EXERCISES FROM THE TEXT BOOK ("SET THEORY", CHARLES PINTER)

EXERCISES 1.6

Exercise 11 (check [Pin71, ex. 11, page 45]). Prove that $\cap (\mathscr{A} \cup \mathscr{B}) = (\cap \mathscr{A}) \cap (\cup \mathscr{B})$. *Solution.* (1) $x \in \bigcap (\mathscr{A} \cup \mathscr{B})$ (2) $(1) \Rightarrow \forall y \in \mathcal{A} \cup \mathcal{B} (x \in y)$ (3) $(2) \Rightarrow \forall y \in \mathcal{A} \ (x \in y)$ then (4) $x \in \bigcap \mathscr{A}$ (5) $(2) \Rightarrow \forall y \in \mathcal{B} (x \in y)$ then (6) $x \in \bigcap \mathscr{B}$. (7) $(4) \wedge (6) \Rightarrow x \in (\cap \mathcal{A}) \cap (\cap \mathcal{B})$ Then (8) $x \in (\cap \mathscr{A}) \cap (\cap \mathscr{B})$ and $\cap (\mathscr{A}\cup \mathscr{B}) \subseteq (\cap \mathscr{A}) \cap (\cup \mathscr{B}).$ Conversely, suppose that $x \in (\cap \mathscr{A}) \cap (\cup \mathscr{B}).$ Then, (5) and (6) hold. Then *∀y* ∈ \mathscr{A} $(x \in y)$ and $∀y ∈ \mathscr{B} (x ∈ y)$ whence $\forall y \in \mathscr{A} \cup \mathscr{B} (x \in y)$ and $x \in \cap (\mathscr{A} \cup \mathscr{B}).$ \Box

Exercise 12 (check [Pin71, ex. 12, page 45])**.** Prove each of the following

- a) If $A \in \mathcal{B}$, then $A \subseteq \cup \mathcal{B}$ and $\cap \mathcal{B} \subseteq A$
- b) $\mathscr{A} \subseteq \mathscr{B}$ if and only if $\cup \mathscr{A} \subseteq \cup \mathscr{B}$ (the implication \Leftarrow is false, check the counterexample in the solution)
- c) If $\emptyset \in \mathscr{A}$, then $\cap \mathscr{A} = \emptyset$

Date: 2013, October 16.

Solution. a). We prove that $A \subseteq \cup \mathcal{B}$.

Let *x* ∈ *A*. By the definition of union, *x* ∈ ∪ \mathscr{B} if and only if there exists a class $y \in \mathscr{B}$ such that $x \in y$. This class is *A*.

We prove that

$$
\cap \mathscr{B} \subseteq \mathscr{A}.
$$

Let *x* $\in \bigcap \mathcal{B}$; then, for every *z* $\in \mathcal{B}$ there holds *x* \in *z*. In particular, if *z* = *A*, we obtain *x* ∈ *A*.

b). We prove

$$
\mathscr{A}\subseteq\mathscr{B}\Rightarrow\cup\mathscr{A}\subseteq\cup\mathscr{B}.
$$

$$
(9) \t x \in \cup \mathscr{A}
$$

(10)
$$
x \in \bigcup \mathscr{A} \Rightarrow \exists y \in \mathscr{A} (x \in y).
$$

$$
(11) \t\t\t y \in \mathscr{A} \Rightarrow y \in \mathscr{B}
$$

(12)
$$
(x \in y) \land (y \in \mathscr{B}) \Rightarrow x \in \cup \mathscr{B}.
$$

The implication $\cup\mathscr{A}\subseteq\cup\mathscr{B} \Rightarrow \mathscr{A}\subseteq\mathscr{B}$ is false: if there are at least three elements and Axioms *A*2, 3 holds, we can set

$$
\mathscr{A} := \{ \{x\}, \{y, z\} \}, \quad \mathscr{B} := \{ \{x, y\}, \{z\} \}.
$$

Clearly,

$$
\cup \mathscr{A} = \{x\} \cup \{y,z\} = \{x,y,z\}
$$

and

$$
\cup \mathscr{B} = \{x, y\} \cup \{z\} = \{x, y, z\}.
$$

However

 $\mathscr{A} \cap \mathscr{B} = \emptyset$.

c). If $\cap \mathscr{A} \neq \emptyset$, there exists $x \in \cap \mathscr{A}$. Then

$$
\forall A \in \mathscr{A}(x \in A).
$$

In particular, if *A* = \emptyset , we obtain *x* $\in \emptyset$ which contradicts the definition of \emptyset .

REFERENCES

Pin71. Charles C. Pinter. *Set theory*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971.