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Exponential fields

Definition
An exponential field, or E-field, is a structure

(K , 0, 1,+, ·,E )

where (K , 0, 1,+, ·) is a field, and the following equation holds

E (x + y) = E (x) · E (y).

• Rexp (o-minimal, model complete, decidable if Schanuel’s
Conjecture is true).

• Cexp (undecidable, interprets Peano’s Arithmetic).
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Schanuel’s Conjecture

A special role in the model-theoretic study is played by a long
standing conjecture in transcendental number theory.

Conjecture (Schanuel)

For any z1, . . . , zn ∈ C linearly independent over Q,

tr.deg.Q(z1, . . . , zn, e
z1 , . . . , ezn) ≥ n.

If Schanuel’s Conjecture holds at least for z1, . . . , zn ∈ R, then the
first order theory of Rexp is decidable [1].

On the other hand, Cexp defines (Z,+, ·), hence it is always
undecidable. First order theory may not be sufficient.
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Conjectural, but categorical axioms for Cexp in Lω1,ω(Q)

Zilber looked for (uncountably) categorical axioms in Lω1,ω(Q).

Properties of Cexp:

(ACF0 ) C is an algebraically closed field of characteristic 0.

(E) exp is a homomorphism exp : (C,+)→ (C×, ·).
(LOG) exp is surjective.

(STD) ker(exp) = 2πiZ (needs Lω1,ω).

Conjectures on Cexp:

(SP) tr.deg.Q(z , exp(z)) ≥ lin.d.Q(z) (Schanuel’s Property).

(SEC) every “rotund” variety contains a generic solution (z , exp(z)).

Another property of Cexp:

(CCP) every “rotund” variety of “depth 0” contains at most countably
many generic solutions (z , exp(z)) (needs Q).
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Zilber’s categoricity result

Theorem (Zilber, 2005 [2])

The axioms are uncountably categorical.

We call “Zilber field”, or BE , the unique model of cardinality 2ℵ0 .

The conjecture becomes the following.

Conjecture (Zilber, 2005 [2])

Cexp is isomorphic to BE .
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Automorphisms

Definition

An involution of KE is an automorphism σ : KE → KE s.t. σ2 = Id.

Cexp has one involution, complex conjugation.

• It is the unique known automorphism of Cexp.
• exp is continuous in the induced topology.
• exp is the unique continuous exponential (up to constants).

If BE ∼= Cexp, BE would have an involution as well.

Theorem (M., 2011)

1 There is an involution σ on BE (such that Bσ ∼= R).
2 There are 22ℵ0 non-conjugate involutions on BE .
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Problems in our proof

Unfortunately, what we found is different from complex conjugation.

• the solutions (z ,E (z)) of rotund varieties are dense;
• hence, E is not continuous;
• moreover, the restriction E�Bσ is not increasing.

This is also in contrast with the fact that on Cexp the solutions
(z , exp(z)) of rotund varieties of “depth 0” are isolated.

Remark. We are not refuting Zilber’s conjecture: other involutions
can still be such that E is continuous.
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The construction

We start from K and σ : K → K , and we build E .
For instance, K = C and σ the complex conjugation.

For any E , we know that σ ◦ E = E ◦ σ if and only if

1 E (R) ⊂ R>0;

2 E (iR) ⊂ S1(C).

Hence, we build E on C by ‘back-and-forth’, while respecting the
restrictions 1 , 2 . We can easily obtain an E satisfying all of the
axioms except (CCP).

In order to build E with (CCP), we add dense sets of solutions to
rotund varieties (destroying continuity).
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Summary

Zilber produced a sentence ψ in Lω1,ω(Q) which is uncountably
categorical, and conjecturally an axiomatization of Cexp. Its unique
model in cardinality 2ℵ0 is called BE .

Looking for an analogue of complex conjugation, we found that
• There are 22ℵ0 involutions on BE .
• One of them is such that Bσ ∼= R.
• However, E is not continuous w.r.t. them.

Thanks for your attention!
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