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Abstract. Given a hermitian line bundle L → M on a closed Riemannian manifold
(Mn, g), the self-dual Yang–Mills–Higgs energies are a natural family of functionals

Eϵ(u,∇) :=

∫
M

(
|∇u|2 + ϵ2|F∇|2 + (1− |u|2)2

4ϵ2

)
defined for couples (u,∇) consisting of a section u ∈ Γ(L) and a hermitian connection ∇
with curvature F∇. While the critical points of these functionals have been well-studied in
dimension two by the gauge theory community, it was shown in [52] that critical points in
higher dimension converge as ϵ → 0 (in an appropriate sense) to minimal submanifolds of
codimension two, with strong parallels to the correspondence between the Allen–Cahn
equations and minimal hypersurfaces.

In this paper, we complement this idea by showing the Γ-convergence of Eϵ to (2π
times) the codimension two area: more precisely, given a family of couples (uϵ,∇ϵ) with
supϵ Eϵ(uϵ,∇ϵ) < ∞, we prove that a suitable gauge invariant Jacobian J(uϵ,∇ϵ) converges
to an integral (n− 2)-cycle Γ, in the homology class dual to the Euler class c1(L), with
mass 2πM(Γ) ≤ lim infϵ→0 Eϵ(uϵ,∇ϵ). We also obtain a recovery sequence, for any integral
cycle in this homology class.

Finally, we apply these techniques to compare min-max values for the (n− 2)-area from
the Almgren–Pitts theory with those obtained from the Yang–Mills–Higgs framework,
showing that the former values always provide a lower bound for the latter. As an ingredient,
we also establish a Huisken-type monotonicity result along the gradient flow of Eϵ.

1. Introduction

1.1. Background and motivation. The discovery in the late 1970’s of deep connections
between minimal hypersurfaces and the Allen–Cahn equations opened up a rich line of
investigation, shedding light onto the structure of solutions of semilinear elliptic equations
and the existence theory for minimal hypersurfaces. Like minimal hypersurfaces, which arise
as critical points of the (n− 1)-area functional, solutions of the Allen–Cahn equations

(1.1) ϵ∆u =
1

ϵ
W ′(u)

(where ϵ > 0 and W : R → [0,∞) is a double-well potential) arise naturally as critical points
for the Allen–Cahn energies

Fϵ(u) :=

∫
Ω

( ϵ
2
|du|2 + W (u)

ϵ

)
on W 1,2(Ω,R). A recurring theme in the study of the correspondence between solutions
of (1.1) and minimal hypersurfaces is the convergence not only of critical points, but of
the variational theory for the functionals Fϵ to that of the (n − 1)-area on the space of
(n− 1)-boundaries as ϵ→ 0. The earliest results in this direction were obtained by Modica
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and Mortola [50] who established the asymptotic convergence of Fϵ to (a constant multiple of)
the perimeter functional for Caccioppoli sets, in the framework of Γ-convergence introduced
a few years earlier by De Giorgi [20]. De Giorgi’s Γ-convergence provides a natural weak
notion of convergence for variational problems involving a singular perturbation, well-suited
to establishing convergence of minimizers to minimizers (see [11] and [19] for a contemporary
treatment of Γ-convergence, and [1] for its application to the study of phase transitions).
The work of Modica–Mortola was later generalized by Modica [49] and Sternberg [65], in
their resolution of some conjectures of Gurtin [28].

While the Γ-convergence results of [49], [50], and [65] imply that energy-minimizing
solutions of (1.1) (rather, their level sets and energy measures) converge to area-minimizing
hypersurfaces, a series of results obtained over the last five years [22, 24, 27] show that the
min-max theory for the Allen–Cahn functionals Fϵ likewise converges to the min-max theory
for the area functional on (n− 1)-boundaries in the geometric measure theory framework
developed by Almgren and Pitts [53]. Building on the analytic work of [36] and [69], these
and related results have established the min-max theory for the Allen–Cahn functionals as a
valuable regularization of the Almgren–Pitts min-max construction of minimal hypersurfaces,
finding use, for instance, in Chodosh and Mantoulidis’s work on the Multiplicity One
conjecture in three-manifolds [17].

In view of these and other applications, it is natural to seek an analogous correspondence
between certain geometric elliptic systems and minimal submanifolds of higher codimension.
In [52], the second- and third-named authors proposed a natural analog in codimension two,
with the role of the Allen–Cahn equations taken on by a well-studied family of elliptic systems
from gauge theory. Specifically, [52] considers the self-dual U(1)-Yang–Mills–Higgs energies:
the gauge-invariant functionals Eϵ(u,∇) acting on a section u ∈ Γ(L) and metric-compatible
connection ∇ on a hermitian line bundle L→M by

Eϵ(u,∇) :=

∫
M

(
|∇u|2 + ϵ2|F∇|2 +

1

4ϵ2
(1− |u|2)2

)
.

The functionals Eϵ are distinguished from formally similar functionals—such as
∫
M (|∇u|2 +

λ|F∇|2 + 1
4ϵ2

(1 − |u|2)2) for λ ̸= ϵ2—by their so-called self-duality : namely, Eϵ enjoys

additional symmetry properties, such that minimizers of Eϵ for bundles L → Σ2 over a
Riemann surface Σ2 satisfy a special first-order system known as the vortex equations.

The study of these functionals has a long history, which we do not attempt to survey
here. In his thesis work [67, 68], Taubes classified finite-energy critical points of Eϵ for
the trivial bundle L ∼= C × R2 → R2, showing that all such critical points satisfy the
first-order vortex equations, are determined—up to gauge equivalence—by the finite zero set
u−1{0} ⊂ C (counted with multiplicity), and have quantized energy Eϵ(u,∇) = 2πN ∈ 2πN
corresponding to the mass of the zero set N = |u−1{0}| (see [67], [68], and [38] for details).
The asymptotic analysis as ϵ→ 0 of the rescaled functionals Eϵ was first taken up by Hong,
Jost, and Struwe, who showed in [34] that for minimizers (uϵ,∇ϵ) of Eϵ on line bundles
L→ Σ2 over a Riemann surface Σ, energy and curvature concentrate (subsequentially) as
ϵ→ 0 at a collection of |deg(L)| points in Σ, outside of which uϵ converges to a unit section
u0 and ∇ϵ to a flat connection ∇0 for which ∇0u0 = 0.

The results of [52] provide a far-reaching generalization of Hong–Jost–Struwe’s analysis,
characterizing the limiting behavior of arbitrary critical points on line bundles over a base
manifold Mn of general dimension. Namely, it is shown in [52] that for sequences (uϵ,∇ϵ) of
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critical points satisfying a uniform energy bound Eϵ(uϵ,∇ϵ) ≤ C, the energy densities

eϵ(uϵ,∇ϵ) := |∇ϵuϵ|2 + ϵ2|F∇ϵ |2 +
(1− |uϵ|2)2

4ϵ2

converge subsequentially weakly in (C0)∗ to (the weight measure of) a stationary integral
(n − 2)-varifold V in M—i.e., a (possibly singular) minimal variety of codimension two.
In particular, this gives a codimension-two analog to the results of Hutchinson–Tonegawa
[36] for the Allen–Cahn equations, showing that critical points for Eϵ converge cleanly to
critical points of the (n− 2)-area functional in the ϵ→ 0 limit. We note, moreover, that the
analysis in [52] depends strongly on the specific choice of coupling constants in the definition
of Eϵ, suggesting that the self-dual U(1)-Yang–Mills–Higgs energies provide more or less
the unique codimension-two analog for the Allen–Cahn energies, at least among similar
functionals of Yang–Mills–Higgs type.

Remark 1.1. In particular, the convergence behavior for critical points (uϵ,∇ϵ) of Eϵ in
the O(1) energy regime is considerably simpler than its counterpart for the non-gauged
Ginzburg–Landau energies

Gϵ :W
1,2(M,C) → R, Gϵ(u) :=

∫
M

(
|du|2 + (1− |u|2)2

4ϵ2

)
in the O(| log ϵ|) energy regime, whose critical points in general exhibit partial energy
concentration along a stationary, rectifiable (not necessarily integral) (n− 2)-varifold (cf.
[7, 8, 16, 30, 33, 44, 45, 58, 64, 66] for details of the asymptotic analysis of the complex
Ginzburg–Landau equations, as well as [9, 10, 54, 55, 56, 60] for related results for other
functionals of Yang–Mills–Higgs type whose behavior resembles that of Gϵ). As remarked in
[52], the variational theory for the functionals Gϵ is best understood as a relaxation of that
for the Dirichlet energy on singular S1-valued maps, and its relation to geometric measure
theory and minimal submanifolds is subtle, and qualitatively quite different from that of the
Allen–Cahn or self-dual Yang–Mills–Higgs energies.

Building on the ideas of [52], the aim of the present paper is to understand to what extent
the variational theory for the functionals Eϵ converges to that of the (n− 2)-area, in the
spirit of similar results for the Allen–Cahn functionals. Our chief analytic result provides a
key step toward answering this question, establishing the Γ-convergence of the functionals
Eϵ for pairs (u,∇) on a hermitian line bundle L→M to the mass functional on the space of
integral (n− 2)-cycles dual to c1(L). This convergence result—whose precise formulation we
give in the following subsection—may be thought of as a codimension-two analog of the
classical results of Modica and Mortola; and in spite of the very different setting, its proof
bears a surprising resemblance to the original arguments in [50]. In addition to implying
the convergence of Eϵ-minimizing pairs (uϵ,∇ϵ) to area-minimizing (n − 2)-cycles, the
Γ-convergence framework—together with some topological arguments—allows us to compare
the energy of min-max critical points for Eϵ to the areas of corresponding min-max minimal
varieties, along the lines of the comparison results for the Allen–Cahn and Almgren–Pitts
min-max constructions obtained in [24, 27].

1.2. Convergence results for the self-dual Yang–Mills–Higgs energies. Let L→Mn

be a hermitian line bundle over a closed, oriented Riemannian manifold (Mn, g). Given a
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metric connection ∇ on L, recall that the curvature F∇ ∈ Ω2(M)⊗ so(L) is given by

(1.2) F∇(X,Y )u := [∇X ,∇Y ]u−∇[X,Y ]u = −iω∇(X,Y )u

for some two-form ω∇ ∈ Ω2(M), which we will frequently identify with F∇ when there is no
confusion. Given a pair (u,∇) consisting of a section u ∈ Γ(L) and metric connection ∇, we
define as in [52] the two-form ψ(u,∇) ∈ Ω2(M) by

ψ(u,∇)(X,Y ) := 2⟨i∇Xu,∇Y u⟩,
which is easily seen to satisfy the pointwise bound |ψ(u)| ≤ |∇u|2 (cf. [52, Section 2]). For
the Γ-convergence results, we will be particularly interested in the two-forms

(1.3) J(u,∇) := ψ(u,∇) + (1− |u|2)ω∇ = d⟨∇u, iu⟩+ ω∇,

whose role should be compared to that of the one-forms
√

2W (v) ·dv for real-valued functions
v :M → R in the work of Modica–Mortola [50].

