Il prodotto finito di compatti è compatto

Teorema. Siano X e Y due spazi topologici compatti. Allora il prodotto $X \times Y$ è compatto.

Dimostrazione. Possiamo limitarci a un ricoprimento di aperti fatto di aperti della forma $A \times B$ dove A è aperto di X e B è aperto di Y. Prendiamo dunque un ricoprimento aperto di $X \times Y$ $\mathfrak{A} = \{A_i \times B_i | A_i \subseteq X, B_i \subseteq Y\}$. Per ogni $y \in Y$ l'insieme $X \times \{y\}$ è un compatto, dunque esistono i_1, \ldots, i_n tali che $X \times \{y\} \subseteq A_{i_1} \times B_{i_1} \cup \cdots \cup A_{i_n} \times B_{i_n}$. Possiamo supporre per ovvi motivi che $y \in B_{i_k}$ per ogni $k = 1, \ldots, n$, dunque possiamo definire $B = B_{i_1} \cap \cdots \cap B_{i_n}$ che sappiamo essere un aperto di Y e un intorno aperto di y. È facile vedere anche che $X = A_{i_1} \cup \cdots \cup A_{i_n}$, dunque l'insieme $X \times B \subseteq A_{i_1} \times B_{i_1} \cup \cdots \cup A_{i_n} \times B_{i_n}$.

Possiamo fare lo stesso ragionamento per ogni $y \in Y$, e ottenere così un ricoprimento aperto $\{B_y\}_{y \in Y}$ sapendo che per ogni y l'insieme $X \times B_y$ è contenuto nell'unione di un numero finito di aperti di \mathfrak{A} .

Ma noi sappiamo anche che Y è compatto, quindi sappiamo che esistono y_1, \ldots, y_m tali che $Y = B_{y_1} \cup \cdots \cup B_{y_m}$, quindi l'insieme $X \times Y$ è proprio l'insieme $X \times B_{y_1} \cup \cdots \cup X \times B_{y_m}$. Poiché per ogni $h = 1, \ldots, m$ l'insieme $X \times B_{y_h}$ è contenuto nell'unione di un numero finito di aperti di \mathfrak{A} allora sappiamo che $X \times Y$ è contenuto nell'unione finita di unioni finite di aperti di \mathfrak{A} , quindi è contenuto nell'unione finita di aperti di \mathfrak{A} , dunque $X \times Y$ è compatto.

Osservazione. Possiamo osservare che se $X \times Y$ è compatto, per continuità delle proiezioni su Xe su Yanche Xe Ysono compatti. Dunque possiamo enunciare il seguente corollario:

Corollario. Siano X e Y due spazi topologici: allora $X \times Y$ è compatto se e solo se X è compatto e Y è compatto.