
INVERTIBLE FUNCTIONS

Theorem 1 (Exercise 4, §2.2, [1]). Let f , g : A→ B be two functions such that f ⊆ g. Then
f = g.

Proof. We show that g ⊆ f . Suppose that (x, y) ∈ g. Let me use the formal language.

(1) (x, y) ∈ g
(2) (x, y) ∈ g⇒ x ∈ dom(g) = A = dom( f )⇒ x ∈ dom( f )
(3) x ∈ dom( f )⇒ ∃z · 3 · (x, z) ∈ f
(4) (x, z) ∈ f
(5) f ⊆ g (hypothesis)⇒ (x, z) ∈ g
(6) since g satisfies F2, (1) ∧ (5)⇒ y = z
(7) y = z
(8) (4) ∧ (7)⇒ (x, y) ∈ f .
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Proposition 1. Let G be a graph. Then

idA ⊆ G−1 ◦ G(1)

idB ⊆ G ◦ G−1(2)

where A = dom(G) and B = ran(G).

Proof. Let (x, x) ∈ idA

(1) (x, x) ∈ idA ⇒ x ∈ A = dom(G)
(2) x ∈ dom(G)⇒ ∃y · 3 · (x, y) ∈ G
(3) (x, y) ∈ G
(4) (x, y) ∈ G ⇒ (y, x) ∈ G−1

(5) (y, x) ∈ G−1

(6) (3) ∧ (5)⇒ (x, x) ∈ G−1 ◦ G
(7) (x, x) ∈ G−1 ◦ G.

We proved (1). We want to prove (2) without going through all the implications (1-7)
above. Then we set

H := G−1.
We apply (1) to H. Then

iddom(H) ⊆ H−1 ◦ H.

Since dom(H) = dom(G−1) = ran(G) = B. Since H−1 = G, we obtain (2). �
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Definition 1. A function f : A → B is said invertible if and only if f−1 : B → A is a
function. On this case, f−1 is called inverse function.

Given a function f : A→ B, the following are equivalent definitions of invertible func-
tion:

f bijective(1)
f is invertible(2)

( f−1 ◦ f = idA) ∧ ( f ◦ f−1 = idB),(3)

∃g : B→ A · 3 · ( f ◦ g = idB) ∧ (g ◦ f = idA).(4)

In the next theorem we prove that the above facts are equivalent.

Theorem 2. The facts listed in (1-4) are all equivalent.

Proof. (1)⇒ (2). Suppose that f is bijective. Then

dom( f ) = A, ran( f ) = B

whence
dom( f−1) = B, ran( f−1) = A.

We prove F2:

(y1, x), (y2, x) ∈ f−1 ⇒ (x, y1), (x, y2) ∈ f ⇒ y1 = y2

Then f−1 is a function.

(2)⇒ (3). Since f−1 is a function, both compositions are functions. By Proposition 1,

idA ⊆ f−1 ◦ f .

By Theorem 1, f−1 ◦ f = idA.
Similarly, By Proposition 1,

idB ⊆ f ◦ f−1.
So, By Theorem 1, f ◦ f−1 = idB.

(3)⇒ (4). We set g := f−1. We only need to prove that f−1 : B→ A is a function.

ran( f−1) ⊆ A. ran( f−1) = dom( f ) = A. Then, in particular, ran( f−1) ⊆ A.

dom( f−1) = B. Since
f ◦ f−1 = idB

we have dom( f ◦ f−1) = B. Since ran( f−1) ⊆ dom( f ), we can apply Corollary 1.34,
page 52 of [1]. Thus,

dom( f ◦ f−1) = dom( f−1).
Then dom( f−1) = B.

F2. Let (y, x1), (y, x2) ∈ f−1. Then

(x1, y), (x2, y) ∈ f .
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Since dom( f−1) = B, we have y ∈ B. Then, there exists x ∈ A such that

(y, x) ∈ f−1.

Then
(x1, x), (x2, x) ∈ f−1 ◦ f = idA.

Then
x1 = x and x2 = x.

Then x1 = x2.
(4)⇒ (1). Firstly, we show that

g ◦ f = idA ⇒ f INJ

Given x1, x2 ∈ A and y ∈ B such that

(x1, y), (x2, y) ∈ f

there exists z ∈ A such that
(y, z) ∈ g.

Then
(x1, z), (x2, z) ∈ g ◦ f ⇒ x1 = x2 = z.

We show that
f ◦ g = idB ⇒ f SURJ.

By Theorem 1.37 of the book

B = ran( f ◦ g) ⊆ ran( f ).

Since ran( f ) ⊆ B, we have ran( f ) = B. �
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