As with any Γ-convergence result, our main theorem consists of two parts. First, we show
that for any family of pairs (uϵ,∇ϵ) with

sup
ϵ>0

Eϵ(uϵ,∇ϵ) ≤ Λ <∞,

there exists a subsequence (uϵj ,∇ϵj ), with ϵj → 0, to which we can associate a limiting
integral (n− 2)-cycle Γ with 2πM(Γ) ≤ Λ. Second, we show that any integral (n− 2)-cycle
dual to c1(L) can be obtained in this way. More precisely, we have the following.

Theorem 1.2 (Γ-convergence). For a hermitian line bundle L → M as above, the
following hold:

(i) Liminf inequality. Given a family (uϵ,∇ϵ) of smooth sections with |uϵ| ≤ 1 and metric
connections with uniformly bounded energies Eϵ(uϵ,∇ϵ) ≤ Λ, there exists an integral
(n− 2)-cycle Γ Poincaré dual to c1(L) ∈ H2(M ;Z), the Euler class of L, such that, up
to a subsequence,

J(uϵ,∇ϵ)⇀ 2πΓ, as ϵ→ 0,

as currents. Moreover, the following liminf inequality holds:

2πM(Γ) ≤ lim inf
ϵ→0

Eϵ(uϵ,∇ϵ).

(ii) Recovery sequence. Given an integral (n − 2)-cycle Γ whose homology class [Γ] ∈
Hn−2(M ;Z) is dual to c1(L) ∈ H2(M ;Z), there exists a family (uϵ,∇ϵ) of smooth
sections and connections on L such that

J(uϵ,∇ϵ)⇀ 2πΓ, as ϵ→ 0,

as currents, and
lim
ϵ→0

Eϵ(uϵ,∇ϵ) = 2πM(Γ).

Remark 1.3. Since the curvature forms ωϵ := iF∇ϵ satisfy

J(uϵ,∇ϵ) = ωϵ + d⟨∇ϵuϵ, iuϵ⟩,
if Eϵ(uϵ,∇ϵ) = O(1), the boundedness of ⟨∇ϵuϵ, iuϵ⟩ in L2(M) together with part (i)
above implies that the curvatures ωϵ also have a subsequential limit as currents. Simple
examples show that this limit may fail to coincide with 2πΓ under our assumptions—e.g.,
by taking uϵ ≡ 1 and ∇ϵ = d − iα for a fixed one-form α with dα ≠ 0 on the trivial
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bundle C ×M . However, assuming that ∇ϵ is critical for the energy Eϵ(uϵ, ·)—hence, a
minimizer by convexity of Eϵ in ∇ϵ—the corresponding Euler–Lagrange equation (2.3) gives
⟨∇ϵuϵ, iuϵ⟩⇀ 0, since ϵ2ωϵ → 0 in L2(M). Thus, in this case

2πΓ = lim
ϵ→0

ωϵ

as currents. Together with Corollary 1.4 below, this implies that for a sequence of minimizers
(uϵ,∇ϵ), the curvature forms 1

2πωϵ converge subsequentially to an integral, area-minimizing
cycle Γ whose associated varifold agrees with the energy concentration varifold V from [52,
Theorem 1.1] (up to a subsequence). This answers a question raised in [52].

Readers familiar with the Γ-convergence theory developed for the normalized Ginzburg–
Landau functionals Gϵ

| log ϵ| in recent decades (see in particular [2, 3, 4, 14, 40]) will notice

some formal similarities between the above result and analogs for the functionals Gϵ
| log ϵ| .

Namely, the results of [3] and [40] show that for any complex-valued map u :M → C with

Gϵ(u) ≤ 2πΛ log(1/ϵ)

and 0 < ϵ≪ 1 sufficiently small, the Jacobian 2-form

Ju := 2du1 ∧ du2

(which coincides with both ψ(u,∇) and J(u,∇) when ∇ is the standard flat connection on
the trivial bundle) is weakly close to (2π times) an integral (n− 2)-boundary Γ of mass
M(Γ) ≤ Λ + o(1). The proof requires some delicate analysis: in particular, the mass ∥Ju∥L1

of the Jacobians themselves is not bounded in general by the energy Gϵ(u)
| log ϵ| for small ϵ, and

the proof of the associated Γ-convergence result relies instead on a subtle application of the
degree estimates of Sandier [57] and Jerrard [39] (see also [59, 62]).

In our setting, by contrast, the two-forms J(u,∇) are easily seen to enjoy a pointwise
bound

(1.4) |J(u,∇)| ≤ |∇u|2 + (1− |u|2)|F∇| ≤ |∇u|2 + ϵ2|F∇|2 +
1

4ϵ2
(1− |u|2)2

by the energy integrand eϵ(u,∇), so that ∥J(u,∇)∥L1 ≤ Eϵ(u,∇) automatically. As a
consequence, to prove part (i) of Theorem 1.2, the only challenge lies in showing that the
limiting (n− 2)-cycle Γ is integer rectifiable (and lies in the correct homology class).

To achieve this, we establish a compactness result for sections uϵ ∈ Γ(L) with Eϵ(uϵ,∇ϵ) =
O(1), showing that they converge subsequentially (after change of gauge) to a singular unit
section, whose topological singular set Γ coincides with the limit of 1

2πJ(uϵ,∇ϵ). These
singular unit sections (modulo the action of the gauge group) provide a natural codimension-
two analog of Caccioppoli sets, and it is not difficult to see that their topological singular
sets are integral (n− 2)-cycles (indeed, this is a consequence of results in [3] and [41]). Again,
we note that the broad outlines of the argument are very much reminiscent of those in [50]
for the Allen–Cahn energies, with the bound (1.4) playing the role of the simple estimate

|
√

2W (v) · dv| ≤ ϵ
2 |dv|

2 + W (v)
ϵ for real-valued functions v :M → R.

1.3. Applications to the study of minimizers and min-max constructions. As an
immediate corollary of Theorem 1.2, we see that minimizers of Eϵ converge to (n− 2)-cycles
which are area-minimizing in their homology class, answering a question raised in [52].
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Corollary 1.4. Let L→M be a nontrivial hermitian line bundle over a closed, oriented
n-manifold (Mn, g). If (uϵ,∇ϵ) minimize Eϵ(u,∇) among all pairs (u,∇) on L, then

(1.5) lim
ϵ→0

Eϵ(uϵ,∇ϵ) = 2πmin{M(Γ) | Γ ∈ Zn−2(M ;Z) Poincaré dual to c1(L)},

and along a subsequence ϵ = ϵj → 0, we have weak convergence

lim
ϵ→0

J(uϵ,∇ϵ) = lim
ϵ→0

ω∇ϵ = 2πΓ

of J(uϵ,∇ϵ) and the curvatures ω∇ϵ to an (n− 2)-cycle Γ minimizing mass in the homology
class dual to c1(L).

With Theorem 1.2 in place, the proof of the corollary follows standard lines: by part
(i) of the theorem, we know that the forms J(uϵ,∇ϵ) for a minimizing family (uϵ,∇ϵ)
converge subsequentially to an integral (n− 2)-cycle Γ, in the correct homology class, of mass
M(Γ) ≤ 1

2π lim infϵ→0Eϵ(uϵ,∇ϵ), providing one inequality in (1.5). The opposite inequality
follows from part (ii) of the theorem, which guarantees the existence of a recovery sequence
(uϵ,∇ϵ) for a mass-minimizing cycle Γ. The convergence of the curvature two-forms ω∇ϵ

follows from the discussion in Remark 1.3.
For the min-max applications, we will focus on the trivial bundle L = C×M →M over

a given closed, oriented (Mn, g). We then consider a Banach space X consisting of pairs
(u,∇ = d− iα), equipped with an appropriate norm, with respect to which Eϵ is a smooth
functional satisfying a variant of the Palais–Smale condition (as in Section 5 below or Section
7 of [52]). Removing from X the degenerate set

X0 := {(u,∇) ∈ X : u ≡ 0}

(on which Eϵ ∼ 1/ϵ2 blows up as ϵ→ 0), we see that the action of the gauge group of maps
G = Maps(M,S1) given by

ϕ · (u,∇) := (ϕ · u,∇− iϕ∗(dθ))

restricts to an action on the complement X \X0.
For the purposes of intuition, we can view the gauge-invariant functionals Eϵ as functions

on the moduli space

M := (X \X0)/G,
whose topology may be compared with that of the space

Z := ∂In−1(M ;Z) ⊆ Zn−2(M ;Z)

of integral (n− 2)-boundaries in M , equipped with the flat metric. Indeed, we claim (see
Section 5) that there are geometrically natural isomorphisms between the homotopy groups

Φ : πk(M, ∗) → πk(Z, 0),

where ∗ ∈ M denotes the collection of pairs (u,∇) ∈ X with |u| ≡ 1 and ∇u = 0, and 0 ∈ Z
is the 0-cycle. (Intuitively, one can think of this isomorphism as being induced by the zero
locus map (u,∇) 7→ u−1{0}, but of course this will not define a continuous map into Z in
practice.) This isomorphism is nontrivial only when k = 1 or 2.

For k = 1, 2, to any class α ∈ πk(Z, 0), one can associate a min-max width

(1.6) W(α) := inf
ψ∈α

sup
x∈Sk

M(ψ(x))
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for the (n− 2)-area functional. In practice, we work with the discretized variant W∗(α) of
these min-max widths introduced by Almgren and Pitts (see [53], or Section 5 below), which
correspond to the masses of stationary (n− 2)-varifolds. Likewise, for each nontrivial class
β ∈ πk(M, ∗) and ϵ > 0, one can consider the min-max energies

Eϵ(β) := inf
F∈β

max
x∈Sk

Eϵ(F (x)),

which are realized as critical values of the functionals Eϵ. (In practice, rather than working
with families in πk(M, ∗), in Section 5 we work equivalently with the families [0, 1] → X and
D̄2 → X giving their lifts in the Banach space X.) In rough terms, the results of Section 5
yield the following comparison.

Theorem 1.5 (Min-max comparison). Let M be the moduli space of pairs (u,∇)
with u ̸≡ 0 and Z the space of integral (n − 2)-boundaries as above. With respect to the
aforementioned isomorphism Φ : πk(M, ∗) → πk(Z, 0), the min-max energies satisfy

(1.7) lim inf
ϵ→0

Eϵ(β) ≥ W∗(Φ(β))

for any β ∈ πk(M, ∗). In particular, the mass of the stationary integral (n − 2)-varifold
VYMH associated to the critical points (uϵ,∇ϵ) by the results of [52] is bounded below by the
mass of the corresponding min-max (n− 2)-varifold VGMT produced by Almgren’s min-max
construction.

While we have restricted our attention here to the comparison of one- and two-parameter
min-max constructions associated to the homotopy groups of M and Z, we believe that
the techniques used in the proof of Theorem 1.5 should apply to all natural min-max
constructions for the energies Eϵ, with appropriate modifications to the topological part of
the argument. In particular, while Theorem 1.5 can be compared to [27, Proposition 8.19] in
the Allen–Cahn setting, we expect that the same ideas can be used to prove an analog of [24,
Theorem 6.1] treating higher-parameter families detecting cohomology classes in H∗(M;Z)
of higher degree.

