathscr{R} \notin \mathscr{R}$, then $P(\mathscr{R})$ is true. Since \mathscr{R} is an element, by the implication \Leftarrow in (1), it follows that $\mathscr{R} \in \mathscr{R}$. Then

 $(3) \qquad \qquad \mathscr{R} \notin \mathscr{R} \Rightarrow \mathscr{R} \in \mathscr{R}.$

Then, from (2) and (3), the statement $\mathscr{R} \in \mathscr{R}$ is neither true or false. Then \mathscr{R} is not an element.