SOLUTION OF THE EXERCISE OF WEEK THREE

Exercise. In the model

	x	y y	z	A	В	C	D	Ε
x	1	0	0	1	0	1	1	0
y	0	0	1	0	1	1	1	0
Z	0	1	0	1	1	0	1	0
Α	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0
D	0	0	0	0	0	0	0	0
Ε	0	0	0	0	0	0	0	0

List all the

- (a) sets
- (b) proper classes
- (c) singletons
- (d) pairs which are not singletons
- (e) the universal class \mathscr{U}
- (f) the empty class \emptyset

for each of the given property P(x), what is $\{x \mid P(x)\}$?

(1) $P(x) : x \subseteq A$ (2) $P(x) : x \subseteq B$ (3) $C \cap A$.

Solution.

(a) x, y, z
(b) A, B, C, D, E
(c) x, y, z
(d) A, B, C
(e) D
(f) E

(1) $A = \{x, z\}$. Then, the subclasses of A are

$$\emptyset, \{x\}, \{z\}, \{x, z\}.$$

All of them exist in the model and correspond to

E and *A* are proper classes, then these are not included in $\{x \mid x \subseteq A$. Then

$$\{x \mid x \subseteq A\} = \{y, z\} = C.$$

The answer is *C*

Date: 2014, April 3.

(2) $B = \{y, z\}$. Then, the subclasses of *A* are

$$\emptyset, \{y\}, \{z\}, \{y, z\}.$$

All of them exist in the model and correspond to

E and *B* are proper classes, then these are not included in $\{x \mid x \subseteq B\}$. Then

$$\{x \mid x \subseteq B\} = \{y, z\} = B$$

The answer is *B*

(3) $C = \{x, y\}$ and $A = \{x, z\}$. Then $A \cap C = \{x\}$. The singleton of x exists in the model. In fact, $\{x\} = x$. Then $A \cap C = x$.