EXERCISES OF WEEK ELEVEN

Exercise 1. Suppose that a model satisfies *A*1, *A*2, *A*3, *A*4 and that there exists a set $x \in \mathcal{U}$. Then, there exists an element y such that $x \neq y$.

Exercise 2. Let *A* be a partially ordered class. That is, there exists a subclass

 $G \subseteq A \times A$ such that *G* is (Reflexive) (Antisymmetric) (Transitive) $G \cap G^{-1} \subseteq id_A$ $G \circ G \subseteq G.$

Suppose that $\langle A, G \rangle$ is a fully ordered class. Can you express such definition in terms of *G*?

Exercise 3. Let (A, \leq) and (B, \leq) two partially ordered class. Let $g: A \rightarrow B$ be an order-preserving function. Prove the following.

a) if *g* is strictly increasing, then for every $a \in A$ there holds

$$\bar{g}(S_a) \subseteq S_{g(a)};$$

b) if *A* is a fully ordered class, *g* is strictly increasing and surjective, then for every $a \in A$ there holds

$$\bar{g}(S_a) = S_{g(a)}.$$

Date: 2013, November 13.