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 A TRACE MINIMIZATION ALGORITHM FOR THE GENERALIZED

 EIGENVALUE PROBLEM*

 AHMED H. SAMEHt AND JOHN A. WISNIEWSKIt

 Abstract. An algorithm for computing a few of the smallest (or largest) eigenvalues and associated

 eigenvectors of the large sparse generalized eigenvalue problem Ax = ABx is presented. The matrices A

 and B are assumed to be symmetric, and haphazardly sparse, with B being positive definite. The problem

 is treated as one of constrained optimization and an inverse iteration is developed which requires the

 solution of linear algebraic systems only to the accuracy demanded by a given subspace. The rate of

 convergence of the method is established, and a technique for improving it is discussed. Numerical

 experiments and comparisons with other methods are presented.

 1. Introduction. In this paper, we consider the problem of computing a few of

 the smallest (or largest) eigenvalues and eigenvectors of the large, sparse, generalized

 eigenvalue problem

 (1.1) Ax = ABx,

 where x is an n-vector, A is a scalar and A, B are n x n symmetric matrices, with B

 being positive definite. We are interested in the case where the matrices A and B are
 very large, very sparse and have no general pattern of nonzeros. In this case, factoriz-

 ation of either matrix would be impractical. Problems of this type arise in certain

 structural mechanics [AnIZ68], [CrBa68], [BaWi72], [BaWi73] and plasma physics
 applications [GrGJ76], [ChGG78], [Grub78].

 Although considerable work has been done on this problem [Stew76], no efficient

 method for simultaneously obtaining several eigenvalues and eigenvectors is available.
 For example, generalizations of the block Lanczos method of Golub and Underwood

 [GoUn77] and the method of simultaneous iteration [Baue57], [Ruti69] and [Ruti7O]
 suffer from the disadvantage that several systems of linear algebraic equations of the
 form Bx = f must be solved accurately at each iteration. While our method will also
 require the solution of systems of linear algebraic equations, we need only to solve
 these systems to the accuracy demanded by certain subspaces.

 Other methods that can be used for solving this problem employ iterative schemes
 for minimizing the Rayleigh quotient (xTAXIXTBX) so as to obtain the smallest
 eigenvalue. Hence they must rely on deflation in order to obtain several of the smallest
 eigenvalues and the corresponding eigenvectors. Such deflation processes often break
 down numerically, especially when the number of required eigenvectors increases.
 This is particularly true in the case of clusters (poorly separated eigenvalues). One

 of the most effective methods of this kind is that of Geradin [Gera71], which uses
 the conjugate gradient algorithm for minimizing the Rayleigh quotient. Unfortu-

 nately, the overall work required by this method is quite high, since as many as 5n
 iterations per eigenvalue are needed to obtain the corresponding eigenvector to full

 accuracy.

 Another approach, that of Jensen [Jens72], uses the idea of sectioning. Again,
 it is not suitable for our problem since it requires repeated accurate solution of systems
 of n linear algebraic equations involving the matrix B. The method of coordinate
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 1244 AHMED H. SAMEH AND JOHN A. WISNIEWSKI

 relaxation [FaFa63], [Kaha66], [Ruhe74] and [Schw74] computes only a single eigen-
 value; deflation must be used if more than one eigenvalue is sought. The method has
 the serious disadvantage of having severe convergence restrictions similar to those of
 SOR methods for solving systems of linear algebraic equations [Schw74]. Furthermore,
 it uses a relaxation parameter which can be difficult to estimate for general problems.

 Recently, Longsine and McCormick [LoMc8O] introduced two methods
 (SIRQIT,SIRQIT-CG) which avoid many of the above drawbacks by simultaneously

 minimizing several Rayleigh quotients x TAxi/x iTBxi, i = 1, 2, * * *, p. Their methods,
 however, suffer from slow asymptotic rates of convergence, and global convergence
 is proven only for x1, when B = I. Since their methods are closely related to ours, we
 discuss them in detail in ? 4.

 Throughout this paper we use the notation of Householder [Hous64]. We assume
 that upper case letters, both Roman and Greek, represent matrices. We take lower
 case Roman letters to represent vectors and lower case Greek letters to represent

 scalars. The two-norm will be used throughout unless otherwise stated. We also use

 ej to denote the jth column of the identity matrix.
 We now present some theorems which are fundamental in establishing the

 algorithm of ? 2.
 THEOREM 1.1 [Fran68, p. 106]. Let A and B be symmetric n x n matrices. If B

 is positive definite then there is an n x n matrix Z for which

 (1.2) ZTBZ=In and ZTAZ=A=diag(Al,A2,* An)

 where A 1 A2 An are the eigenvalues of problem (1.1) and the columns of Z are
 their associated eigenvectors. Furthermore, if A is positive definite, then all of the

 eigenvalues Ai are positive.
 THEOREM 1.2. Let A and B be as given in Theorem 1.1 and Y* be the set of all

 n x p matrices Yfor which YTB Y = Ip. Then

 (1.3) min tr(YTAY)= E Ai.
 YeY* i=1

 In other words,

 min tr (YTAY)=tr(XTAX)
 Ye Y*

 with

 XTBX=I, and XTAX=diag(AI, A2,i . * Ap),

 where X corresponds to the first p columns of the matrix Z of Theorem 1.1.
 Proof. The proof follows directly from Theorem 1.1 and the Courant-Fischer

 theorem [Wilk65, pp. 99-101]. 0
 The following useful theorem due to Ostrowski [Ostr6O] will allow us to obtain

 bounds on the eigenvalues of a symmetric matrix M = YTA Y in terms of the eigen-
 values of A and those of the matrix YTy.