Moreover, let us point out that in the Allen–Cahn setting, Akashdeep Dey has recently
succeeded in proving a bound in the opposite direction [22], concluding that the min-max
energies for the Allen–Cahn functionals in fact coincide with the corresponding Almgren–Pitts
widths in the ϵ→ 0 limit. Though establishing a codimension-two analog of Dey’s bound for
the self-dual Yang–Mills–Higgs functionals lies beyond the scope of the present paper, we
optimistically conjecture that such an estimate should hold, giving equality in (1.7).

A key element in the proof of the min-max comparison theorem is the L2 gradient flow
associated to the Yang–Mills–Higgs energies: i.e., the following system of coupled nonlinear
parabolic equations: {

∂tut = −∇∗
t∇tut +

1
2ϵ2

(1− |ut|2)ut,
∂tαt = −d∗dαt + ϵ−2⟨iut,∇tut⟩,

(1.8)

subject to some initial data (u0,∇0 = d− iα0). The necessity of its introduction is due to
some technical difficulties emerging in the proof of Theorem 1.5 when passing from maps
continuous in the flat norm, which are given by the Γ-convergence theory, to maps continuous
in the mass norm, the relevant ones in the Almgren–Pitts setting. Indeed, the former can
exhibit a phenomenon called concentration of mass whereby the energy density accumulates
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at small scales, preventing a direct application of the so-called interpolation theory developed
by Marques, Neves and collaborators, which would give a corresponding continuous map in
the mass norm. (We note that, in codimension one, the concentration-of-mass problem can
be avoided by appealing to results of Zhou [71].)

Since we expect the gradient flow of Eϵ to approximate a (weak) mean curvature flow of
codimension two, a Huisken-type monotonicity formula should be expected to hold, thus
providing the desired (n− 2)-energy density bounds at all scales after running the flow for a
fixed amount of time (uniformly in ϵ). This provides us with a canonical regularization
preventing concentration of mass, without increasing the total energy. At the end of the
paper, we check that the flow satisfies long-time existence, uniqueness and continuous
dependence on the initial data.
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2. Notation and preliminaries

Let (Mn, g) be a closed, oriented Riemannian manifold and let L→M be a complex line
bundle over M , endowed with a hermitian structure ⟨·, ·⟩. We will denote by W : L→ R the
nonlinear potential

W (u) :=
1

4
(1− |u|2)2,

and for a hermitian connection ∇ on L, a section u ∈ Γ(L), and a parameter ϵ ∈ (0, 1), we
denote by Eϵ(u,∇) the scaled Yang–Mills–Higgs energy

(2.1) Eϵ(u,∇) :=

∫
M
(|∇u|2 + ϵ2|F∇|2 + ϵ−2W (u)) dvolg =

∫
M
eϵ(u,∇) dvolg,

where dvolg denotes the volume form on M , eϵ(u,∇) is the energy density and F∇ is the
curvature of ∇. As discussed in the introduction, working with U(1)-connections allows us
to identify F∇ with the real, closed, two-form ω = ω∇ via

(2.2) F∇(X,Y )u = [∇X ,∇Y ]u−∇[X,Y ]u = −iω∇(X,Y )u.

The Euler–Lagrange equations for critical points of (2.1) are given by{
∇∗∇u = 1

2ϵ2
(1− |u|2)u,

ϵ2d∗ω∇ = ⟨∇u, iu⟩.
(2.3)

Here ∇∗ denotes the formal adjoint of ∇ and d∗ the formal adjoint of d. We refer to [52,
Section 2] for further details and to the appendix of the same paper for the regularity of
solutions to these equations.

A key feature of the energies Eϵ is their gauge-invariance: that is, for any ϕ ∈ G =
Maps(M,S1), the energy Eϵ(u,∇) is invariant under the change of gauge

ϕ · (u,∇) = (ϕu,∇− iϕ∗(dθ)),
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corresponding to a fiberwise rotation of L. As discussed in the introduction, an important
first step in understanding the Γ-convergence theory for Eϵ is identifying an appropriate
gauge-invariant analog of the Jacobian two-form 2du1 ∧ du2 for complex-valued maps. To
this end, for a pair (u,∇), we consider the two-forms ψ(u,∇) given by

ψ(u,∇)(X,Y ) := 2⟨i∇Xu,∇Y u⟩,
for vector fields X and Y , and define the gauge-invariant Jacobians

J(u,∇) := ψ(u,∇) + (1− |u|2)ω∇.

A straightforward computation shows that

(2.4) d⟨∇u, iu⟩ = ψ(u)− |u|2ω∇ = J(u,∇)− ω∇,

from which we deduce that J(u,∇) is closed and cohomologous to ω. Moreover, as
mentioned in the introduction, it is easy to check that ψ(u,∇) satisfies the pointwise estimate
|ψ(u,∇)| ≤ |∇u|2, which together with Young’s inequality implies

(2.5) |J(u,∇)| ≤ |∇u|2 + ϵ2|ω∇|2 +
1

4ϵ2
(1− |u|2)2 = eϵ(u,∇),

so that J(u,∇) has L1 norm bounded above by Eϵ(u,∇). Throughout the paper, we identify
J(u,∇) with an (n− 2)-current, with the assignment

⟨J(u,∇), η⟩ :=
∫
M
J(u,∇) ∧ η

for all η ∈ Ωn−2(M); under this identification, note that the mass of J(u,∇) is precisely

M(J(u,∇)) = ∥J(u,∇)∥L1(M) ≤ Eϵ(u,∇).

Finally, given a smooth reference connection ∇0 on L with associated curvature two-form
ω0, it will be useful to note that, by (2.4), we can write

(2.6) J(u,∇) = d(β(u,∇)) + ω0

where

(2.7) β(u,∇ = ∇0 − iα) := ⟨∇u, iu⟩+ α = ⟨∇0u, iu⟩+ (1− |u|2)α,
implicitly using the fact that ∇ can be written as ∇0 − iα, for α ∈ Ω1(M), so that
ω∇ = ω0 + dα.

2.1. Notions from geometric measure theory. For the convenience of the reader, we
collect here some terminology and notation from geometric measure theory used throughout
the paper. We follow [63] and we refer the reader to it for further details.

We denote by Ik(M ;Z) the space of integer rectifiable k-currents with finite mass. Recall
that an integral k-current is an integer rectifiable k-current whose boundary has finite mass
(and, as a consequence, is itself an integer rectifiable (k− 1)-current). We denote by Ik(M ;Z)
the space of k-dimensional integral currents in M and by Zk(M ;Z) the subset of those
currents T ∈ Ik(M ;Z) satisfying ∂T = 0.

Given T ∈ Ik(M ;Z) we denote by |T | the associated integral varifold and by ∥T∥ the
induced Radon measure on M . The definition of mass used in this paper is

M(T ) := sup{T (ϕ) | ϕ ∈ Ωk(M), ∥ϕ∥C0(M) ≤ 1},
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where the last norm is understood with respect to the Euclidean norm on covectors. Setting
M(S, T ) := M(S − T ) for S, T ∈ Ik(M ;Z) we obtain a metric on Ik(M ;Z) known as the
mass metric. We can topologize the space Ik(M ;Z) differently via the so-called flat distance

F(S, T ) := inf{M(P ) +M(Q) | S − T = P + ∂Q, P ∈ Ik(M ;Z), Q ∈ Ik+1(M ;Z)},

for S, T ∈ Ik(M ;Z). Writing F(T ) = F(T, 0), note that we trivially have

F(T ) ≤ M(T ) for all T ∈ Ik(M ;Z).

Some further concepts from geometric measure theory relevant to the min-max comparison
are introduced in Section 5 below.

3. The liminf inequality

3.1. The distributional gauge-invariant Jacobian and singular unit sections. In
the classical Γ-convergence theory for the Allen–Cahn energies, it is important to identify
the space of (n − 1)-boundaries in M with the distributional derivatives of functions in
BV (M, {−1, 1}), which arise as limits of the functions Φ(vϵ) for real-valued functions

vϵ : M → R with Fϵ(vϵ) = O(1), where Φ(s) :=
∫ s
0

√
2W (t) dt /

∫ 1
0

√
2W (t) dt. Similarly,

the study of Γ-convergence for functionals of Ginzburg–Landau type is closely related to the
theory of distributional Jacobians for circle-valued (and, more generally, sphere-valued [2, 3,
41]) maps, but the structure theory of these Jacobians does not play a direct role in the
Γ-convergence proofs, since these results are not typically accompanied by compactness
results for the given sequence of complex-valued maps.

For our results, it will likewise be useful to identify the space Zn−2(M ;Z) of integral
(n− 2)-cycles in M with the topological singularities (distributional Jacobians) of certain
singular unit sections of hermitian line bundles on M , arising as a limit of the two-forms
J(u,∇) for smooth pairs (u,∇). To this end, we seek to extend the definition of the
(n− 2)-current J(u,∇) to a larger class of pairs (u,∇) of lower regularity, generalizing the
distributional Jacobian for complex-valued maps.

First, we need to understand the continuity of J(u,∇) as a map into the space of
(n− 2)-currents Dn−2(M) with the (C1)∗ metric. Given p ∈ (1,∞) and a fixed reference
connection ∇0 on L→M , we introduce the norm

∥(u,∇)∥p := ∥u∥Lp(M) + ∥∇0u∥Lp(M) + ∥∇ −∇0∥Lp(M)

on the space of smooth pairs u ∈ Γ(L) and ∇ = ∇0 − iα, and denote by Xp(L) the metric
space obtained as the completion of the space of smooth pairs

(u,∇) = (u,∇0 − iα), where |u| ≤ 1

with respect to the norm ∥ · ∥p. Note that, in a local trivialization, elements of Xp(L) can be
identified with pairs (u, α) where α is a one-form in Lp and u is a W 1,p map to the unit disk
D̄ ⊂ C. The precise definition of the norm ∥ · ∥p is somewhat arbitrary, and other equivalent
norms would work just as well. With respect to this norm, it is not difficult to check that
the assignment (u,∇) 7→ J(u,∇) satisfies the desired continuity properties, summarized in
the following proposition.

Proposition 3.1. For a fixed reference connection ∇0 on L → M and p ∈ (1, 2), given
pairs (u,∇) and (v,∇′) satisfying |u| ≤ 1, |v| ≤ 1, and ∥(u,∇)− (v,∇′)∥p ≤ 1, we see that
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the one-forms β(u,∇) and β(v,∇′) given by (2.7) satisfy

(3.1) ∥β(u,∇)− β(v,∇′)∥L1(M) ≤ C(p)(1 + ∥(u,∇)∥p)∥(u,∇)− (v,∇′)∥p−1
p .

Consequently, the assignment (u,∇) 7→ J(u,∇) extends continuously to a map

(Xp(L), ∥ · ∥p) → (Dn−2(M), (C1)∗)

where (Dn−2(M), (C1)∗) denotes the space of (n− 2)-currents equipped with the (C1(M))∗

norm.

Proof. Writing ∇ = ∇0 − iα and ∇′ = ∇0 − iη for α, η ∈ Ω1(M), it follows from (2.7) that

β(u,∇)− β(v,∇′) = ⟨∇0u, iu⟩ − ⟨∇0v, iv⟩+ (1− |u|2)α− (1− |v|2)η
= ⟨∇0(u− v), iu⟩+ ⟨∇0v, i(u− v)⟩
+ (1− |u|2)(α− η) + (|v|2 − |u|2)η.

