
Conjugate gradient method applied to clustered

eigeinvalue matrices

Mele Giampaolo

October 11, 2012

Abstract

This document is the dissertation for the seminars of the professors
Bertaccini and Filippone during the Rome Moscow school. The aim is to
present the method of the conjugate gradient, to show some properties of
that and to prove some results about convergence. At the end it will be
given an idea about the fact that the convergence is too fast with clustered
eigenvalues.

All the vectors are column vectors in RN and all the matrices are in RN×N

1 Derivation of algorithm

We can describe the conjugate gradient method in this way: suppose we want
ro find the minimum of this function

f(x) =
1
2
xTHx− bTx + c

this means that we have to solve the linear system

Hx = b

We will call x̂ the solution of this problem. Let we suppose H definite positive,
we want to find the minimum using this kind of iterations

xk+1 = xk + τkdk

Definition 1.1. d is called descendent direction for f at x if there exists τ0
such that

f(x + τd) < f(x) 0 < τ ≤ τ0

Theorem 1.1. If f ∈ C1, let g(x) the gradient of f in x, then if the vector d
satisfies gT (x)d < 0 then is a descendent direction for f at x

Theorem 1.2. If f ∈ C2, gT (x)d = 0 and dTHd < 0 then d is a descendent
direction for f at x

The proof of those theorems is very trivial, just a short computation.
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Theorem 1.3. Let f ∈ C1, then among all directions d at some point x, that
direction in which f descends most rapidly in a neighborhood of x is d = −g(x).

If we choose dk = g(xk) then we will obtain the method of stepest descent, to
obtain the conjugate gradient method we have to do a sliglthly different choice.
We will see. So, from now we will call dk the search directions insted of the
descendent directions.

Let suppose given d, then we have to choose τ , but if H is definite positive then
dTHd > 0 and f(x + τd) is a parabola respect τ and it is minimized by

τ = −dTg(x)
dTHd

So if we know dk then we put

τk = −dTk g(xk)
dTkHdk

Let we denote gk := g(xk),it is not difficult to see that

gk = Hxk − b

It is important to underline that with this choice of τk we minimize f(xk+τdk)
but at the same time we make gk+1 (the gradient at xk+1) ortogonal to the
search direction dk. To see this we observe that

gk+1 = gk + τkHdk

and then we multiply for dk

dk
T
gk+1 = (dk)Tgk + τk(dk)THdk = 0

To see this is sufficient to replace the definition of τk.

We will look for search directions of this form{
dk+1 = −gk+1 + βkd

k k = 1, 2, . . .
d0 = g0

We have to choose the coefficients βk.

Observation 1.1. What happen if at same step we obtain a null search direc-
tion (dk = 0 )? Let consider the formula who define dk+1 and let us replace k
to k + 1, we obtain dk+1 = −gk+1 + βkd

k, we can do the scalar product with
gk and we obtain

gk
T
dk = ‖gk‖2 + βkg

kTdk−1

But we know that gk
T
dk−1 = 0, and so, if gk

T
dk = 0 then ‖gk‖2 = 0, this

means that we reached the point of minimum x̂. With the same argoment we
have that if xk 6= x̂ then dk 6= 0.

To choose in the best way βk we need some definitions.

2



Definition 1.2. Let now define the following inner product

(x,y)H−1 := xTH−1y

from this we have the norm

‖x‖H−1 := (x,x)1/2
H−1 = (xTH−1x)1/2

We will prefer to work with g insted of x, so it will be useful the following
lemma.

Lemma 1.1. It holds that ‖g‖H−1 = ‖x− x̂‖H

Proof. Let us start with this simple computation

g = Hx− b
= Hx−Hx̂ + Hx̂− b
= Hx−Hx̂
= H(x− x̂)

We used that Hx̂ = b And so

‖g‖H−1 = gTH−1g
= (x− x̂)THTH−1H(x− x̂)
= (x− x̂)TH(x− x̂)
= ‖x− x̂‖H

So, looking at the previous lemma, in order to obtain the convergence our
goal is to minimize ‖g‖H−1 .

Using the following (already discussed){
gk+1 = gk + τkHdk

dk+1 = −gk+1 + βkd
k

We obtain that for any choice of βk the gradient have this form

gk = g0 +
k∑
l=1

α
(k)
l H lg0

where

α
(k)
k = (−1)k

k−1∏
i=1

τi 6= 0

Definition 1.3. Let we define

Sk = span
{
Hg0,H2g0, . . . ,Hkg0

}
Tk =

{
g ∈ RN such that g = g0 + h with h ∈ Sk

}
Observation 1.2. Sk is a subspace of RN with the dimension equal to the
number of lineary indipendent vectors in the set

{
Hg0,H2g0, . . . ,Hkg0

}
, Tk

is a subset of RN and not a subspace (it can be consider as affine subspace). Of
course gk ∈ Tk
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Theorem 1.4 (The conjugate gradient method). If we impose the condition

‖gk‖H−1 = min
g∈Tk

‖g‖H−1

then

(i) the coefficients are

βk =
gk+1THdk

dk
T
Hdk

(ii) it holds that
gk

T
gl = 0 if l 6= k

(iii) it holds that
dk

T
Hdl = 0 if l 6= k

Proof. Let us start proving (ii). It is clear that the condition

‖gk‖H−1 = min
g∈Tk

‖g‖H−1

it’s equivalent to
‖g0 + hk‖H−1 = min

h∈Sk

‖g0 + h‖H−1

where hk = gk − g0.