 THEOREM 1.3. Let A be a symmetric matrix of order n with eigenvalues A 1 c A2-

 .,<An_ of which iA are positive and ZA are negative. Let M = YTA Yfor some n x p
 matrix Y, p < n. Let M have eigenvalues /1 C A 2C * p, with ITM positive and VM
 negative eigenvalues. Then ITM < iA and m < IA. Furthermore, if we denote the positive
 eigenvalues of A and M respectively by

 0<A1 A * ArA and 0< 41 Z2=* M
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 ALGORITHM FOR THE GENERALIZED EIGENVALUE PROBLEM 1245

 and the negative eigenvalues by

 AjA CAVA <0 and VM

 then the following inequalities hold:

 -I C X=0,1, Ij,M1 + =P9 J=L),1,*. Im1
 A'7A-i

 ZVM-jcp j = 0, 19 . . .'v ,M1,
 A VA-)

 where p is the largest eigenvalue of the symmetric positive semidefinite matrix yTy,

 2. Computing eigenvalues by trace minimization. We present an algorithm for
 obtaining a few of the largest or smallest eigenvalues and the corresponding eigenvec-

 tors of the generalized eigenvalue problem (1.1). For the moment we require the
 additional assumption that the matrix A be positive definite. If A is indefinite, problem
 (1.1) is replaced by

 (A-vB)x = (A -v)Bx,

 where v < A1 < 0, thus assuring that (A - vB) is positive definite.
 The algorithm developed in this section is motivated by Theorem 1.2.
 DEFINITION. An n x p matrix Y forms a section of the eigenvalue problem (1.1)

 if

 (2.1) YTAY=X, YTBY = Ip,
 with M = diag (o-1, o-2, ' ' ' P)

 Our approach is to find a sequence of iterates Yk+1 = F(Yk), where both Yk and

 Yk+1 form a section of (1.1), with tr (YkT+lAYk+l)<tr (YkTAYk). From Theorem 1.2,
 the matrix Y in (2.1) which minimizes tr (YTAY) is that matrix consisting of the
 eigenvectors associated with the p smallest eigenvalues of problem (1.1). We will
 choose F(Y) in such a way that the global convergence of the process is assured. In
 order to achieve a descent step at every iteration, we treat problem (1.1) as the

 quadratic minimization problem

 minimize tr (YTA Y)

 subject to the constraints

 (2.2) YTB Y =I.

 THEOREM 2.1. Let K = STHS be a p x p matrix, where S is n x p and of rank p,
 and H is an n x n positive definite matrix. Then tr (K) p tr (H), where p is the largest

 eigenvalue of STS.
 Proof. Since K is positive definite, we write the eigenvalues of H and K as

 O <A 1- A 2 C CA <T T1 -C- tT-C'' '-CTp

 respectively. From Ostrowski's theorem (Theorem 1.3), we see that

 w ppheign A on STS an 1t r p 1 l

 where p is the largest eigenvalue of S TS, and the result readily follows. D
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 1246 AHMED H. SAMEH AND JOHN A. WISNIEWSKI

 2.1. The basic algorithm. Let Yk be an n x p matrix approximating the p eigen-
 vectors corresponding to the smallest p eigenvalues of (1.1), i.e.,

 T V A. _ k)~ (kc) . . (k) YkA Yk = Sk = diag (v 0lk) 2k C (k)p

 and

 (2.3) YkTBYk=Ip.
 Construct the matrix

 (2.4) Yk+1 = (Yk + Ak)Sk,

 where Sk and Ak are chosen such that

 AT ~ , (k+1) (k+1) (k+1)~
 Yk+,A Yk+l = 1k+1 = diag (C(l +l o(2+) O ,(+l

 (2.5) Y +lB Yk+l = Ip

 and

 (2.6) tr (YT+ AYk+l) < tr (YkAYk).

 2.1.1. Choice of Sk and Ak. Naturally, we consider only corrections Ak, in (2.4),

 which are in the tangent subspace of the set of constraints YkTB Yk =I,; see [Luen73,
 Chaps. 10 and 11]. This implies that

 AkBYk = 0.

 This condition is satisfied if we choose

 (2.7) Ak = (I -Pk)Zk,

 where Zk is an n x p matrix yet to be specified and

 (2.8) Pk =BYk(Y kB Yk-YykB

 is the projector onto the subspace spanned by the columns of BYk, i.e. PBYk = BYk.