In particular, since |u| ≤ 1 and |v| ≤ 1, letting p′ denote the Hölder conjugate of p, we
deduce that ∫

M
|β(u,∇)− β(v,∇′)|

≤
∫
M
(|∇0(u− v)|+ |∇0v||u− v|+ |α− η|+ 2|η||u− v|)

≤ ∥∇0(u− v)∥L1(M) + ∥∇0v∥Lp(M)∥u− v∥Lp′ (M)

+ ∥∇ −∇′∥L1(M) + 2∥∇′ −∇0∥Lp(M)∥u− v∥Lp′ (M)

≤ C[∥(u,∇)− (v,∇′)∥p + (∥(u,∇)∥p + ∥(v,∇′)∥p)∥u− v∥Lp′ (M)]

≤ C[∥(u,∇)− (v,∇′)∥p + (∥(u,∇)∥p + ∥(v,∇′)∥p)∥u− v∥p−1
Lp(M)]

for a constant C = C(p,M), where we used the fact that ∥u − v∥L∞(M) ≤ 2 in the last
inequality. Assuming that ∥(u,∇)− (v,∇′)∥p ≤ 1, the estimate (3.1) easily follows.

Now, by the characterization (2.6) of J(u,∇), for any ζ ∈ Ωn−2(M), we have

|⟨J(u,∇)− J(v,∇′), ζ⟩| =
∣∣∣ ∫

M
d(β(u,∇)− β(v,∇′)) ∧ ζ

∣∣∣
=

∣∣∣ ∫
M
(β(u,∇)− β(v,∇′)) ∧ dζ

∣∣∣
≤ ∥β(u,∇)− β(v,∇)∥L1(M)∥dζ∥C1(M).

The second equality follows from Stokes’ theorem. Together with the estimate (3.1), this
implies that

∥J(u,∇)− J(v,∇′)∥(C1(M))∗ ≤ C(p,M)(1 + ∥(u,∇)∥p)∥(u,∇)− (v,∇′)∥p

when ∥(u,∇)− (v,∇′)∥p ≤ 1. In particular, the assignment (u,∇) 7→ J(u,∇) is continuous
with respect to the norms ∥ · ∥p and (C1(M))∗, and therefore admits the desired extension

(Xp(L), ∥ · ∥p) → (Dn−2(M), (C1)∗). □
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Consider now the subset of Xp(L) given by

Vp(L) := {(u,∇) ∈ Xp(L) : |u| ≡ 1 almost everywhere},

i.e., the set of pairs (u,∇) ∈ Xp(L) where u belongs to the space

Up(L) := {u ∈W 1,p(M,L) : |u| ≡ 1 almost everywhere}

of W 1,p unit sections. Note that for any (u,∇) ∈ Vp(L) we have

β(u,∇) = β(u,∇0),

so we can view both β and J = dβ+ω0 as functions on Up(L), independent of the connection
∇. Notice that the definition of β(u) still depends on the initial choice of reference connection
∇0, but of course the assignment Up ∋ u 7→ J(u) remains gauge-invariant and independent
of ∇0. In particular, in any local trivialization—in which u becomes identified with a W 1,p

map to S1 and ∇0 = d− iα0—we have β(u) = ⟨du, iu⟩ − α0, and J(u) = d⟨du, iu⟩ coincides
with the standard distributional Jacobian.

The remainder of the subsection is devoted to recording some key properties of the
operator J : Up(L) → Dn−2(M). At the local level, note that this reduces to the study of
topological singularities for maps in W 1,p(M,S1), and the arguments that follow are largely
drawn from [3] and [41].

Proposition 3.2. For any u, v ∈ Up(L), there exists an integer rectifiable (n− 1)-current
S ∈ In−1(M ;Z) of mass

M(S) ≤ 1

2π

∫
M

|∇0(u+ v)||u− v|

such that

J(u)− J(v) = 2π∂S,

as currents. Moreover, J(u) = J(v) if and only if u = ϕeiψv for some ϕ :M → S1 harmonic
and ψ ∈W 1,p(M,R)—i.e., if u and v differ by a change of gauge.

Proof. To prove the first statement, we introduce the map

Φ : Up(L)× Up(L) →W 1,p(M,S1)

given by setting

Φ(u, v) := e−i⟨u,iv⟩uv̄

in any local trivialization; indeed, note that the complex-valued map uv̄ is invariant under
change of gauge. By direct computation, one can check that the map w := Φ(u, v) satisfies
the identity

⟨dw, iw⟩ = β(u)− β(v)− d⟨u, iv⟩ = ⟨∇0(u+ v), i(u− v)⟩.
Hence ∫

M
|dw| ≤

∫
M

|∇0(u+ v)||u− v|,

and the distributional Jacobian Jw = d⟨dw, iw⟩ satisfies

Jw = d[β(u)− β(v)] = J(u)− J(v).
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By [2, Theorem 3.8], we can appeal to the coarea formula for maps in W 1,1(M,S1) to deduce
the existence of an integer rectifiable current S ∈ In−1(M ;Z) of mass

M(S) ≤ 1

2π

∫
M

|dw| ≤
∫
M

|∇0(u+ v)||u− v|

such that

2π∂S = Jw = J(u)− J(v),

proving the first part of the proposition.
For the latter statement, note that J(u)− J(v) = 0 if and only if the map w = Φ(u, v) ∈

W 1,p(M,S1) satisfies Jw = 0. But it is easy to check (cf. [21]) that a map w ∈W 1,p(M,S1)
satisfies Jw = 0 if and only if w = ϕeiψ for some ϕ :M → S1 harmonic and ψ ∈W 1,p(M,R).
Indeed, if Jw = 0 then the one-form ⟨dw, iw⟩ is closed, and thus decomposes as h+ dψ with
h harmonic, so that ϕ = e−iψw is a harmonic map. The reverse direction is immediate. □

Corollary 3.3. If u ∈ Up(L) is such that J(u) has finite mass, then 1
2πJ(u) is an integral

(n− 2)-cycle in the homology class dual to c1(L) ∈ H2(M ;Z).

Proof. By Proposition 4.2 below, note that there exists at least one u0 ∈ Up(L) such that
1
2πJ(u0) is given by a prescribed integral (in fact, polyhedral) cycle P ∈ Zn−2(M ;Z) dual to
c1(L). As a consequence, for any u ∈ Up(L), it follows from Proposition 3.2 that

1

2π
(J(u)− J(u0)) = ∂S

for an integer rectifiable S ∈ In−1(M ;Z) of finite mass.
In particular, if M(J(u)) < ∞, then it follows that M(S) +M(∂S) < ∞, and we can

deduce from [63, Theorem 30.3] that ∂S is itself an integral (n− 2)-cycle. In particular,

1

2π
J(u) =

1

2π
J(u0) + ∂S = P + ∂S

is then an integral (n− 2)-cycle homologous to P , proving the claim. □

3.2. Proof of Theorem 1.2, part (i). To complete the proof of the lim inf part of the
Γ-convergence theorem, it remains to establish a compactness result for sections uϵ coming
from couples (uϵ,∇ϵ) in Xp (modulo gauge transformations) under the assumption of a
uniform energy bound Eϵ(uϵ,∇ϵ) ≤ Λ. As in the previous section, we will continue to work
with a fixed smooth reference connection ∇0 on the line bundle L→M .

Lemma 3.4. Let (u,∇) satisfy |u| ≤ 1 and Eϵ(u,∇) ≤ Λ. Then there is a gauge-equivalent
pair (u′,∇′) for which

∥∇′ −∇0∥Lp(M) + ∥∇0u
′∥Lp(M) ≤ C(p,M,L,Λ)

for all p ∈ (1, n
n−1).

Proof. Writing the initial connection as

∇ = ∇0 − iη

for a one-form η ∈ Ω1(M), consider the Hodge decomposition

η = d∗ξ + dψ + h(η),
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where ξ ∈ Ω2(M), ψ ∈ C∞(M), and h(η) is harmonic. Since the gradients of S1-valued
harmonic maps form a lattice in the space H1(M) of harmonic one-forms, note that we can
find a harmonic map f :M → S1 such that

∥f∗(dθ)− h(η)∥L∞(M) ≤ C(M).

Now, letting
ϕ := eiψf :M → S1,

we see that

α := η − ϕ∗(dθ) = η − f∗(dθ)− dψ = d∗ξ + [h(η)− f∗(dθ)].

Thus, making the change of gauge

(u′,∇′) := (ϕ−1 · u,∇+ iϕ∗(dθ)),

we see that the new connection ∇′ is given by

∇′ = ∇0 − iα,

where α is co-closed, and the harmonic component h(α) = h(η) − f∗(dθ) of the Hodge
decomposition α = d∗ξ + h(α) satisfies ∥h(α)∥L∞(M) ≤ C.

To obtain the desired bound for ∥∇′ −∇0∥Lp(M) = ∥α∥Lp(M), it remains to estimate the
co-exact component d∗ξ. To this end, note that ξ can be assumed exact and is given by

ξ = ∆−1
H (dη),

by definition of the Hodge decomposition. By the Lp regularity theory for the Hodge
Laplacian and a standard duality argument, we have an automatic bound of the form

(3.2) ∥d∗ξ∥Lp(M) ≤ C(p,M)∥dη∥W−1,p(M) = C(p,M)∥dη∥(W 1,p′ (M))∗

for any p ∈ (1,∞).
Now, by definition (2.7) of the one-form β(u,∇), we have

η = β(u,∇)− ⟨∇u, iu⟩,
while (2.6) gives

J(u,∇) = d(β(u,∇)) + ω0.

We therefore see that
dη = J(u,∇)− ω0 − d⟨∇u, iu⟩,

and for any ζ ∈ Ω2(M), it follows that∫
M
⟨dη, ζ⟩ =

∫
M
⟨J(u,∇)− ω0, ζ⟩ −

∫
M
⟨d⟨∇u, iu⟩, ζ⟩

=

∫
M
⟨J(u,∇)− ω0, ζ⟩ −

∫
M
⟨⟨∇u, iu⟩, d∗ζ⟩

≤ ∥J(u,∇)∥L1(M)∥ζ∥C0(M) + ∥F∇0∥L1(M)∥ζ∥C0(M)

+ C∥⟨∇u, iu⟩∥L2(M)∥ζ∥W 1,2(M).

