EXERCISES OF WEEK FIVE

Exercise 1. Suppose that the Subset Axiom holds. Then

 $\cap A$

is a set for every class *A* such that $A \neq \emptyset$.

Solution. Since $A \neq \emptyset$, there exists *x* such that $x \in A$. Hence

 $\cap A \subseteq x.$

By **A4**, $\cap A$ is a set.

Exercise 2. Suppose that A3 holds. Then

$$\cup \mathscr{U} = \mathscr{U}$$

where \mathscr{U} is the Universal Class.

Solution. Since every class is a subclass of \mathcal{U} , we have

 $\cup \mathscr{U} \subseteq \mathscr{U}.$

We show that

 $\mathscr{U} \subseteq \cup \mathscr{U}$. Let $x \in \mathscr{U}$. By **A3**, the singleton $y := \{x\}$ is a set. Then $y \in \mathscr{U}$. Then $y \in \mathscr{U} \Rightarrow y \subseteq \cup \mathscr{U}$.

Hence $x \in \bigcup \mathscr{U}$.

Exercise 3. In model given below

\in	Α	В	<i>C</i>	D
Α	0	1	1	1
В	1	0	1	1
С	0	0	0	1
D	0	0	0	0

1. what are the order pairs?

2. does $\mathscr{U} \times \mathscr{U}$ exist?

3. what are the graphs?

4. is there a function $f: A \to A$?

Solution. 1. Ordered pairs: A = (A, A) and B = (B, B)

2. the Universal Class $\mathscr{U} = \{A, B, C\}$ exists and is equal to *D*. The product $\mathscr{U} \times \mathscr{U}$ consists of all the ordered pairs. Then

$$\mathscr{U} \times \mathscr{U} = \{(A, A), (B, B)\} = \{B, A\} = C$$

3. by definition a graph is a subclass of $\mathscr{U} \times \mathscr{U}$. Then the graphs are

$$\emptyset, \{A\}, \{B\}, \{A, B\}$$

Date: 2013, October 2.

that is

B, A, C

4. since *A* has only one element, the only possible function $f: A \rightarrow A$ is

$$f := \{(B, B)\} = \{B\} = A.$$

Then a function exists: *A*.