EXERCISES OF WEEK FOURTEEN

Exercise 1. State whether the class P_i is a partition of A_i .

(1)
$$P_1 = \{\{a\}, \{b,c\}\}, A_1 = \{a,b,c,d\}$$

(2)
$$P_2 = \{\{x,y\}, \{y,z\}\}, A_2 = \{x,y,z\}$$

(3)
$$P_3 = \{\{x,y\}, \{z\}, \emptyset\}, A_3 = \{x,y,z\}$$

Proof. We suppose that a, b, c, d are all different from each other. Then P_1 is not a partition of A_1 because

$$\cup P_1 \neq A_1$$
.

 P_2 is not a partition of A_2 , because

$$\{x,y\} \cap \{y,z\} \neq \emptyset.$$

 P_3 is not a partition of A_3 because $\emptyset \in P_3$.

Exercise 2. Let (A, \leq) be a partially ordered class: show that

- (a) $S_a \cap S_b$ is an initial segment, **if A is a fully-ordered class**
- (b) there exists a p.o.c (A, \leq) such that $S_a \cup S_b$ is not an initial segment
- (c) if (A, \leq) is a fully ordered class, then $S_a \cup S_b$ is an initial segment

Proof.

(a) Since *A* is a fully-ordered class, either $a \le b$ or b < a. If $a \le b$, then $S_a \subseteq S_b$, hence

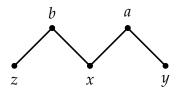
$$S_a \cap S_b = S_a$$
,

so $S_a \cap S_b$ is an initial segment. If b < a, then $S_b \subseteq S_a$ and

$$S_a \cap S_b = S_b$$

so $S_a \cap S_b$ is an initial segment.

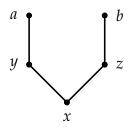
Notice that, if *A* is not a fully-ordered class, then $S_a \cap S_b$ might not be an initial segment:



Clearly, $S_a = \{x, y\}$ while $S_b = \{z, x\}$, while $S_a \cap S_b = \{x\}$ which is not an initial segment.

Date: 2013, December 4.

(b) the following example explains why $S_a \cup S_b$ might not be an initial segment, if Ais not a fully-ordered class:



 $S_a = \{x, y\}, S_b = \{x, z\}$ and $S_a \cup S_b = \{x, y, z\}$ which is not an initial segment. (c) if A is a fully-ordered class, then either $a \le b$ or b < a. If $a \le b$, then $S_a \subseteq S_b$ and $S_a \cup S_b = S_b$. If b < a, then $S_b \subseteq S_a$ and $S_a \cup S_b = S_a$. In either cases, the union is an initial segment.