We know already that ∥J(u,∇)∥L1(M) ≤ Eϵ(u,∇) ≤ Λ, and since ∇0 is a fixed reference
connection, we automatically have ∥F∇0∥L1(M) ≤ C(M,L) independent of (u,∇). Moreover,
since |u| ≤ 1, we also see that

∥⟨∇u, iu⟩∥L2(M) ≤ ∥∇u∥L2(M) ≤ Eϵ(u,∇)1/2.
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Combining the preceding estimates, it follows that∫
M
⟨dη, ζ⟩ ≤ C(M,L,Λ)(∥ζ∥C0(M) + ∥ζ∥W 1,2(M)),

and by the Sobolev embedding W 1,q(M) ↪→ C0(M) for q > n (as well as the obvious
embedding W 1,q(M) ↪→W 1,2(M) for q > n ≥ 2), we deduce in particular that

∥dη∥(W 1,q(M))∗ ≤ C(q,M,L,Λ)

for any q > n. Together with (3.2), this implies that

∥d∗ξ∥Lp(M) ≤ C(p,M,L,Λ)

for all 1 < p < n
n−1 , and consequently

(3.3) ∥∇′ −∇0∥Lp(M) = ∥α∥Lp(M) ≤ ∥d∗ξ∥Lp(M) + ∥h(α)∥Lp(M) ≤ C(p,M,L,Λ)

for p ∈ (1, n
n−1), giving the desired estimate for ∇′ −∇0.

In particular, since ∇′u′ = ∇0u
′ − iαu′, for 1 < p < n

n−1 , it also follows that

∥∇0u
′∥Lp(M) ≤ ∥∇′u′∥Lp(M) + ∥α∥Lp(M) ≤ ∥∇u∥Lp(M) + ∥α∥Lp(M) ≤ C(p,M,L,Λ),

as claimed. □

With the preceding lemma in place, we can now finish the proof of the liminf part of the
Γ-convergence statement.

Proof of Theorem 1.2(i). Given a family (uϵ,∇ϵ = ∇0 − iαϵ) with |uϵ| ≤ 1 and uniformly
bounded energy Eϵ(uϵ,∇ϵ) ≤ Λ, we may assume without loss of generality that the change
of gauge given in the preceding lemma has already been applied to (uϵ,∇ϵ), so that

∥αϵ∥Lp(M) + ∥∇0uϵ∥Lp(M) ≤ C(p,M,L,Λ)

for 1 < p < n
n−1 . In this case, it follows that the sections uϵ are uniformly bounded in W 1,p

norm

∥uϵ∥W 1,p(M) = ∥uϵ∥Lp(M) + ∥∇0uϵ∥Lp(M),

so by the Rellich–Kondrachov theorem, we can pass to a subsequence such that uϵ converges
strongly in Lp(M,L) to a limiting section u ∈W 1,p(M,L). Moreover, since the sections uϵ
satisfy the pointwise bound |uϵ| ≤ 1, we see that the convergence uϵ → u must be strong in
Lq(M,L) for every q ∈ [1,∞), and therefore the limiting section u must satisfy∫

M
(1− |u|2)2 = lim

ϵ→0

∫
M
(1− |uϵ|2)2 ≤ lim

ϵ→0
ϵ2Eϵ(uϵ,∇ϵ) = 0;

i.e., |u| ≡ 1 almost everywhere, so u ∈ Up(L).
By (2.7) and a straightforward calculation, one can check that

β(uϵ,∇ϵ)− β(u) = ⟨∇0uϵ, iuϵ⟩ − ⟨∇0u, iu⟩+ (1− |uϵ|2)αϵ
= ⟨∇0(uϵ + u), i(uϵ − u)⟩+ (1− |uϵ|2)αϵ + d⟨uϵ, iu⟩,
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so that the difference J(uϵ,∇ϵ)− J(u) = d[β(uϵ,∇ϵ)− β(u)] satisfies

∥J(uϵ,∇ϵ)− J(u)∥(C1(M))∗

≤ C∥⟨∇0(uϵ + u), i(uϵ − u)⟩+ (1− |uϵ|2)αϵ∥L1(M)

≤ C(∥∇0uϵ∥Lp(M) + ∥∇0u∥Lp(M))∥uϵ − u∥Lp′ (M) + C∥αϵ∥Lp(M)∥1− |uϵ|2∥Lp′ (M)

≤ C(p,M,L,Λ)(∥uϵ − u∥Lp′ (M) + ∥1− |uϵ|2∥Lp′ (M)).

Since uϵ → u strongly in Lp
′
for p > 1, taking the limit as ϵ→ 0, we have that the right-hand

side goes to 0, establishing the desired convergence J(uϵ,∇ϵ) → J(u) in (C1)∗. Finally,
lower semicontinuity of the mass gives the obvious bound

M(J(u)) ≤ lim inf
ϵ→0

M(J(uϵ,∇ϵ)) ≤ lim inf
ϵ→0

Eϵ(uϵ,∇ϵ) ≤ Λ,

and by Corollary 3.3, it follows that 1
2πJ(u) defines an integral (n− 2)-cycle in the correct

homology class. □

Remark 3.5. Alternatively, one can also give another proof of the liminf inequality via
techniques similar to those used in Alberti, Baldo and Orlandi [2, 3] for functionals of
Ginzburg–Landau type. Though this method would be slightly more involved than the
proof given here, the automatic mass bound ∥J(uϵ,∇ϵ)∥L1(M) ≤ Eϵ(uϵ,∇ϵ) again simplifies
several steps, reducing the problem to establishing the integrality of the limiting cycle.

4. Recovery sequence

In this section we prove existence of a recovery sequence, thus establishing the other half
of the Γ-convergence and finishing the proof of Theorem 1.2. The proof is constructive in
nature and exploits in a crucial way the two-dimensional solutions of the vortex equations
appearing in Theorem 4.5. We start by recalling a few basic facts from algebraic topology.

Proposition 4.1. Any cohomology class α ∈ H2(M ;Z) is the Euler class c1(L) of some
complex line bundle L→M . Also, the Euler class classifies the line bundle up to isomorphism.

Indeed, it is well known that any complex line bundle arises as the pullback of the canonical
line bundle on CP∞ by means of a continuous map f :M → CP∞, with a correspondence
between the homotopy class [f ] and the isomorphism class of the line bundle. For a specific
choice of the generator λ of H2(CP∞;Z), we then have c1(L) = f∗λ. On the other hand,
CP∞ is an Eilenberg–MacLane space K(Z, 2): hence, any α ∈ H2(M ;Z) equals f∗λ for a
unique homotopy class [f ]; see, e.g., [32, Theorem 4.57]. For a more elementary proof using
the exponential sheaf sequence, see for instance [26, pp. 139–140].

We know from Section 3 that the homology class of a limit cycle Γ is dual to the Euler
class of the bundle. Conversely, given a hermitian line bundle L→M and a cycle Γ whose
homology class [Γ] is dual to c1(L), we now show how to realize Γ as the limit of 1

2πJ(uϵ,∇ϵ),
for appropriate pairs of sections and connections on L, as in part (ii) of Theorem 1.2.

The next proposition provides a useful variant of Federer’s polyhedral approximation
theorem (cf. [23, Lemma 4.2.19]) for our setting, providing a polyhedral approximation of a
given cycle Γ, which can be realized as the distributional Jacobian J(v) of an appropriate
singular unit section. Locally, this is a simpler version of the main result from [2], with
appropriate modifications for the manifold setting.
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Proposition 4.2. Given an integral (n−2)-cycle Γ ∈ Zn−2(M ;Z), there exists a triangulation
of M and an integer-valued function k on the collection {∆} of its (n− 2)-simplices, each
with a fixed orientation, such that the integral current

P :=
∑

∆k(∆)∆

is a cycle arbitrarily close to Γ in the flat topology, with M(P ) arbitrarily close to M(Γ).
Also, assuming that [Γ] is dual to c1(L), there exists a section v ∈ Up(L) ∩ C∞(M \ Sn−2),
for p ∈ (1, 2), such that

J(v) = 2πP

and, with respect to a reference connection ∇0,

|∇0v| ≤ C(v) dist(·,Sn−2)
−1,(4.1)

where Sn−2 is the (n− 2)-skeleton of the triangulation.

Proof. In order to approximate Γ, we modify Federer’s classic approximation result [23,
Lemma 4.2.19] as follows. Given δ > 0, using the same proof we can find a finite collection
of disjoint C1 embeddings Fj : B̄

n−2 →M and multiplicities aj ∈ Z such that

M(T ) < δ, where T := Γ−
∑

jajFj(B
n−2).

Moreover, we can find a triangulation of M such that each piece Fj(B̄
n−2) is a subcomplex,

for instance triangulating first a tubular neighborhood of each and then extending to
a triangulation of the complement, using [51, Theorem 10.6]. We can also refine the
triangulation in such a way that each simplex has diameter less than a given ρ > 0 and admits
a diffeomorphism f to (a scaled copy of) the standard simplex with Lip(f) + Lip(f−1) ≤ C,
for a universal constant C(n).

We now argue as in the deformation theorem (see [23, Theorem 4.2.9] or [63, Theorem 29.1]),
using our triangulation in place of the Euclidean grid. Since we are in a manifold, we cannot
easily average over translations; but, recalling that the simplices are identified with the
standard one, we can average instead over the center of the retraction.

Namely, given the standard k-dimensional simplex ∆k, denote 1
2∆

k the rescaled simplex

with the same center. Since 1
2∆

k has positive distance from the boundary ∂∆k, for any

point p ∈ 1
2∆

k the radial retraction rp : ∆
k \ {p} → ∂∆k is locally Lipschitz outside {p} and

satisfies |drp(x)| ≤ C(k)|x− p|−1. Then, for 0 ≤ m < k, given a normal rectifiable m-current

W on ∆k, with C = C(k) we have∫
1
2
∆k

∫
∆k

|drp(x)|m d|W |(x) dLk(p)

≤ C

∫
∆k

∫
1
2
∆k

|x− p|−m dLk(p) d|W |(x)

≤ CM(W ).

Hence, there exists p such that the inner integral on the left-hand side is bounded by
C(k)M(W ) (and ∥W∥({p}) = 0 if m = 0). A standard cut-off argument shows that the
pushforward (rp)∗W is a well-defined current whose mass is bounded by the same quantity.

If W has no boundary in the interior of ∆k, as in the proof of the deformation theorem it
is easy to check that the difference W − (rp)∗W = ∂V for some (m+ 1)-current V with
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M(V ) ≤ C(k)M(W ). Scaling by a factor ρ gives the same result for a current W supported
on the scaled simplex, with the bounds M((rp)∗W ) ≤ C(k)M(W ) and M(V ) ≤ C(k)ρM(W ).

The same argument applies to an m-current supported on the k-skeleton of our triangula-
tion, assuming that 0 ≤ m < k and that the boundary of the current is supported on the
(k − 1)-skeleton, since the retractions on each k-simplex paste together. In particular, this
holds for the (n− 2)-current T , with k = n, since

∂T = −
∑

jaj∂(Fj(B
n−2))

is supported on the (n− 3)-skeleton. We can thus construct a retraction r to the (n− 1)-
skeleton such that T ′ := r∗T satisfies T = T ′ + ∂R′, with

M(T ′) ≤ CM(T ) and M(R′) ≤ CρM(T ),

where T ′ is an integral current supported on the (n− 1)-skeleton. We can repeat the same
on the (n− 1)-skeleton and retract T ′ to a current T ′′ supported on the (n− 2)-skeleton,
such that T ′ = T ′′ + ∂R′′, with

M(T ′′) ≤ CM(T ′) and M(R′′) ≤ CρM(T ′).

