Colloquio di passaggio d'anno 2018-2019

Davide Gori

30 aprile 2019

1 Introduzione

Definizione di azione sui polinomi, $G \cap S(V^*) = K[x_1, \dots, x_n]$, come agisce. Vogliamo studiare $R = S^G$ come algebra, esempio si S_n . Settings: G finito, charK = 0, G senza sottospazi invarianti.

2 Osservazioni preliminari e generatori

- Il grado è invariante.
- I polinomi di grado 0 sono invarianti.
- Possiamo far agire G su $K(x_i)$, osservazione sul grado di trascendenza $K \subset K(x_i)^G \subset K(x_i)$.
- Voglio dei generatori: $I = SR^+$.

3 Gruppi di riflessione e S^G

Definisco pseudoriflessione.

Th di Chevalley.

Definisco base di invarianti (a prescindere da G), questo è come voglio il gruppo.

Osservazione: data una B.di I. i gradi d_i sono unici.

4 Teorema di Chevalley-Shepard-Todd

Supponiamo $V_{\mathbb{R}}$, dimostro il teorema. Lemmi che si usano:

- $\prod d_i = |G|$
- $\sum d_i = N + n$
- Voglio dei generatori: $I = SR^+$

Osservaione: Un'altra tesi equivalente teorema: S
in R modulo, di rango |G| Osservazione: per verificare che B. di I. genera basta $\prod d_i = |G|$. Generalizzazione: Grazie a Shephard-Todd si ha che a_k in $\prod (1 + (d_i - 1)t)$ sono il numero di elementi con spazio fisso di dimensione n - k

5 Elementi di Coxeter

Ora sono su \mathbb{R}

- $\bullet\,$ definisco sistema di radici, δ sistema, definisco un generico el di coxeter.
- sono tutti coniugati.
- Numero di Coxeter h e definizione di esponenti m_i .
- Teorema: $d_i = m_i + 1$

Idea del perché hanno a che fare le due cose: per studiare w considero un piano particolare, guardando i punti a stabilizzatore banale. grazie a ciò si ricava:

- $m_i \neq 0$
- $m_i \mapsto h m_i$
- $\sum m_i = \frac{nh}{2}$
- $m_1 = 1$ con il piano.
- $h = \frac{2N}{n}$

Grazie a questo, complessifico lo spazio e mi scrivo i polinomi nella base degli autovalori, a questo punto riesco ad ottenere che $f_i = a_i y_1^{d-1} y_i$ e ora facendo agire w ho $\zeta^{1-d_i-m_i} = 1$, quindi $d_i - 1 \equiv h - m_i \pmod{h}$, da cui la tesi perché conosciamo la somma.