 If we let Y = (Yk + Ak), then Sk is chosen simply as the matrix of eigenvectors for
 the p x p generalized eigenvalue problem YTA Y = A YTB Y.

 To see how Sk is determined, from the two p x p matrices

 (2.9) YTAY = k + YkTA Ak + A kA Yk + AkA Ak

 and

 (2.10) Y BY= Ip +AkBAk

 Observing that (2.10) is a positive definite matrix, it has the spectral decomposition

 AT A 2T
 Y BY = UD2 UT,

 where U is orthogonal and D2 = diag (81,* . , p) Note that 8 i 1; see [Wilk65,
 pp. 101-102].

 Hence, D lUT(YTBY)ULDl = Ip. Now, we can construct an orthogonal matrix
 V such that

 VTD- UT(VTA A)UDYV=XSk+1
 In other words,

 (2.11) Sk=UD-1V.
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 ALGORITHM FOR THE GENERALIZED EIGENVALUE PROBLEM 1247

 Therefore,

 tr (ky+AYkY ) = tr [VT (D1U YUD-) V

 =tr [D '(UTYTA YU)D --V<tr (YTAY)

 where we have used Theorem 2.1 and the fact that 82 > 1.
 Consequently, we see that the scaling matrix Sk is chosen so that Yk+1 forms a

 new section (2.1) of problem (1.1), while guaranteeing that tr (YkT+AYk+1) does not
 increase. We will see, however, that while the matrix Sk is chosen to maintain the
 B-orthonormality and A-orthogonality of the iterates, the matrix Ak plays a crucial
 role. It is chosen to yield improved approximations to the eigenvectors of problem
 (1.1) by reducing tr (YTA Y). We now concentrate on the choice of the matrix Ak.

 2.2. Choice of Ak as a steepest descent step. A reasonable choice for Zk, (see
 (2.7)) for which inequality (2.6) holds, is Zk =AYkWk, i.e.,

 (2.12) Ak =(I -Pk)AYkWk,

 where Wk = diag (C (k)2 , * * , w ) is yet to be determined. It is interesting to note
 that the matrix Ak can also be written as

 Ak =(I -Pk)RkWk,

 where Rk = A Yk - B Yk Ek is the residual matrix of problem (1.1) corresponding to Yk.
 This follows from the fact that (I -Pk)BYk = 0. As a result, the matrix Ak can either
 be treated as a scaled projection of the kth residual, or as a scaled projection of the
 gradient of tr (YkTA Yk).

 Now, from (2.12) and (2.9) we have

 tr (Y YA) = tr (0k)+2 tr (CkWk)+tr (EkWk),

 where

 Ck= YkTA(I-Pk)AYk and Ek = YkA(I-Pk)A(I Pk)AYk.
 Consequently, we wish to determine Wk so that

 qk = tr (2CkWk+EkW k)

 is minimized. This is achieved simply by choosing

 (2.13) (k =y i = 1,92, * ,p

 where y(i) and E sk) are the diagonal elements of the matrices Ck and Ek, respectively.
 Note that E (k) >_O. If E,1k = 0 for any j, i.e., when Yke1 is an eigenvector of (1.1), we
 simply choose 5 Sk) to be zero also. Hence,

 p

 min j=k=
 (k)

 and

 (2.14) tr (YT+AYk+l),-tr (Y AY) <tr (k)= tr(YkAYk).

 2.3. The choice of Ak as an optimal subspace iterate. In this section we treat the
 formulation (2.2) of problem (1.1) by again considering corrections A in the subspace
 orthogonal to the constraints

 YTB Y = Ip.
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 1248 AHMED H. SAMEH AND JOHN A. WISNIEWSKI

 Thus, we consider an iteration of the form

 (2.15) y=Y-A,

 where A is chosen so as to

 minimize tr (Y - A)TA(Y - A),
 (2.16)

 subject to YTBA = 0.

 Since the matrix A is positive definite (by assumption), we consider instead the
 equivalent problem:

 minimize (y1 - di)TA(y1 - dj),

 (2.17) subject to YTBdj = 0, j = 1, 2, , p
 where di = Aej.

 The problem in (2.17) can also be written as

 minimize I1bj -A " 2yjlI
 (2.18) subject to YTBA-l/2bj =0,= 1,2.. p.

 where bj =A "2dj. The solution to this linear least squares problem is obtained by
 setting A '12yj - bj equal to the orthogonal projection of A'12yj onto the space spanned
 by A"2BY (see, for example, [LaHa74, Chaps. 20-22]). Consequently,

 A yj-bj=-A "2BY(YTBA-BY)-'YTByj
 and

 yj- = A'1BY(YTBA'1BY)- YTByj.
 Hence, since YTBY=I we have

 (2.19) Y= Y-A=AlBY(YTBA-lBY)l.

 From (2.19), it is easy to see that the optimal subspace iterate is equal to the
 subspace obtained by one step of simultaneous iteration [Ruti69]. Our iteration differs
 from that of Rutishauser's only by the presence of the p xp scaling matrix

 (YTBA -BY)-'. In other words, iteration (2.19) generates exactly the same sequence
 of subspaces as simultaneous iteration for computing the largest eigenvalues of the
 problem A'-Bu = ,uu.