Since ∂T ′′ = ∂T vanishes on the interior of each (n− 2)-simplex, by the constancy theorem
T ′′ is a linear combination (with integer coefficients) of the (n− 2)-simplices. Thus, defining

P := T ′′ +
∑

jajFj(B
n−2),

we have Γ− P = ∂(R′ +R′′) and

|M(P )−M(Γ)| ≤ M(P − Γ) ≤ M(T ) +M(T ′) +M(T ′′) ≤ Cδ,

together with

M(R′) +M(R′′) ≤ Cρδ ≤ Cδ

(assuming ρ ≤ 1), which gives F(Γ, P ) ≤ Cδ. Up to a small perturbation, we can assume
that our C1 triangulation is in fact smooth, with P satisfying the same bounds.

In the sequel, we assume that [Γ] is dual to c1(L) and we prove the second part of the
statement.

Let us now fix a smooth section w0 :M → L which is transverse to the zero section, the
existence of which is guaranteed, for instance, by [43, Theorem IV.2.1]. The implicit function
theorem implies then that S0 := w−1

0 {0} is a smooth (n − 2)-submanifold. Moreover, it
comes equipped with the canonical orientation such that a positive basis {v3, . . . , vn} of
TpS0, extended with vectors {v1, v2} such that {dw0[v1], dw0[v2]} is a positive basis of Lp,
gives a positive basis {v1, . . . , vn} of TpM . With this orientation, letting v0 := w0

|w0| , we have

J(v0) = 2πS0 and [M ]⌢ c1(L) = [S0] = [Γ].
We can then find another triangulation of M such that S0 is a union of (n− 2)-simplices.

Using (the proof of) [51, Theorem 10.4], viewing the two triangulations as embeddings
f1 : C1 →M and f2 : C2 →M of simplicial complexes, up to a subdivision of each Ci we can
find new embeddings f ′1 and f ′2 such that (the image of) each simplex in each complex is
also a simplex in the other complex (possibly parametrized in a different way). We call S ′

k
(the support of) the k-skeleton of this common triangulation.

Note that, since f ′i can be taken arbitrarily close to fi, we can define the piecewise

smooth diffeomorphism Fi := f ′i ◦ f
−1
i : M → M and write Fi(x) = expx(Vi(x)) (with

Vi(x) piecewise smooth), and then let Fi,t(x) := expx(tVi(x)) for all t ∈ [0, 1], which gives a
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homotopy between the identity and Fi. In particular, letting P ′ := F1(P ) and S′
0 := F2(S0),

in homology we have

[P ′] = [P ] = [Γ] = [S0] = [S′
0].

Also, |M(P ′)−M(P )| and F(P, P ′) are arbitrarily small.

We claim that J(v′0) = 2πS′
0, where v

′
0 :=

w′
0

|w′
0|

and w′
0 is obtained by parallel transport of

w0 along the curves t 7→ Ft(x) for x ∈M (with respect to some fixed connection ∇0). This
claim is clear outside of S ′

n−3. Also, Proposition 3.2 gives [ 1
2πJ(v

′
0)] = [ 1

2πJ(v0)] = [S0] = [S′
0].

In particular, the difference 1
2πJ(v

′
0)− S′

0 is supported on S ′
n−3 and is the boundary of an

integral (n − 1)-current. Up to retracting the latter to S ′
n−1, we can assume it to be a

linear combination of the simplices composing S ′
n−1 (by the constancy theorem). Hence, its

boundary J(v′0)− 2πS′
0 is also a linear combination of the (n− 2)-simplices composing S ′

n−2,
and must then vanish, proving the claim.

Since [P ′] = [S′
0] and P

′ − S′
0 is supported on S ′

n−2, arguing as above we can write

P ′ − S′
0 = ∂

(∑
jkjRj

)
for a collection {Rj} of (n − 1)-simplices in the triangulation. We have the following
elementary fact.

Lemma 4.3. There exists a map ṽ ∈ C∞(M \
⋃
j spt(∂Rj), S

1) with

J(ṽ) = 2π∂(
∑

jkjRj)

and |dṽ| ≤ C dist(·,
⋃
j spt(∂Rj))

−1.

Proof. The proof is a straightforward application of the techniques in [3, Section 4]. Indeed,
for a geodesic ball Ūj ⊂ M covering Rj , the arguments of [3] can be applied to obtain
a map v′j : Ūj → S1, locally Lipschitz outside spt(∂Rj), satisfying J(v

′
j) = 2π∂Rj and

|dv′j | ≤ C dist(·, spt(∂Rj))−1.

The map v′j , restricted to ∂Uj , can be lifted to a real-valued map (viewing S1 as a quotient

of R): this is trivial when n ≥ 3, since ∂Uj is diffeomorphic to Sn−1, which is simply
connected; it holds also when n = 2, since the degree of v′j on the circle ∂Uj is zero, as it is

the sum of its (opposite) degrees ±1 around the two points constituting ∂Rj . Hence, v
′
j

admits a continuous extension to M \ spt(∂Rj). Up to regularization, we can also arrange
that v′j is smooth outside spt(∂Rj), while obeying the same bound. We can then take

ṽ :=
∏
j(v

′
j)
kj . □

We can now conclude the proof of the proposition. Since J(v′0) = 2πS′
0, the product

v := ṽv′0 then has

J(v) = J(ṽ) + J(v′0) = 2π(P ′ − S′
0) + 2πS′

0 = 2πP ′.

Thus, replacing P with P ′, this new cycle and the map v have all the desired properties (with
respect to the perturbed triangulation), and the proof of Proposition 4.2 is complete. □

We now show how to obtain a recovery sequence (uϵ,∇ϵ) for any such polyhedral
approximation P of Γ. Once this is done, the result follows for any integral (n− 2)-cycle Γ
by the preceding proposition and a diagonal argument.
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Fix a triangulation of M as in the conclusion of Proposition 4.2. For an (n− 2)-simplex
∆, fix a diffeomorphism ∆̄ → ∆ from the standard simplex ∆̄. For δ > 0 small, we denote
by ∆δ the image of the set of points in ∆̄ with distance at least δ from the boundary. Given
p ∈ ∆ \ ∂∆, we denote by B⊥

r (p) the ball of radius r in the normal bundle to ∆ at p; for
a set S of such points, we then set B⊥

r (S) :=
⋃
p∈S B

⊥
r (p). Note that there exists c′ > 0

independent of δ such that the exponential map is a diffeomorphism from B⊥
c′δ(∆δ) to its

image and such that, setting

Vδ(∆) := exp(B⊥
c′δ(∆δ)),(4.2)

we have Vδ(∆) ∩ Vδ(∆′) = ∅ for ∆ ̸= ∆′. We can also require that the closest point to
expp(v) in the (n − 2)-skeleton

⋃
∆ is p, whenever v ∈ B⊥

c′δ(p) and p ∈ ∆δ. With these
preparations in place, we come now to the main result of this section.

Proposition 4.4. For ϵ > 0 small enough, there exists a family of smooth couples (uϵ,∇ϵ)
such that

J(uϵ,∇ϵ)⇀ 2πP, as ϵ→ 0,

as currents, and

lim
ϵ→0

Eϵ(uϵ,∇ϵ) = 2πM(P ).

Throughout the proof, we will use the following key fact, for a proof of which we refer the
reader to [38, Theorem III.2.3].

Theorem 4.5. For the trivial line bundle L→ C, given any integer k0 ∈ Z there exists a
smooth couple (uϵ,∇ϵ) which is (locally) critical for the energy Eϵ, has u

−1
ϵ {0} = {0} and

Eϵ(uϵ,∇ϵ) = 2π|k0|.
Moreover, |uϵ| ≤ 1 and, writing ∇ϵ = d−iαϵ, we have the decay for gauge invariant quantities

|∇ϵuϵ|+
1− |uϵ|2

ϵ
+ ϵ|dαϵ| ≤

C(k0)

ϵ
e−c(k0)|z|/ϵ.(4.3)

Finally, we can require that uϵ = |uϵ|eik0θ for |z| ≥ ϵ, which gives

|u∗ϵ (dθ)| ≤ C(k0)|z|−1, |duϵ|+ |αϵ| ≤ C(k0)min{ϵ−1, |z|−1}.(4.4)

Note that the pairs (uϵ,∇ϵ) can be obtained from (u1,∇1) by scaling. The exponential
decay is proved in [38, Theorem III.8.1]; see also the proof of [52, Corollary 5.4]. As for the
last part, by a change of gauge we can assume u1/|u1| = eik0θ for |z| ≥ 1. Observing that

⟨∇1u1, iu1⟩ = |u1|2(u∗1(dθ)− α1),

we deduce (4.4) from the smoothness of the pair and the decay for |∇1u1|; the conclusion for
arbitrary ϵ then follows.

We proceed now to the proof of Proposition 4.4, from which the final part of the
Γ-convergence result stated in Theorem 1.2 will follow.

Proof of Proposition 4.4. Let P be a polyhedral cycle and v ∈ Up(L) a singular unit section
with J(v) = 2πP as in the conclusion of Proposition 4.2. Fix an (n− 2)-simplex ∆, a small

parameter δ > 0, and set λ := c′

3 δ. Let k0 = k(∆) be the constant multiplicity with which ∆

appears in the polyhedral cycle P . In the sequel, we will identify Vδ(∆) with ∆δ ×B2
3λ, with
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respect to a fixed trivialization of the normal bundle to ∆. Also, we fix a trivialization of L
on Vδ(∆); hence, we can identify the section v with a smooth S1-valued map on Vδ(∆) \∆.

We fix a couple (u′ϵ, d − iα′
ϵ) as in Theorem 4.5, with degree k0, defined on the trivial

bundle on C. With a slight abuse of notation, we still call u′ϵ and α
′
ϵ their pullback under

the projection Vδ(∆) = ∆δ ×B2
3λ → B2

3λ ⊂ C. Note that, for any p ∈ P , v has degree k0 on

the loop θ 7→ (p, λeiθ), since J(v) = 2πP . Hence, we can write

u′ϵ
|u′ϵ|

= eifv(4.5)

with f : C \ {0} → R smooth and depending on ϵ. We then define the new sections

ũϵ := [1− χ(1− |u′ϵ|)]eiχfv,

and one-forms

α̃ϵ := χα′
ϵ + (1− χ)(u′ϵ)

∗(dθ) + d((χ− 1)f),

where χ : C → R is a smooth cut-off function such that 0 ≤ χ ≤ 1, |dχ| ≤ 2/λ and

χ(z) =

{
1 for |z| ≤ λ,

0 for |z| ≥ 2λ.

Note that the newly defined couples of sections and connections reduce to

(ũϵ, α̃ϵ) =

{
(u′ϵ, α

′
ϵ) for |z| < λ,

(v, v∗(dθ)) for |z| > 2λ.

In particular, the energy density eϵ(ũϵ, d− iα̃ϵ) of this couple vanishes for |z| > 2λ. Also,
1− |ũϵ| = χ(1− |u′ϵ|), so that the inequality

(1− |ũϵ|2)2 ≤ (1− |u′ϵ|2)2(4.6)

holds. Moreover, on the region Ωλ := {λ < |z| < 2λ}, using that (u′ϵ)
∗(dθ) is closed we

compute

dα̃ϵ = χdα′
ϵ + dχ ∧ (α′

ϵ − (u′ϵ)
∗(dθ)).

