INVERTIBLE FUNCTIONS

Theorem 1 (Exercise 4, §2.2, [1]). Let $f, g: A \rightarrow B$ be two functions such that $f \subseteq g$. Then $f = g$.

Proof. We show that $g \subseteq f$. Suppose that $(x, y) \in g$. Let me use the formal language.

(1) (*x*, *y*) ∈ *g* (2) $(x, y) \in g \Rightarrow x \in \text{dom}(g) = A = \text{dom}(f) \Rightarrow x \in \text{dom}(f)$ (3) $x \in \text{dom}(f) \Rightarrow \exists z \cdot \exists \cdot (x, z) \in f$ (4) $(x, z) \in f$ (5) *f* ⊆ *g* (hypothesis) ⇒ (*x*, *z*) ∈ *g* (6) since *g* satisfies F2, (1) ∧ (5) \Rightarrow *y* = *z* (7) $y = z$ (8) (4) ∧ (7) \Rightarrow $(x, y) \in f$.

Proposition 1. *Let G be a graph. Then*

(1) $id_A \subseteq G^{-1} \circ G$ $id_B \subseteq G \circ G^{-1}$ (2)

where $A = \text{dom}(G)$ *and* $B = \text{ran}(G)$ *.*

Proof. Let $(x, x) \in id_A$

(1) $(x, x) \in id_A \Rightarrow x \in A = \text{dom}(G)$ (2) *x* ∈ dom(*G*) ⇒ ∃*y* · 3 ·(*x*, *y*) ∈ *G* (3) $(x, y) \in G$ (4) $(x, y) \in G$ ⇒ $(y, x) \in G^{-1}$ (5) $(y, x) \in G^{-1}$ (6) (3) \land (5) \Rightarrow (*x*, *x*) ∈ *G*⁻¹ ◦ *G* (7) $(x, x) \in G^{-1} \circ G$.

We proved (1). We want to prove (2) without going through all the implications (1-7) above. Then we set

$$
H:=G^{-1}.
$$

We apply (1) to *H*. Then

$$
id_{\mathrm{dom}(H)} \subseteq H^{-1} \circ H.
$$

Since dom(*H*) = dom(*G*⁻¹) = ran(*G*) = *B*. Since *H*⁻¹ = *G*, we obtain (2). □

Date: 2014, May 7.

 \Box

Definition 1. A function $f: A \rightarrow B$ is said *invertible* if and only if $f^{-1}: B \rightarrow A$ is a function. On this case, $f^{−1}$ is called *inverse function*.

Given a function $f: A \rightarrow B$, the following are equivalent definitions of invertible function:

$$
(1) \t\t f bijective
$$

f is invertible(2)

(3)
$$
(f^{-1} \circ f = id_A) \wedge (f \circ f^{-1} = id_B),
$$

(4)
$$
\exists g \colon B \to A \cdot \ni (f \circ g = id_B) \land (g \circ f = id_A).
$$

In the next theorem we prove that the above facts are equivalent.

Theorem 2. *The facts listed in (1-4) are all equivalent.*

Proof. (1) \Rightarrow (2). Suppose that *f* is bijective. Then

$$
dom(f) = A, ran(f) = B
$$

whence

$$
dom(f^{-1}) = B
$$
, $ran(f^{-1}) = A$.

We prove F2:

$$
(y_1,x), (y_2,x) \in f^{-1} \Rightarrow (x,y_1), (x,y_2) \in f \Rightarrow y_1 = y_2
$$

Then f^{-1} is a function.

(2) \Rightarrow (3). Since f^{-1} is a function, both compositions are functions. By Proposition 1,

$$
id_A \subseteq f^{-1} \circ f.
$$

By Theorem 1, $f^{-1} \circ f = id_A$. Similarly, By Proposition 1,

$$
id_B\subseteq f\circ f^{-1}.
$$

So, By Theorem 1, $f \circ f^{-1} = id_B$. (3) \Rightarrow (4). We set *g* := *f*⁻¹. We only need to prove that *f*⁻¹: *B* → *A* is a function. $\text{ran}(f^{-1}) \subseteq A$. $\text{ran}(f^{-1}) = \text{dom}(f) = A$. Then, in particular, $\text{ran}(f^{-1}) \subseteq A$. $dom(f^{-1}) = B$. Since

$$
f \circ f^{-1} = id_B
$$

we have $\text{dom}(f \circ f^{-1}) = B$. Since $\text{ran}(f^{-1}) \subseteq \text{dom}(f)$, we can apply Corollary 1.34, page 52 of [1]. Thus,

$$
\operatorname{dom}(f \circ f^{-1}) = \operatorname{dom}(f^{-1}).
$$

Then dom $(f^{-1}) = B$. F2. Let (y, x_1) , $(y, x_2) \in f^{-1}$. Then

 (x_1, y) , $(x_2, y) \in f$.

Since $\text{dom}(f^{-1}) = B$, we have $y \in B$. Then, there exists $x \in A$ such that

 $(y, x) \in f^{-1}.$

Then

$$
(x_1, x), (x_2, x) \in f^{-1} \circ f = id_A.
$$

Then

$$
x_1 = x \text{ and } x_2 = x.
$$

Then $x_1 = x_2$. (4) \Rightarrow (1). Firstly, we show that

$$
g \circ f = id_A \Rightarrow f \text{ INJ}
$$

Given $x_1, x_2 \in A$ and $y \in B$ such that

 $(x_1, y), (x_2, y) \in f$

there exists $z \in A$ such that

$$
(y,z)\in g.
$$

Then

$$
(x_1, z), (x_2, z) \in g \circ f \Rightarrow x_1 = x_2 = z.
$$

We show that

$$
f \circ g = id_B \Rightarrow f
$$
 SURJ.

By Theorem 1.37 of the book

$$
B = \operatorname{ran}(f \circ g) \subseteq \operatorname{ran}(f).
$$

Since ran(*f*) ⊆ *B*, we have ran(*f*) = *B*. □

REFERENCES

1. Charles C. Pinter, *Set theory*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971. MR 0284349 (44 #1577)