 In fact, both the global convergence and rate of convergence of (2.19) follow
 directly from those of simultaneous iteration, [Ruti69]. Since each column of Y and
 Y can be expressed as a linear combination of the eigenvectors of (1.1), i.e.,

 Y=ZG and Y=ZG,

 where Z is the eigenvector matrix, and since as Y -e X, GT - (Ip, 0), we write

 G []+F=[P+F]

 and

 G IP] +F = [IPi+t

 Note that the columns of F and F are vectors representing the errors in the associated
 eigenvector approximations Y and Y, respectively. We now state the main result.

This content downloaded from 131.114.10.142 on Thu, 26 Jul 2018 16:46:01 UTC
All use subject to https://about.jstor.org/terms



 ALGORITHM FOR THE GENERALIZED EIGENVALUE PROBLEM 1249

 THEOREM 2.2. Let A and B be symmetric positive definite matrices and assume
 that the eigenvalues of problem (1.1) satisfy O < A 1 A2' Ap< Ap+1- -- An-
 Also, let the initial iterate Y of the algorithm be chosen such that it has linearly
 independent columns and that the corresponding matrix F is not deficient in any
 eigencomponent. Then, column i of Y, yj, globally converges to the eigenvector xj
 corresponding to Aj for j = 1, 2,.. , p, with an asymptotic rate of convergence less than
 or equal to IAj/Ap+1I. That is, we have

 ,IWejll IAj/Ap+iI WFej 1 + 0(ILF12).

 The initial choice of Y as a set of vectors whose elements are randomly chosen, in
 general, will satisfy the assumption that Y is of rank p.

 Since the most time-consuming computation in the algorithm is that of solving
 problem (2.17), an efficient method of obtaining dj, j = 1, 2, , p, is essential. It is
 on this matter that we now focus our attention.

 Using Lagrange multipliers and dropping the subscripts from (2.17), we see that
 any of the systems (2.17) is equivalent to the system of linear equations

 (2.20) [YTB 0 B ][]A 0]
 where 21 is a vector of order p representing the Lagrange multipliers. Writing BY in
 terms of its orthogonal factorization (note that rank (BY) =p)

 BY = QR = [Q1, Q2]R,

 where RT = [R 'T 0], in which R' is upper triangular of order p, and Q is orthogonal
 with Q1 E R nxp we obtain the equivalent system

 (2.21) [ TA 0] gI =0]

 with g = QTd and f = QTAy. Writing gT = [g,T gT]q where g' is a vector of order p,
 the equation R Tg =0, and the nonsingularity of R' implies that g' = 0. Consequently,
 (2.22) reduces to

 QTAQ[0]+[Rl=f.

 Hence, we obtain

 (2.22) Q TAQ2- + R'l = Q TAy

 and

 (2.23) QTAQ22 = Q2TAY
 Since we are only interested in solving (2.20) for d, we need only solve the positive

 definite system (2.23) for ?. Since

 d = Qg =Q2j

 the conjugate gradient method (version 2 of [Reid71]) for solving the system (2.23)
 is given by:

 ro =Q2TAY -Q 2TAQ2go

 = F0,
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 1250 AHMED H. SAMEH AND JOHN A. WISNIEWSKI

 fork=0, 1,2, *

 gk+l = gk +akpk,

 ak = rkrklp kQ2AQ2Pk,

 rk+1 = rk -akQ2AQ2pk,

 Pk+l = rk+1 +'3kPk,

 13k = rk+lrk+l/rkrk.

 Observing that (I -P) (I- QiQT) = Q22, the CG algorithm is transformed

 into the original coordinates by the relations

 rk = Q2Fk, dk = Q2?k, Pk = Q2Pk

 Making the convenient choice ?o = 0 and forming the iterates y - dk directly instead
 of only dk, results in the following:

 ro=(I-P)Ayo, Yo=Y,

 po =o

 for k = 0, 1, 2, ,

 Yk+1 = Yk -akpk,

 T T
 ak = r k rk/P kAPk,

 rk+1 = rk -ak(I -P)Apk,

 Pk+1 = rk+1 +f3kPk,

 18k = rk+lrk+l/rkrk.

 The relationship between the choice of Ak as a steepest descent step and Ak as

 an optimal subspace iterate is now clear. The choice of A,k as a steepest descent results
 in executing the above CG algorithm only for the case k = 0, whereas the computation

 Of Ak as an optimal subspace iterate would require execution of the CG algorithm
 until the solution to the system (2.23) is obtained. The two choices represent opposite
 extremes in deciding how much the trace should be reduced in the current subspace.

 At this point we should mention that (2.19) suggests an alternative algorithm,
 namely, the use of Rutishauser's simultaneous iteration to obtain a few of the largest

 eigenvalues of A'1B employing the method of conjugate gradients when performing
 the matrix-vector products (A-1B)z = y. Numerical experiments have shown, however,
 that such an algorithm yields results comparable with ours only if the linear systems

 Ay = Bz are solved quite accurately, which can be very time consuming. In ? 2.4 we

 present a criterion for terminating the CG process which makes the trace minimization

 approach even more economical.