Since ⟨∇′
ϵu

′
ϵ, iu

′
ϵ⟩ = |u′ϵ|2((u′ϵ)∗(dθ)− α′

ϵ), in view of (4.3) we can conclude that

ϵ|dα̃ϵ| ≤ ϵ|dα′
ϵ|+

2ϵ

λ
|u′ϵ|−1|∇′

ϵu
′
ϵ| ≤ C

1 + ϵ/λ

ϵ
e−cλ/ϵ(4.7)

on Ωλ, provided that λ/ϵ is big enough. Also,

dũϵ = O(|dχ|(1− |u′ϵ|)) +O(|d|u′ϵ||) + iũϵ(d(χf) + v∗(dθ)),

and recalling that v∗(dθ) = (u′ϵ)
∗(dθ)− df , we conclude that

(d− iα̃ϵ)ũϵ = O(|dχ|(1− |u′ϵ|)) +O(|d|u′ϵ||) + iχũϵ((u
′
ϵ)

∗(dθ)− α′
ϵ).

Denoting ∇̃ϵ := d− iα̃ϵ and using that |d|u′ϵ|| ≤ |∇′
ϵu

′
ϵ|, we obtain the decay

|∇̃ϵũϵ| ≤ C
1 + ϵ/λ

ϵ
e−cλ/ϵ(4.8)

on Ωλ.
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Choose now δ = δ(ϵ) := ϵ3/4, so that λ(ϵ)/ϵ→ ∞ as ϵ→ 0. Since the slices exp(B⊥
c′δ(p))

are orthogonal to ∆ and have area comparable with λ2, we deduce from (4.6), (4.7) and

(4.8) that the energy of the couple (ũϵ, ∇̃ϵ) satisfies

Eϵ(ũϵ, ∇̃ϵ) = 2π|k0|Hn−2(∆)(1 + o(1)) +O(δ2ϵ−2e−cδ/ϵ)

= 2π|k0|Hn−2(∆) + o(1),

with o(1) an infinitesimal term as ϵ→ 0.
Denote by K :=

⋃
spt ∂∆ the (n− 3)-skeleton of the triangulation. Let us choose C ′ > 1

such that q ∈ BC′δ(K) whenever dist(q,Sn−2) ≤ c′δ and q ̸∈
⋃

∆ Vδ(∆) (recall that c′,
defined above (4.2), depends only on the triangulation). Note that the pairs glue together to

give a pair (ũϵ, ∇̃ϵ) on the set M \ B̄C′δ(K) by declaring that (ũϵ, ∇̃ϵ) is given by (v,∇v) on
the complement of

⋃
∆ Vδ(∆), with ∇v the unique connection making v a parallel section. In

order to have a pair defined on all of M , we pick a smooth cut-off function ρδ defined by

(4.9) ρδ =

{
0 on B2C′δ(K),

1 on M \B4C′δ(K),

satisfying the additional bound |dρδ| ≤ δ−1. With ∇0 a fixed reference connection, we claim
that the couple

(uϵ,∇ϵ) := (ρδũϵ, (1− ρδ)∇0 + ρδ∇̃ϵ)

has the desired properties. As a first trivial observation, note that near K the pair (uϵ,∇ϵ)
is given by (0,∇0), i.e., the trivial section with the reference connection.

Next, since vol(Br(K)) = O(r3), we have the estimate

lim
ϵ→0

∫
B4C′δ(K)

(|dρδ|2 + ϵ−2) ≤ lim
ϵ→0

(δ(ϵ)−2 + ϵ−2) · Cδ(ϵ)3 = 0,(4.10)

since δ(ϵ) = ϵ3/4. Fixing again a simplex ∆, we write ∇0 = d − iα∆ with respect to the
chosen trivialization near ∆. Thus,

∇ϵ = d− i(1− ρδ)α∆ − iρδα̃ϵ.

Note that ∇ϵuϵ = ũϵdρδ + ρδ∇ϵũϵ and that the trivialization can be chosen to guarantee
|α∆|+ |dα∆| ≤ C(M,L). In view of (4.10), in order to show that the energy of the couple
(uϵ,∇ϵ) on B4C′δ(K) is infinitesimal, we just have to show that the two quantities∫

B4C′δ(K)\
⋃

∆ Vδ(∆)
(|ρδ∇0v|2 + ϵ2|F(1−ρδ)∇0+ρδ∇v

|2)

and ∫
B4C′δ(K)∩Vδ(∆)

(|ρδ∇0ũϵ|2 + ϵ2|F(1−ρδ)∇0+ρδ∇̃ϵ
|2)

converge to zero (since the contribution of ∇̃ϵũϵ is infinitesimal on B4C′δ(K)). The first
assertion follows from (4.1) and the fact that the integrand equals ϵ2|F∇0 |2 when the distance
from Sn−2 is at most c′δ, while elsewhere we have the bounds

|ρδ∇0v| ≤ Cδ−1
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and

|F(1−ρδ)∇0+ρδ∇v
| ≤ C + |dρδ|(C + |v∗(dθ)|) ≤ Cδ−2;

indeed, these bounds imply that the integral is bounded by

[O(δ−2) +O(ϵ2) +O(ϵ2δ−4)] ·O(δ3),

which is infinitesimal. As for the second assertion, by (4.10) it is enough to prove that, for
p ∈ ∆δ, ∫

{p}×B2
3λ

(
|dũϵ|2 +

ϵ2

δ2
|α̃ϵ|2

)
≤ C log(ϵ−1).

Indeed, since |∇0ũϵ| ≤ C + |dũϵ| and

|F(1−ρδ)∇0+ρδ∇̃ϵ
| ≤ C + |dρδ|(C + |α̃ϵ|) + |F∇̃ϵ

|,

the last claim implies that on each slice the integral is at most O(log(ϵ−1)), and the conclusion
follows since the set of points p whose slice intersects B4C′δ(K) has volume O(δ).

However, by (4.1) and (4.4), dv, dχ, α′
ϵ and (u′ϵ)

∗(dθ) at the point (p, z) are all bounded
by Cδ−1 on the region {λ ≤ |z| ≤ 3λ = c′δ}, which implies |df | ≤ Cδ−1 and |f | ≤ C by
(4.5) (the last conclusion follows up to translating f by a constant). Since this region has
area O(δ2), its contribution is bounded. On the other hand, (ũϵ, α̃ϵ) = (u′ϵ, α

′
ϵ) on {|z| ≤ λ};

using again (4.4), the last claim follows.
Finally, note that J(uϵ,∇ϵ)⇀ 2πP as currents. Indeed, with the same computations as

above, we obtain that ∇0uϵ is bounded in Lp independently of ϵ, for any p < 2. But uϵ → v
almost everywhere, hence weakly in W 1,p(M,L), which gives

J(uϵ,∇ϵ)⇀ J(v) = 2πP,

again as currents as ϵ goes to 0. □

5. Comparison of the min-max constructions

With the Γ-convergence result established, we turn now to the proof of the min-max
comparison described in Theorem 1.5. The outline of the proof is broadly similar to that of
the analogous result of Guaraco [27, Proposition 8.19] in the Allen–Cahn setting. First, we
employ Theorem 1.2 to extract from continuous families of pairs (u,∇) discretized families
of (n− 2)-boundaries with mass bounded above by Eϵ(uϵ,∇ϵ) + o(1). To complete the proof
of Theorem 1.5, we then have to show that the homotopy class of this associated family of
cycles is determined by that of the family of pairs (u,∇) in the desired way.

The details of the proof are somewhat more involved than their codimension-one analog,
since the map from pairs (u,∇) to the space of (n− 2)-boundaries is less explicit, and the
homotopy groups of the space of (n− 2)-boundaries are slightly more complicated. In the
next subsection, we recall the relevant definitions from Almgren’s min-max methods, and
define carefully the min-max values to which Theorem 1.5 applies.
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5.1. Natural min-max constructions for Eϵ. Throughout this section, let L = C×M →
M be the trivial line bundle over a closed, oriented n-manifold (Mn, g) of dimension n ≥ 3.
Fixing a trivialization of L, the space of pairs (u,∇) consisting of sections u ∈ Γ(L) and
hermitian connections ∇ can then be identified with pairs (u, α), where u : M → C is a
complex-valued map and α ∈ Ω1(M) is a one-form such that ∇ = d− iα.

For a fixed p > n, we will view Eϵ as a functional on the Banach space X̂ consisting of pairs
(u,∇) where u ∈ [W 1,2 ∩ Lp](M) and ∇ = d− iα for α ∈W 1,2(M) (with topology induced
by the norm ∥du∥L2(M) + ∥u∥Lp(M) + ∥α∥W 1,2(M)), equipped with the Finsler structure

(5.1) ∥(v, β)∥(u,∇) := ∥v∥Lp(M) + ∥∇v∥L2(M) + ∥β∥L2(M) + ∥Dβ∥L2(M),

where D is the (Levi-Civita) covariant derivative of the one-form β. It is straightforward

to check (cf. [52, Section 7]) that the energies Eϵ define C1 functionals on X̂, and an
adaptation of the proof of [52, Proposition 7.6] shows that they satisfy a variant (modulo
gauge transformations) of the Palais–Smale condition with respect to the Finsler structure

(5.1), making X̂ an appropriate setting for the min-max construction of critical points
(provided the nonlinear potential W is modified as described in [52, Section 7]).

Remark 5.1. The Palais–Smale result stated in [52, Proposition 7.6] for Eϵ in X̂ is not quite
correct as written when the base manifold M has H1(M ;Q) ̸= 0. This is due to the fact
that a sequence (uj ,∇j) for Eϵ which is Palais–Smale with respect to the natural Banach

norm on X̂ may fail to yield another Palais–Smale sequence under the change of gauge
(ϕjuj ,∇j − ϕ∗j(dθ)) for a sequence of harmonic map ϕj :M → S1. However, it is easy to

check that the Palais–Smale property with respect to the Finsler structure (5.1) is preserved
under harmonic change of gauge, and [52, Proposition 7.6] holds with the Banach norm
replaced by this Finsler structure.

Though the space X̂ itself is topologically trivial, the functionals Eϵ have a rich min-max
theory in the ϵ→ 0 limit, owing to the topology of the moduli space

M := (X̂ \X0)/G,

where X0 := {(u, α) ∈ X̂ : u ≡ 0} and G :=W 2,2(M,S1) is the gauge group. Indeed, writing

Y := {(u, α) ∈ X̂ : d∗α = 0},

note that there is a natural retraction ρC : X̂ → Y given by passing to the Coulomb gauge

ρC(u, α) := (e−iφαu, α− dφα),

where φα ∈W 2,2(M,R) is the unique solution of

d∗dφα = d∗α and

∫
M
φα = 0.

It is clear that the quotient map Y \X0 → M is surjective. The elements of G sending
a given couple in Y \X0 to a couple in the same space are precisely the harmonic maps
H = Harm(M,S1), so we can identify M (homeomorphically) with the quotient

M = (Y \X0)/H.
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Moreover, note that the harmonic S1-valued maps H contain S1 as a subgroup (by identifi-
cation with the constant maps), and the quotient H/S1 has a natural identification

H/S1 ∼= [M : S1] ∼= H1(M ;Z),

since each homotopy class in [M : S1] is uniquely represented in H up to rotations. We can
then view M as the quotient

M = [(Y \X0)/S
1]/H1(M ;Z),

of the quotient space (Y \X0)/S
1 by the free and properly discontinuous action of H1(M ;Z).

