EXERCISES FROM THE TEXT BOOK ("SET THEORY", CHARLES PINTER)

EXERCISES 1.6

Exercise 11 (check [Pin71, ex. 11, page 45]). Prove that $\cap(\mathscr{A} \cup \mathscr{B}) = (\cap \mathscr{A}) \cap (\cup \mathscr{B})$. Solution. $x \in \cap (\mathscr{A} \cup \mathscr{B})$ (1) $(1) \Rightarrow \forall y \in \mathscr{A} \cup \mathscr{B} (x \in y)$ (2) (2) $\Rightarrow \forall y \in \mathscr{A} (x \in y)$ (3) then (4) $x \in \cap \mathscr{A}$ (5) $(2) \Rightarrow \forall y \in \mathscr{B} (x \in y)$ then $x \in \cap \mathscr{B}$. (6) (7) $(4) \land (6) \Rightarrow x \in (\cap \mathscr{A}) \cap (\cap \mathscr{B})$ Then (8) $x \in (\cap \mathscr{A}) \cap (\cap \mathscr{B})$ and $\cap (\mathscr{A} \cup \mathscr{B}) \subseteq (\cap \mathscr{A}) \cap (\cup \mathscr{B}).$ Conversely, suppose that $x \in (\cap \mathscr{A}) \cap (\cup \mathscr{B}).$ Then, (5) and (6) hold. Then $\forall y \in \mathscr{A} (x \in y)$ and $\forall y \in \mathscr{B} (x \in y)$ whence $\forall y \in \mathscr{A} \cup \mathscr{B} (x \in y)$ and $x \in \cap (\mathscr{A} \cup \mathscr{B}).$

Exercise 12 (check [Pin71, ex. 12, page 45]). Prove each of the following

- a) If $A \in \mathscr{B}$, then $A \subseteq \cup \mathscr{B}$ and $\cap \mathscr{B} \subseteq A$
- b) $\mathscr{A} \subseteq \mathscr{B}$ if and only if $\bigcup \mathscr{A} \subseteq \bigcup \mathscr{B}$ (the implication \Leftarrow is false, check the counterexample in the solution)
- c) If $\emptyset \in \mathscr{A}$, then $\cap \mathscr{A} = \emptyset$

Date: 2013, October 16.

Solution. a). We prove that $A \subseteq \cup \mathscr{B}$.

Let $x \in A$. By the definition of union, $x \in \bigcup \mathscr{B}$ if and only if there exists a class $y \in \mathscr{B}$ such that $x \in y$. This class is A.

We prove that

$$\cap \mathscr{B} \subseteq \mathscr{A}$$

Let $x \in \cap \mathscr{B}$; then, for every $z \in \mathscr{B}$ there holds $x \in z$. In particular, if z = A, we obtain $x \in A$.

b). We prove

$$\mathscr{A}\subseteq\mathscr{B}\Rightarrow\cup\mathscr{A}\subseteq\cup\mathscr{B}.$$

$$(9) x \in \cup \mathscr{A}$$

(10)
$$x \in \cup \mathscr{A} \Rightarrow \exists y \in \mathscr{A} (x \in y).$$

$$(11) y \in \mathscr{A} \Rightarrow y \in \mathscr{B}$$

(12)
$$(x \in y) \land (y \in \mathscr{B}) \Rightarrow x \in \cup \mathscr{B}.$$

The implication $\cup \mathscr{A} \subseteq \cup \mathscr{B} \Rightarrow \mathscr{A} \subseteq \mathscr{B}$ is false: if there are at least three elements and Axioms *A***2**,**3** holds, we can set

$$\mathscr{A} := \{\{x\}, \{y, z\}\}, \quad \mathscr{B} := \{\{x, y\}, \{z\}\}.$$

Clearly,

$$\cup \mathscr{A} = \{x\} \cup \{y, z\} = \{x, y, z\}$$

and

$$\cup \mathscr{B} = \{x, y\} \cup \{z\} = \{x, y, z\}.$$

However

$$\mathscr{A}\cap\mathscr{B}=\emptyset.$$

c). If
$$\cap \mathscr{A} \neq \emptyset$$
, there exists $x \in \cap \mathscr{A}$. Then

$$\forall A \in \mathscr{A} (x \in A).$$

In particular, if $A = \emptyset$, we obtain $x \in \emptyset$ which contradicts the definition of \emptyset . \Box

References

Pin71. Charles C. Pinter. Set theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971.