 2.4. Terminating the CG process. In this section, we take advantage of the error
 analysis of the CG algorithm (see, for example [Luen73]) and the error analysis of
 iteration (2.19), Theorem 2.2, in deriving a useful stopping criterion for the CG process.

 DEFINITION. Let the error function E(-m) of the mth step of the CG algorithm
 applied to the system (2.23) be given by

 (?m ) = (?m- g*)TQ2AQ2(gm g ),
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 where ?* is the unique solution to (2.23). This gives the equivalent error function (in
 the original coordinates):

 ?(Y.) = (Yi - y*)TA(y -y*),

 where y* = y -d*, d* = Q2g.
 We now quote a relevant theorem concerning the errors in the CG algorithm.
 THEOREM 2.3 [Luen73, p. 187]. For the CG algorithm

 1- K-1/2. 2m

 E (ym) -<4 L l+KJ-1/ (Yo),
 where K is the condition number of Q2AQ2.

 From Theorem 2.2, we see that

 fT Af ' (Aj/Ap+i)2ff Afj + O(||F|| ),

 where fj and fj represent the errors in the eigenvector approximations (column j of
 Y) for two successive iterates. The above limitation in accuracy is of course due to
 the fact that we are restricting our next eigenvector approximations to the space
 orthogonal to BY. Consequently, even if we were to compute the right-hand sidr of
 (2.19) exactly, we could expect no more accuracy in our iterates than that given by
 Theorem 2.2. In light of this, Theorem 2.3 and the fact that our iterates for the CG
 process are restricted to the space orthogonal to BY, any contraction of the error in
 a given iterate of the process smaller than (Aj/Ap+1)2, will gain us little (if any) additional
 accuracy in the eigenvector approximations for the given subspace. As a result, we
 choose our step number m for the CG method as that smallest integer for which

 (2.24) ? (yj -A/pl y

 The quantity E (y jk)) may be estimated by

 A (yk) (Y 5k) _yk+l))TA(yAk) _ yk+1))

 which can be easily obtained from the CG algorithm in ? 2.3 via one multiplication
 (ak Irk 112). This underestimation of the error is compensated for by the fact that we use
 the ratio (o-j/o-p+j) as an estimate for (Aj/Ap+1), where in general -/jlo-p+l <Aj/Ap+l,
 especially where o-j is sufficiently close to Aj. It should be noted that an extra column
 vector (p + 1) is needed for the computation.

 3. Computational aspects. In this section, we consider several techniques which
 are necessary for a successful computer implementation of our algorithm. We begin
 by treating the details associated with the incorporation of Ritz shifts into the algorithm.

 The acceleration method that we have chosen to incorporate into our algorithm
 is analogous to a Rayleigh quotient iteration scheme (e.g., see [Par180, pp. 70-80]).
 The method consists of solving the sequence of eigenvalue problems

 (3.1) (A _ c/k)B)xj = Ak)Bx. j= 1, 2,9 p.

 These problems have the same eigenvectors as those of problem (1.1), and their
 eigenvalues are simply given by

 (k) ( i_ _k) Aj = j- j,

 where Aj is the fth eigenvalue of problem (1.1). The shift parameters 05rk) are given
 by (2.3), the Ritz approximations for the kth iteration of our algorithm. Wilkinson
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 1252 AHMED H. SAMEH AND JOHN A. WISNIEWSKI

 [Wilk72] has shown that convergence of the Rayleigh quotient iteration to an eigen-
 value A is ensured if the Ritz approximation is sufficiently close to A. Furthermore,
 the rate of convergence is cubic.

 Clearly, the global convergence of our algorithm (discussed in ? 2.3) is not
 preserved. So, it is at this point that we also relax our assumption regarding the
 positive definiteness of A. From the fact that 0_Jk+1) <i_/k) for all k, i.e., the Ritz
 approximations for the algorithm approach the eigenvalues of problem (1.1) from
 above and from the well-known theorem:

 THEOREM 3.1 [Parl80, p. 318]. For an arbitrary nonzero vector u and scalar o-,
 there is an eigenvalue A of (1.1) such that

 IA - '-| (A - B)U |IB-1/IIBu IB-1.

 We have developed a heuristic strategy that maintained global convergence
 successfully for a variety of test problems [Wisn81]. This strategy may be outlined as
 follows:

 (i) 0_k) = (k), for 1'j'p, whenever _ (k)<0,
 (ii) the CG process is terminated whenever we encounter a nondescent step and

 (iii) 01I is used as a shift for column j, 1 < j, only if 01I < Ai.
 This is assured when

 (3.2) ia - (oj < Al - oj < -Ir|IIB-1,

 where rj = Ayj-o-jByj.
 The algorithm is best accelerated when we can use orj as the shift for column j.

 That the resulting method has a cubic rate of convergence is a consequence of the
 following theorem.