The idea is to view any h ∈ Sk as an approximation of −g0 (it can be a
terrible approximation, we don’t care about that), in this case the error of this
approximation is h − (g0) = h + g0. So now, with this formulation, we want
to find in the subspace Sk the vector hk that most closely approximates −g0

with respect of the norm ‖ · ‖H−1 . Using the classical theorems of linear algebra
we know that this vector exists and is unique, moreover the error g0 + h0 is
ortogonal to all the space Sk, so we have

(g0 + hk)H−1h = 0 ∀h ∈ Sk

And so we obtain that

gk
T
H−1h = 0 ∀h ∈ Sk

So, for any g ∈ Tk−1 the vector h = Hg belongs to Sk, then we have

gk
T
g = 0 ∀g ∈ Tk−1

For every l < k we have gl ∈ Tl ⊆ Tk−1, so we have

gk
T
gl = 0 ∀k < l

Let now prove (iii), let assume l < k. Using the following relations (already
discussed) {

gk+1 = gk + τkHdk

dk+1 = −gk+1 + βkd
k
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and the point (ii), we obtain

dkHdl = (Hdk)Tdl

= τ−1
k (gk+1 − gk)Tdl

= τ−1
k (gk+1 − gk)T (−gl + βl−1d

l−1)
= (βl−1/τk)(gk+1 − gk)Tdl−1

By induction we can prove that

dkHdl = τ−1
k

(
l−1∏
i=0

βi

)
(gk+1 − gk)Td0

= 0

Where we used that d0 = −g0 and the the ortogonality of the gradients.

Finally we can prove (i), it follows easly from (ii), infact

0 = dk+1Hdk = (−gk+1 + βkd
k)THdk

Finally we have the conjugate gradient, we can summarize it

xk+1 = xk + τkdk

τk = − dTk gk

dTkHdk

βk =
gk+1THdk

dk
T
Hdk

2 Convergence analysis

Theorem 2.1 (Finite termination of conjugate gradient method). The conju-
gate gradient method convergence in m ≤ N steps, we mean that xm = x̂.

Proof. We proved that the gradients gk are ortogonal. So if the method do not
convergence in N steps it means that we have g1, . . . , gN , gN+1 with gk 6= 0
vectos mutually ortogonal and this is impossible.

Definition 2.1. Let Πk the set of the polynomials pk of degree k such that
pk(0) = 1. Let define the set

T̃k =
{
g ∈ RN s.t. g = pk(H)g0 , pk ∈ Πk

}
Observation 2.1. It holds that T̃k ⊆ Tk and gk ∈ T̃k infact we showed that

gk = g0 +
k∑
l=1

α
(k)
l H lg0 with α

(k)
k 6= 0
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Then we have

‖gk‖H−1 = min
g∈T̃k

‖g‖H−1

= min
pk∈Πk

‖pk(H)g0‖H−1

= min
pk∈Πk

[
g0TH−1pk(H)2g0

]1/2

Theorem 2.2. Let S ⊂ R such that S contains all the eigenvalues of H and
suppose that for some M ≥ 0 and for same pk ∈ Πk il holds that

max
λ∈S
|pk(λ)| ≤M

then
‖xk − x̂‖H ≤M‖x0 − x̂‖H

Proof. Let {λi,vi}Ni=1 the eigenvalues and the eigenvectors of H with the order-
ing 0 < λ1 ≤ · · · ≤ λN , we can also take this vectors ortogonal, so vTi vj = δi,j .
The initial gradient has the expansiong0 =

N∑
i=1

aivi

ai = vTg0

then, doing the computation we obtain

g0TH−1pk(H)2g0 =
N∑
i=1

a2
iλ
−1
i pk(λi)2

using the previous observation we obtain

‖gk‖2H−1 = min
pk∈Πk

N∑
i=1

a2
iλ
−1
i pk(λi)2

From the hypothesis of the theorem we have |pk(λi)| ≤M , then

‖gk‖2H−1 ≤M2

N∑
i=1

a2
iλ
−1
i

= M2‖g0‖H−1

We already proved (Lemma 1.1) that ‖xk − x̂‖H = ‖gk‖H−1 and from this we
have the thesis.
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Observation 2.2. If we don’t know the eigenvalues distribuition it’s natural
to choose S = [λ1, λN ] and to look for a polynomial p̃k ∈ Πk such that

max
λ1≤λk≤λN

|p̃k(λk)| = min
pk∈Πk

max
λ1≤λk≤λN

|pk(λk)|

The solution of this problem is known, we have to choose

p̃k(λ) =
Tk[(λN + λ1 − 2λ)/(λN − λ1)]

Tk[(λN + λ1)(λN − λ1)]

where Tk is the Chebyshev polynomial of degree k. Moreover

max
λ1≤λ≤λN

|p̃k(λ)| = Tk[(λN + λ1)/(λN − λ1)]−1

Theorem 2.3 (speed of convergence). From the previous observation we have
that

‖x− x̂‖H ≤ Tk[(λN + λ1)/(λN − λ1)]−1‖x0 − x̂‖

Moreover, fixed ε > 0, if k is the smallest integer such that

‖x− x̂‖H‖ ≤ ε‖x0 − x̂‖ ∀x0 ∈ RN

then

k ≤ 1
2

√
K(H) ln(2/ε) + 1

where K(H) is the condition number.

