INVERTIBLE FUNCTIONS

Theorem 1 (Exercise 4, §2.2, [1]). Let $f, g: A \to B$ be two functions such that $f \subseteq g$. Then f = g.

Proof. We show that $g \subseteq f$. Suppose that $(x, y) \in g$. Let me use the formal language.

(1) $(x, y) \in g$ (2) $(x, y) \in g \Rightarrow x \in \text{dom}(g) = A = \text{dom}(f) \Rightarrow x \in \text{dom}(f)$ (3) $x \in \text{dom}(f) \Rightarrow \exists z \cdot \ni \cdot (x, z) \in f$ (4) $(x, z) \in f$ (5) $f \subseteq g$ (hypothesis) $\Rightarrow (x, z) \in g$ (6) since g satisfies F2, (1) \land (5) $\Rightarrow y = z$ (7) y = z(8) (4) \land (7) $\Rightarrow (x, y) \in f$.

Proposition 1. Let G be a graph. Then

(1) $id_A \subseteq G^{-1} \circ G$ (2) $id_B \subseteq G \circ G^{-1}$

where A = dom(G) and B = ran(G).

Proof. Let $(x, x) \in id_A$ (1) $(x, x) \in id_A \Rightarrow x \in A = \text{dom}(G)$ (2) $x \in \text{dom}(G) \Rightarrow \exists y \cdot \ni \cdot (x, y) \in G$ (3) $(x, y) \in G$ (4) $(x, y) \in G \Rightarrow (y, x) \in G^{-1}$ (5) $(y, x) \in G^{-1}$ (6) $(3) \land (5) \Rightarrow (x, x) \in G^{-1} \circ G$ (7) $(x, x) \in G^{-1} \circ G$.

We proved (1). We want to prove (2) without going through all the implications (1-7) above. Then we set

$$H := G^{-1}$$
.

We apply (1) to *H*. Then

$$id_{\operatorname{dom}(H)} \subseteq H^{-1} \circ H$$

Since dom(H) = dom(G^{-1}) = ran(G) = B. Since $H^{-1} = G$, we obtain (2).

Date: 2014, May 7.

Definition 1. A function $f: A \to B$ is said *invertible* if and only if $f^{-1}: B \to A$ is a function. On this case, f^{-1} is called *inverse function*.

Given a function $f : A \rightarrow B$, the following are equivalent definitions of invertible function:

(2)
$$f$$
 is invertible

(3)
$$(f^{-1} \circ f = id_A) \wedge (f \circ f^{-1} = id_B),$$

(4)
$$\exists g \colon B \to A \cdot \ni \cdot (f \circ g = id_B) \land (g \circ f = id_A).$$

In the next theorem we prove that the above facts are equivalent.

Theorem 2. *The facts listed in* (1-4) *are all equivalent.*

Proof. (1) \Rightarrow (2). Suppose that *f* is bijective. Then

$$\operatorname{dom}(f) = A$$
, $\operatorname{ran}(f) = B$

whence

$$dom(f^{-1}) = B$$
, $ran(f^{-1}) = A$

We prove F2:

$$y_1, x), (y_2, x) \in f^{-1} \Rightarrow (x, y_1), (x, y_2) \in f \Rightarrow y_1 = y_2$$

Then f^{-1} is a function.

(2) \Rightarrow (3). Since f^{-1} is a function, both compositions are functions. By Proposition 1,

$$id_A \subseteq f^{-1} \circ f$$

By Theorem 1, $f^{-1} \circ f = id_A$. Similarly, By Proposition 1,

(

$$id_B \subseteq f \circ f^{-1}.$$

So, By Theorem 1, $f \circ f^{-1} = id_B$. (3) \Rightarrow (4). We set $g := f^{-1}$. We only need to prove that $f^{-1} \colon B \to A$ is a function. ran $(f^{-1}) \subseteq A$. ran $(f^{-1}) = \text{dom}(f) = A$. Then, in particular, ran $(f^{-1}) \subseteq A$. dom $(f^{-1}) = B$. Since

$$f \circ f^{-1} = id_B$$

we have dom $(f \circ f^{-1}) = B$. Since ran $(f^{-1}) \subseteq \text{dom}(f)$, we can apply Corollary 1.34, page 52 of [1]. Thus,

$$\operatorname{dom}(f \circ f^{-1}) = \operatorname{dom}(f^{-1}).$$

Then dom $(f^{-1}) = B$. F2. Let $(y, x_1), (y, x_2) \in f^{-1}$. Then

 $(x_1, y), (x_2, y) \in f.$

Since dom $(f^{-1}) = B$, we have $y \in B$. Then, there exists $x \in A$ such that

 $(y,x)\in f^{-1}.$

Then

$$(x_1, x), (x_2, x) \in f^{-1} \circ f = id_A.$$

Then

$$x_1 = x \text{ and } x_2 = x.$$

Then $x_1 = x_2$. (4) \Rightarrow (1). Firstly, we show that

$$g \circ f = id_A \Rightarrow f$$
 INJ

Given $x_1, x_2 \in A$ and $y \in B$ such that

 $(x_1, y), (x_2, y) \in f$

there exists $z \in A$ such that

$$(y,z) \in g.$$

Then

$$(x_1,z), (x_2,z) \in g \circ f \Rightarrow x_1 = x_2 = z.$$

We show that

$$f \circ g = id_B \Rightarrow f$$
 SURJ.

By Theorem 1.37 of the book

$$B = \operatorname{ran}(f \circ g) \subseteq \operatorname{ran}(f).$$

Since $ran(f) \subseteq B$, we have ran(f) = B.

References

1. Charles C. Pinter, Set theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971. MR 0284349 (44 #1577)