 (k) TT

 THEOREM 3.2. For j j 'p,A1-o =-e, F 4,Fej, where 1j = A-AAjL
 Proof. Let Yk be given by (2.3), writing Yk = ZG; then from (1.2) we get GTG =I

 with

 Consequently,

 e[TGTGej = 1,
 or

 ejfe, +2eTFe. +ej FTFej = 1,

 hence e[jFTFej =-2e jFe1.
 Furthermore,

 y(k)TAy(k) = e,TGTAGej = e Aej +2A,e,[Fej +eTFTAFej

 = Aj- A ejTFTFej + eTFTAFej

 = Ai +e TFT4jFej,

 from which the theorem follows. 0
 The efficiency of the algorithm crucially depends on the shifting strategy employed.

 If we shift column j by o-j too late, the algorithm becomes inefficient in the sense that
 we take several steps of the algorithm at a slower (linear) rate of convergence when

 a much better (cubic) rate is possible. On the other hand, if we shift column i by o-j
 too soon, the objective function (2.17), with shifted A, increases rather than decreases
 and global convergence is lost. Step (ii) in our heuristic strategy attempts to prevent
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 such loss of global convergence, and step (iii) avoids needless delay in shifting with
 the proper Ritz approximation.

 In the presence of shifting, it is important to estimate the error reduction factor
 used in terminating the CG process of ? 2.4. The error test (2.24) for the CG process
 now becomes

 ? yj )) C(A k )/A (k 1)2E (y (O) )

 where X5k) = Ai _-_k). From Theorem 3.2,

 0k+l_k)- T = eFTh?jFeTe-F )

 where we have used the fact that with shifting, IIF1I = 0(11F113). Hence,

 (3.4) Aj)c;)c;)

 Assuming that AP+1 < (0r), we approximate A (k+ by

 (3.5) A ( I c k)

 Such an assumption is reasonable especially in the case Ap ? Ap+1 << A,. In any event,
 approximation (3.5) is not as critical as (3.4). Now, the termination criterion (3.3) can
 be written as

 )? (y (M)) C[ ' (+) _ (0k) 2A

 where (y(ky)) = (y k) _yk+1))T (A I Cjk)B) (yjk) _yk+1)) Our numerical experiments
 have shown that the approximate criterion (3.3)' works well in practice. In addition
 to the termination criterion (3.3)', the CG iterations are also terminated if

 ? (ym()) _- 1 OOI|A I J( )B |

 where rq is the roundoff error level of the machine. This is done because any increments
 which are added to y(k), k -- m, will be at or below the roundoff level of the machine.

 The analysis so far has dealt only with a single column in the block. Certainly,

 each column of Y has a different asymptotic rate of convergence. Furthermore, the
 error reduction for any column depends on the overall accuracy of the iterates in the
 subspace. We have observed that the overall error reduction is bounded by the
 maximum reduction given by Theorem 2.2 and the criterion (3.3)' used to terminate
 the CG process. Our strategy is then to use an error reduction factor which is the

 geometric mean of the error reduction factors of the individual columns in the block.
 This strategy is well balanced in that it avoids performing excessive CG iterations and
 avoids computing excessively many sections. It has worked well on our test problems.

 Additional computational aspects concerning the efficient implementation of our
 algorithm are found in [Wisn81]. Treated there is the efficient computation of a
 section, (2.2), and the formation of the projection matrix (I -P). Our method freezes
 a column of Y once it has converged and requires the user to choose the block size
 of the method s > p, where p is the number of desired eigenvectors.

 Our convergence test follows from the observation made by Moler and Stewart
 [MoSt73] concerning the QZ algorithm. "If an eigenvalue and eigenvector are not
 too "ill disposed," then they produce a small relative residual." Hence, when all the

 eigenvector-eigenvalue pairs have small relative residuals, we terminate the iteration
 process. Furthermore, a column of Y is accepted as a valid eigenvector approximation

 whenever the CG process is terminated due to corrections di that are at the roundoff
 level of the machine.
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 Finally, we mention in passing that the above algorithm is ideally suited for array
 or parallel computers. For example, the CG process (the most time-consuming part
 of the algorithm) can be implemented on s independent processors, one processor
 per column of Y. These processors, however, need an interconnection network that
 would allow the efficient implementation of the following two tasks:

 (a) The B-orthonormalization of the columns of Y via the modified Gram-
 Schmidt process [Rice66], which is needed in computing the projector P of
 (2.8), and

 (b) the evaluation of all the eigenvalues and eigenvectors of a dense s x s matrix
 via the "parallel" Jacobi method in [Same71] needed for computing a section
 (2.2).

 Because of the nature of the above two tasks, it turns out that a simple network
 such as that of the ILLIAC IV computer [Bouk72] is sufficient.

 4. Numerical experiments. We have tested our algorithm, which we call
 TRACMN, on a test set consisting of eight problems. In the first five problems we
 chose the matrices A and B such that K(B), the spectral condition number of B is
 10 and the eigenvalues of the problem (1.1) have the distribution shown in Table 1.

 TABLE 1

 Eigenvalue distributions and parameters for TRACMN.