Observation 2.3. This bound is very important for the theory of the conver-
gence of conjugate gradient but sometimes it can be very bland. For example if
K(H) = 104 and ε = 10−4 then k ≤ 496, but our matrix can be H ∈ R100×100

so the algorithm give us the true solution after 100 steps. This is just an ex-
ample, we will see how to get a better bound in same cases where we know
something about eigenvalues distribuition.

3 Convergence with clustered eigenvalues

In the previous section we proved that if max
λ∈S
|pk(λ)| ≤M then

‖xk − x̂‖H ≤M‖x0 − x̂‖H

The idea is to select a set S containing the eigenvalues and to seek a polynomial
p̃k ∈ Πk such that max

λ∈S
|p̃k(λ)| ≤ M is small. So we will do same assumptions

on S.

3.1 Example 1

Let assume that
S = [λ1, b] ∪ [c, λN ]
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with 
0 < λ1 < b < c < λN

b− λ1 = λN − c
4b < λN

Thus S consists of two well-separated intervals of equal length.

For any γ 6= 0 let us consider the parabola

p2(λ) = 1− γλ(λ1 + λN − λ)

This polynomial is such that p2(λ1) = p2(λN ) and p2(b) = p2(c). If we require
that p2(c) = −p2(λN ) we can find γ and we obtain the polynomial

p̃k(λ) = 1− 2[λN (c+ λ1)− c(c− λ1)]−1λ(λ1 + λN − λ)

Let now

p̃2k(λ) =
Tk {[β + α− 2(1− p̃2(λ))]/(β − α)}

Tk[(β + α)/(β − α)]
k = 1, 2, 3, . . .

where α = 1− p̃2(λ1) and β = 1− p̃2(b), it can be proved that

max
λ∈S
|p̃2k(λ)| = min

p2k∈Π2k

max
λ∈S
|p2k(λ)|

Moreover we have

max
λ∈S
|p̃2k(λ)| = Tk[(β + α)/(β − α)]−1 k = 1, 2, 3, . . .

and then, using the previos theorem we have

‖xk − x̂‖H ≤ Tk/2[(β + α)/(β − α)]−1‖x0 − x̂‖H k = 2, 4, 6, . . .

so in this case we obtain that the minimum integer k such that

‖x− x̂‖H‖ ≤ ε‖x0 − x̂‖ ∀x0 ∈ RN

is
k ≤ 1

2

√
4β/α ln(2/ε) + 1

Sameone call 4β/α the effective spectral condition number. If 4bc/λ2
N < 1 then

this bound is better than the general bound.

3.2 Example 2

Let us consider S = S1 ∪ S2 with
S1 = [λ1, b]

S2 =
N⋃

n=N−m+1

{λi}

with 1 < m < N and λN−m < b < λN−m+1. Clearly, all of the eigenvalues are
in S. We assume that m and b are small, so that S describes a distribution in
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which a few of the highest eigenvalues are well separated from the remaining
eigenvalues. Let us consider following the polynomial in Πk

p̃k(λ) =

[
N∏

i=N−m+1

(
1− λ

λi

)]
Tk−m[(b+ λ1 − 2λ)/(b− λ1)]
Tk−m[(b+ λ1)/(b− λ1)]

It is possible to prove that

maxλ∈S |p̃k(λ)| = max
λ∈S1

|p̃k(λ)|

≤ Tk−m[(b+ λ1 − 2λ)/(b− λ1)]
Tk−m[(b+ λ1)/(b− λ1)]

= Tk−m

(
b+ λ1

b− λ1

)
We can take this as value of M and so we obtain the bound

k ≤ 1
2

√
2/ε+m+ 1

(As before, k is the minimum number as in the previous example).
If m and b are sufficiently small, then this bound is better then the general
bound.

4 Conclusion

The foregoing examples illustrate the fact that the clustering of eigenvalues tends
to increase the rate of convergence of the conjugate gradient method. This is
related to the property, mentioned earlier, that the value of m in Theorem 2.1
never exceeds the number of distinct eigenvalues. Because of its generality and
simplicity, the general bound is very useful and motivates our use of the spectral
condition number K(H) to assess the rate of convergence. It should be kept in
mind, however, that depending on the distribution of the interior eigenvalues
the general boud may be quite pessimistic, hiding the true rate of convergence.
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