EXERCISES FROM THE TEXT BOOK "SET THEORY", CHARLES PINTER

EXERCISES 2.4

Exercise 1 (check [Pin71, ex. 1, page 66]). Suppose that $f : A \to B$ is a function, $C \subseteq A$ and $D \subseteq B$.

- a) Prove that $C \subseteq \overline{\overline{f}}[\overline{f}(C)]$
- b) Prove that $\overline{f}[\overline{f}(D)] \subseteq D$

Solution. a). Given $x \in C$, $f(x) \in \overline{f}(C)$. Then $x \in \overline{\overline{f}}[\overline{f}(C)]$

b). If $y \in \overline{f}[\overline{f}(D)]$ there exists $x \in \overline{f}(D)$ such that

$$f(x) = y$$

Since $x \in \overline{\overline{f}}(D)$, $f(x) \in D$. Then $y \in D$.

Exercise 2 (check [Pin71, ex. 2, page 66]). Suppose that $f : A \to B$ is a function, $C \subseteq A$ and $D \subseteq B$. Then

a) If *f* is injective, prove that $C = \overline{f}[\overline{f}(C)]$ b) If *f* is surjective, prove that $D = \overline{f}[\overline{f}(D)]$

Solution. a). Given $x \in \overline{\overline{f}}[\overline{f}(C)]$, then

$$f(x) \in \overline{f}(C).$$

Then there exists $c \in C$ such that

$$f(c) = f(x).$$

Since *f* is injective, x = c. Then $x \in C$, which implies

$$\bar{\bar{f}}[\bar{f}(C)] \subseteq C.$$

From a) of the previous exercise, we obtain

$$\bar{\bar{f}}[\bar{f}(C)] = C.$$

b). Given $y \in D$, there exists *x* such that

$$f(x) = y$$

Then,

$$x \in \overline{\overline{f}}(D).$$

Then

$$f(x) \in \bar{f}[\bar{f}(D)] \Rightarrow y \in \bar{f}[\bar{f}(D)].$$

Then

$$D \subseteq \bar{f}[\bar{\bar{f}}(D)].$$

From part b) of the previous exercise, we obtain

$$D = \bar{f}[\bar{f}(D)]$$

Date: 2013, October 16.

Exercise 3 (check [Pin71, ex. 3, page 66]). Let $f: A \rightarrow B$ be a function. Prove the following.

a) Suppose $C \subseteq A$ and $D \subseteq A$; if *f* is injective $\underline{\overline{f}}(C) = \underline{\overline{f}}(D) \Rightarrow C = D$

b) Suppose $C \subseteq B$ and $D \subseteq B$; if f is injective $\overline{\overline{f}}(C) = \overline{\overline{f}}(D) \Rightarrow C = D$

Solution. a). We apply the results of the previous exercise. We have

$$\bar{f}(C) = \bar{f}(D) \Rightarrow \bar{f}[\bar{f}(C)] = \bar{f}[\bar{f}(D)].$$

Since *f* is injective,

$$\overline{f}[\overline{f}(C)] = C, \quad D = \overline{f}[\overline{f}(D)].$$

Then

b). We have

$$\bar{\bar{f}}(C) = \bar{\bar{f}}(D) \Rightarrow \bar{f}[\bar{\bar{f}}(C)] = \bar{f}[\bar{\bar{f}}(D)]$$

C = D.

Since f is surjective, from the previous exercise, we have

$$\bar{f}[\bar{f}(C)] = C, \quad \bar{f}[\bar{f}(D)] = D.$$

Then

Exercise 5 (check [Pin71, ex. 5, page 66]). Suppose that $f: A \to B$ is a function; let $C \subseteq A$.

= _

a) Prove that $\bar{f}\{\bar{f}[\bar{f}(C)]\} = \bar{f}$.

Solution. a). From a) of the first exercise, there holds

$$C \subseteq f[f(C)]$$

From b) of the first exercise applied to $D = \overline{f}(C)$, it follows
 $\overline{f}(C) \subseteq \overline{f}\{\overline{f}[\overline{f}(C)]\}$

Then

$\bar{f}(C) = \bar{f}\{\bar{f}[\bar{f}(C)]\}.$

REFERENCES

Pin71. Charles C. Pinter. Set theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971.

C = D.