 Problem Distribution N P S

 1 (0,10,20,30,31,. -,36) 10 3 4
 2 (1, 1.001, * * *, 1.004,49.981,49.982,. *, 50) 25 3 4
 3 (1, 1.001, * * *, 1.004,49.981,49.982,... , 50) 25 6 7
 4 (1, 1.5, 2, 2.5, 5, 5.5, 6, 6.5, 9, 9.5,.. -, 24.5) 40 8 9

 5 (-3,-1,1,3,5,.. ,35) 20 4 5

 For problems 6 and 7 we consider the determination of few of the natural
 frequencies of a simply supported and clamped isotropic plate, respectively. We use
 the Hermite bicubic finite element discretization of the biharmonic operator on the
 unit square for problem 6 and on the rectangle 0 -x ' ir and 0 ' y ' 2114ir for problem
 7. For problem 6 we take n = 64, p = 5 and s =6 and for problem 7 n = 64, p = 10
 and s = 15. Finally, for problem 8 we take in (1.1), B = I andA the five-point difference
 Poisson operator of order n = 992; we also take p = 2 and s = 3.

 Problem 1 is one of the test set used by Longsine and McCormick [LoMc8O] to
 test their algorithms. Problems 2, 3 and 4 are chosen to indicate the performance of
 our algorithm, that of Longsine and McCormick and the Lanczos algorithm on
 problems with mild to moderate eigenvalue clustering. Problem 5 is chosen to illustrate
 the performance of our method when A is indefinite. The condition number of B,
 K (B), is chosen to be small so as not to favor our method over that of Lanczos. For
 all problems, we request a relative residual tolerance of 10-12.

 In Table 2 we present the numerical results of our algorithm on the test set. The
 algorithm terminated normally for all problems, indicating that the tolerance criteria
 were met. Table 2 shows the number of outer iterations (sections) required by the
 algorithm to obtain the solution, the number of multiplications of the matrices A and
 B by a vector and the CPU time in seconds. All computations are performed in single
 precision on the Cyber 175 which has approximately 14 decimal digits of accuracy.
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 TABLE 2

 Numerical results of TRACMN (with shifting).

 Problem Iterations A mults B mults Time

 1 13 252 207 1.13
 2 6 368 333 1.84
 3 14 426 373 2.57
 4 8 655 573 4.50
 5 8 409 379 2.16
 6 5 731 731 9.20
 7 5 1217 1217 9.77
 8 6 726 619 12.59

 As stated in ? 1, the methods of Longsine and McCormick [LoMc8O], SIRQIT
 and SIRQIT-CG most closely resemble ours in their basic development. It is clear,
 however, that the end products are different, a point well illustrated by Fig. 1. Their
 algorithms solve the p problems

 minimize (y fAyi/y TByi), i = 1, 2, * *, p.

 PROBLEM 2 COLUMN 3

 0

 0

 ?ACMN

 0

 0.0 200.0 400.0 a0 800.0 1000.0

 MATRIX MULTI PLICATIONS

 FIG. 1. Trace minimization (dashed line) vs. SIRQIT CG (solid line). The lower curves represent the
 errors in the eigenvalue, and the upper curves the error in the corresponding eigenvector.
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 At the kth step of the minimization procedure in [LoMc8O]

 yk+l) = yk) +af k)d(k) i = 1 2, * p.

 In SIRQIT, d(k) and a (k) are determined by the steepest descent procedure of Hestenes
 and Karush [HeKa52], and in SIRQIT-CG, these quantities are determined by the
 CG procedure of Bradbury and Fletcher [BrF166]. It should be noted that the search
 directions d(k) only ensure that

 (4.1) y(k+l)TBY(k+l) = 1, i = 1, 2,* p.

 This limited treatment of the constraints, resulting in lack of coupling between the
 iterates y k), is the main difference between our methods. As a result, they have only
 been able to prove the global convergence of the first vector in their block to the
 eigenvector corresponding to Amin of the standard eigenvalue problem Ax = Ax. It is
 of interest to note that for a single column and B = I, SIRQIT reduces to the method

 of geodesic descent, see [Luen73, pp. 254-261], with the same rate of convergence.
 From the implementation point of view, while the number of CG steps required in
 the inner iteration of TRACMN is determined dynamically, the CG process in
 SIRQIT-CG is incorporated into the outer iteration and no heuristic is given (other
 than trial and error) for determining the frequency of recycling the CG process. Our
 experience indicates that the efficiency of SIRQIT-CG is sensitive to the recycling
 frequency.

 Table 3 illustrates the performance of SIRQIT-CG vs. TRACMN on two of the
 test problems. The best recycle frequency of SIRQIT-CG is determined experimentally

 TABLE 3

 Performance of SIRQIT-CG [LoMc80] vs. TRACMN.

