SOLUTIONS OF EXERCISES OF WEEK THREE

Exercise 1. Suppose that there are two sentences *P* and *Q* such that

$$P \Leftrightarrow (P \Rightarrow Q).$$

Show that *Q* is true.

Solution. We argue by contradiction. Suppose that *Q* is false. We that *P* is neither true or false and obtain a contradiction.

If *P* is true, then

$$P \Rightarrow Q$$

is false. Then *P* is false and we obtain a contradiction.

Now, suppose that *P* is false. Then $P \Rightarrow Q$ is true. Then *P* is true and we obtain another contradiction.

 \square

Then *Q* is true.

Exercise 2. Translate into the formal language the following sentence

"For every *y* there exists a unique *x* such that f(x) = y"

Solution. A way to translate the sentence in formal language is

$$\forall y \exists x \Big((f(x) = y) \land \big(\forall z (f(z) = y \Rightarrow z = x) \big) \Big)$$

Exercise 3. In the following table

	\in	Α	B	C	D
	A	0	1	0	1
_	В	1	0	0	1
	С	0	1	0	0
_	D	0	0	0	0

Find the elements and the proper classes. State whether the following classes exist. In the affermative case, find the classes they correspond to (for example, the empty class exists and $\emptyset = C$).

1. the complement class A'

2. $A \cap B$

3. $B \cup C$

4. the universal class \mathscr{U} .

Is the Class Construction Axiom satisfied?

Date: 2013, October 1.

Solution. The elements are

A, *B*, *C*; there is only a proper class

D.

1. Since $A = \{B\}$, the complement $A' = \{A, C\} = B$

- 2. $A \cap B = \emptyset = C$
- 3. $B \cup C = B$
- 4. the universal class does not exists: no class contains all the elements A, B, C

5. the Class Construction Axiom does not hold because the Universal Class does not exists.