 Recycle Time in

 Problem frequency seconds A mults B mults

 I 1 1.65 258 258

 SIRQIT-CG 1 2 1.98 399 402

 2 4 69.52 13,094 13,712

 TRACMN 2-1 1.13 252 207
 TRACMN ~~~2 -1.84 368 333

 using crude tolerances (a recycle frequency of 1 indicates that SIRQIT, rather than
 SIRQIT-CG, is executed). The convergence characteristics of TRACMN and SIRQIT-
 CG are illustrated in Fig. 1. The dashed curves represent the errors associated with
 TRACMN and the solid lines SIRQIT-CG. Two curves are plotted for each method,
 the lower curve represents the error in the third smallest eigenvalue and the upper
 curve the 2-norm of the error in the corresponding eigenvector.

 Now we compare the performance of our method with that of the generalized
 Lanczos process where the conjugate gradient algorithm is used to solve the resulting
 systems of linear equations of the form Bz = f. We consider a typical implementation
 of the Lanczos process where the tridiagonal matrix is computed without reor-
 thogonalization, and once the eigenvalues of the tridiagonal matrix are computed, we
 evaluate the corresponding eigenvectors using inverse iteration via subroutine
 SYMMLQ of Paige and Saunders [PaSa75]. In all problems of our test set we have
 observed that the linear systems involving B, that are encountered in every step of
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 the Lanczos process, must be solved to high accuracy (a relative residual of about
 71075, where r is the machine precision) so as to avoid premature introduction of
 spurious eigenvalues. The Lanczos algorithm can also be used to solve the system
 Bz =f more efficiently [Parl80a], yielding a drastic reduction in execution time. The
 method, however, uses secondary storage (disk), thus, we decided not to use it for
 comparative purposes. Table 4 gives the result of such comparisons for obtaining the

 TABLE 4

 Comparison of the Lanczos process without reorthogonalization with TRACMN.

 Time in

 Problem Iterations A mults B mults seconds

 Lanczos 3 29 796 1,579 4.42

 4 35 448 1,707 4.13

 TRACMN 3 14 426 373 2.57

 4 8 655 573 4.50

 required eigenvectors (and eigenvalues) of problems 3 and 4 to the prescribed toler-

 ance. While the execution time is comparable for both methods on problem 4,

 TRACMN requires less time than the Lanczos algorithm for problem 3. The reason
 for this is the time consumed by the classification process within the Lanczos algorithm.
 This is the process of determining when the algorithm has computed the p smallest
 eigenvalues. In problem 3, the Lanczos algorithm introduces 7 spurious eigenvalues,
 making it necessary to compute 13 eigenvector approximations to guarantee that the
 desired 6 eigenvectors are obtained. Recently, Parlett and Reid [PaRe8O] have made
 some progress in handling this classification process for the standard eigenvalue
 problem.

 It is also of interest to note that our algorithm, TRACMN, requires roughly half
 the number of matrix-vector multiplications required by the Lanczos process. This
 indicates that for very large problems TRACMN is preferable to the Lanczos method
 without reorthogonalization.

 Alternative implementations of the Lanczos algorithm make use of selective
 orthogonalization [PaSc79] or periodic reorthogonalization [Grca81]. While these
 methods practically avoid the introduction of spurious eigenvalues, they must keep
 the entire set, or a subset, of the Lanczos basis vectors in secondary storage (disk).

 For very large problems this can be rather impractical. In addition, it is vitally important

 to solve the linear systems Bz =f to full accuracy since such methods attempt to
 compute, via reorthogonalization, the exact Lanczos basis for the eigenproblem. The

 disk I/O must be carefully interleaved with the arithmetic so as to prevent the
 algorithm from becoming I/O bound. The difficult classification problem is not entirely
 eliminated. Moreover, unlike our algorithm, TRACMN, eigenvalue multiplicities are

 not detected unless a block version of the Lanczos method [GoUn77] is used. Since
 our method uses only high speed memory, we have opted not to compare it with the
 above, secondary storage intensive, Lanczos methods.

 The efficiency of the Lanczos method, in a parallel computing environment, can
 only be improved by the vectorization of the matrix-vector products. Consequently,
 the maximum speedup which can be attained over the sequential algorithm is of order

 n, where n is the problem dimension. The I/O penalties that are incurred, in a parallel
 computing environment, are much more costly when periodic reorthogonalization is
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 1258 AHMED H. SAMEH AND JOHN A. WISNIEWSKI

 used, since the method clearly will become I/O bound. Our method, on the other
 hand, utilizes only high speed memory, and in a parallel computing environment, can
 be vectorized with the minimum of interprocessor communication. Thus, TRACMN
 can achieve a maximum speedup of order ns, where s is the block size, which is
 superior to that of the basic Lanczos method. While the block Lanczos method should
 also achieve a maximum speedup of ns over a sequential version of the same method,
 as far as the arithmetic is concerned, the interprocessor communication degrades this
 speedup significantly, see for example [SaSa8O], especially when the ns processors
 are "loosely" interconnected.

 Acknowledgments. The first author would like to acknowledge the stimulating
 discussions with Professors Gene Golub and Alston Householder regarding the
 generalized eigenvalue problem during a visit to the celebrated Serra House of the
 Department of Computer Science at Stanford University. We would also like to thank
 the referee for many valuable suggestions.
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