Moreover, we have the following facts, allowing to extract the algebraic topology invariants
of M.

Proposition 5.2. The projection Y \X0 → (Y \X0)/S
1 is a fiber bundle and, hence, a

weak fibration. The former space has trivial homotopy groups, while the latter is weakly
homotopy equivalent to CP∞, and is the universal cover of M.

Proof. LetQ := (Y \X0)/S
1 and denote π : Y \X0 → Q the projection. Given (u, α) ∈ Y \X0,

we can find a measurable set E ⊆M such that
∫
E u ̸= 0. In particular, there exists δ > 0

such that
∫
E v ̸= 0 for all couples (v, β) with distance less than δ from the S1-orbit of

(u,∇)—namely, such that ∥(v, β)− eiθ · (u, α)∥X̂ < δ for some eiθ ∈ S1. These couples form

an open set π−1(U), for U open in the quotient Q. It is then easy to check that the map

π−1(U) → S1 × U, (v, β) 7→
(∫

E v / |
∫
E v|, π((v, β))

)
gives a local trivialization over U . Hence, π is a fiber bundle and thus a weak fibration (see
[32, Proposition 4.48]).

To check the second statement, note that Q (deformation) retracts onto Ŝ/S1, where Ŝ is

the unit sphere of the Banach space [W 1,2 ∩ Lp](M,C), viewed as a subset of X̂ with trivial
connection component. Given a dense, linearly independent set {uk}∞k=1 in this Banach space,

we denote by Hℓ the linear span of {u1, . . . , uℓ} and by πℓ : [W
1,2 ∩ Lp](M,C) → Hℓ the

nearest point projection, which is well-defined and continuous since Hℓ is finite-dimensional
and the Banach space is strictly convex.

Letting Ŝℓ := Ŝ ∩Hℓ, note that the union P :=
⋃
ℓ(Ŝ

ℓ/S1), endowed with the topology

induced by the subspaces Ŝℓ/S1, is homeomorphic to CP∞, and the identity map i : P → Ŝ/S1

is continuous. We claim that, for any compact set K ⊂ Ŝ/S1, the inclusion K ↪→ Ŝ/S1 can

be deformed to a map K → Ŝℓ/S
1 for some ℓ (within maps into Ŝ/S1). This implies that i

induces isomorphisms i∗ on homotopy groups, because then any map Sk → Ŝ/S1 can be

deformed to a map with values in Ŝℓ/S1 for some ℓ (hence i∗ is surjective), and a homotopy

in Ŝ/S1 between two maps Sk → Ŝℓ/S1 can be deformed to a homotopy in Ŝℓ
′
/S1 with

ℓ′ ≥ ℓ (hence i∗ is injective).

To prove the claim, note that for any [u] ∈ Ŝ/S1 there exists ℓ such that the distance from
u to Hℓ is less than 1, and the same holds on a neighborhood of [u]. By compactness of K, we

can find ℓ such that this is true for all the elements of K. The map ([u], t) 7→ (1−t)u+tπℓ(u)
∥(1−t)u+tπℓ(u)∥X̂

gives the desired deformation.
The fact that Ŝ, and hence Y/X0, have trivial homotopy groups is proved in the same way.

The last conclusion follows from the well-known fact that CP∞ is simply connected. □
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We conclude that the path-connected space M has π1(M) ∼= H1(M ;Z), as well as
π2(M) ∼= Z, and πk(M) = 0 for k ≥ 3; or equivalently, for k > 0,

πk(M) ∼= Hn−2+k(M ;Z).

The results of this section concern the min-max energies associated to the generator
of π2(M), and to each class λ ∈ Hn−1(M ;Z) ∼= π1(M) (with basepoint the trivial pair

(u0 ≡ 1,∇0 ≡ d) mod G). In practice, we work with their lifts to maps D̄2 → X̂ and

[0, 1] → X̂.
As in [52], consider the collection

C2 ⊂ C0(D̄2, X̂)

of continuous families

D̄2 ∋ y 7→ (uy,∇y) ∈ X̂

parametrized by the closed unit disk D̄2 ⊂ C, subject to the boundary condition

uy ≡ y and ∇y ≡ d for y ∈ ∂D2 = S1.

By the long exact sequence for homotopy groups in weak fibrations, families in C2 (avoiding
X0) descend to the generators of π2(M). It was shown in [52, Section 7] by explicit
construction and a simple degree argument that the associated min-max energies

(5.2) Eϵ(C2) := inf
F∈C2

max
y∈D̄2

Eϵ(Fy)

are uniformly bounded from above and below as ϵ → 0, arise as the energies Eϵ(uϵ,∇ϵ)
of nontrivial critical points (uϵ,∇ϵ) for Eϵ, and converge subsequentially to the mass of a
(nontrivial) stationary integral (n − 2)-varifold, up to a factor of 2π. Likewise, for each
nontrivial λ ∈ Hn−1(M ;Z), we can consider the collection

Cλ ⊂ C0([0, 1], X̂)

of continuous families [0, 1] ∋ t 7→ (ut,∇t) ∈ X̂ satisfying

(u0,∇0) ≡ (1, d), (u1,∇1) ≡ (ϕ, d− iϕ∗(dθ)),

where ϕ ∈ C∞(M,S1) is a map in the homotopy class dual to λ (i.e., generic fibers of ϕ
are homologous to λ). Families in Cλ (avoiding X0) descend to loops in M, whose class in
π1(M) is determined by λ, and we will likewise consider their min-max energies

Eϵ(λ) := inf
F∈Cλ

max
t∈[0,1]

Eϵ(Ft).

Remark 5.3. Note that a family as above, with energy bounded by a given Λ (fixed), must
avoid the degenerate set of couples X0 for ϵ small enough. Using Proposition 5.2, one can
check that the min-max values defined above coincide with the corresponding ones for the
homotopy groups of M.
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5.2. Natural min-max constructions for the (n− 2)-mass functional. By Almgren’s
thesis [5], we know that the space Z ⊆ Zn−2(M ;Z) of integral (n − 2)-boundaries in M ,
equipped with the flat topology, has homotopy groups identical to those of M; namely,

πk(Z, 0) ∼= Hn−2+k(M ;Z)
for k > 0, while π0(Z) = 0. In [6] (see also [53]), Almgren associates to each class in
πk(Zm(M ;Z)) a stationary integral k-varifold by means of a discretized min-max construction,
which replaces continuous families of cycles in the flat topology with discrete families satisfying
an approximate continuity condition with respect to the stronger mass topology. For our
comparison results, it is convenient to work with discrete families which are fine in flat norm
and exhibit no concentration of mass; by the interpolation arguments of [48, Section 13]
and [46, Theorem 2.10], the associated min-max masses coincide with the masses of the
stationary varifolds produced by Almgren.

Remark 5.4. While Theorems 2.10 and 2.11 of [46] are stated for cycles with Z/2Z coefficients,
the coefficient group plays no role in these arguments.

Following the notation of [46, Section 2], for m = 1 or 2, denote by Im the m-cube
Im = [0, 1]m, and for j ∈ N, denote by I(1, j) the cube complex on I1 with 1-cells (or edges)

[0, 3−j ], [3−j , 2 · 3−j ], . . . , [1− 3−j , 1]

and 0-cells (or vertices) [0], [3−j ], . . . , [1 − 3−j ], [1]. Likewise, denote by I(2, j) the cell
complex

I(2, j) = I(1, j)⊗ I(1, j)

on I2 given by subdividing I2 into 32j squares of area 3−2j , and denote by I(m, j)k the
collection of k-cells of I(m, j). Given an assignment ϕ : I(m, j)0 → Zn−2(M ;Z), we will say
that it has (flat) fineness f(ϕ) < δ if

F(ϕ(x), ϕ(y)) < δ for all adjacent vertices x, y ∈ I(m, j)0.

If ϕ : I(m, j)0 → Zn−2(M ;Z) satisfies ϕ(x) = 0 for x ∈ ∂Im and f(ϕ) < δ for δ < δM
sufficiently small, then Almgren’s construction [5] assigns to ϕ a homology class Ψ(ϕ) ∈
Hn−2+m(M ;Z), as follows. For each (oriented) one-cell e = [x, y] ∈ I(m, j)1, provided δ > 0
is sufficiently small, we can find an integral (n− 1)-current Se ∈ In−1(M ;Z) such that

∂Se = ϕ(y)− ϕ(x) and M(Se) ≤ ϵM

for a given small constant ϵM > 0. If m = 1, then summing over all one-cells e ∈ I(1, j)1
gives an (n− 1)-cycle

S =
∑

e∈I(1,j)1 Se ∈ Zn−1(M ;Z)
whose homology class Ψ(ϕ) := [S] ∈ Hn−1(M ;Z) does not depend on the choice of small-mass
fill-ins Se. If m = 2, then for each 2-cell □ ∈ I(2, j)2 we denote by S□ ∈ Zn−1(M ;Z) the
(n− 1)-cycle S□ =

∑
e∈∂□ Se given by summing the fill-ins Se over all oriented edges e of

∂□, and consider the (unique) n-current Q□ ∈ In(M ;Z) such that

∂Q□ = S□ and M(Q□) <
vol(M)

2
.

Summing over all 2-cells □ ∈ I(2, j)2 then gives an n-cycle

Q =
∑

□∈I(2,j)2 Q□ ∈ Zn(M ;Z)
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whose homology class Ψ(ϕ) := [Q] ∈ Hn(M ;Z) is independent of the choice of small-mass
fill-ins Se.

Now, for η > 0 and a discrete family

ϕ : I(m, j)0 → Zn−2(M ;Z),

define the quantity

m(ϕ, η) := sup{∥ϕ(x)∥(Bη(p)) | x ∈ I(m, j)0, p ∈M},

giving the maximum amount of mass of a cycle in the family inside a ball of radius η. For
δ ∈ (0, δM ) and λ ∈ Hn−2+m(M ;Z), and a constant C0 = C0(M,λ) <∞ to be chosen later,
denote by Aδ(λ) the collection of families

ϕ : I(m, j)0 → Zn−2(M ;Z)

such that

(5.3) f(ϕ) < δ, sup
r>δ

m(ϕ, r)

rn−2
≤ C0,

and

Ψ(ϕ) = λ ∈ Hn−2+m(M ;Z).

Then consider the approximate min-max widths

(5.4) Wδ(λ) := inf
{

max
y∈I(m,j)0

M(ϕ(y)) | ϕ ∈ Aδ(λ)
}
,

and define the min-max width

(5.5) W(λ) := inf
{
lim inf
k→∞

max
y∈I(m,jk)0

M(ϕk(y))
}
,

where the infimum is taken over all sequences ϕk : I(m, jk)0 → Zn−2(M ;Z) such that
δM > f(ϕk) → 0, lim supk→∞m(ϕk, r) → 0 as r → 0, and Ψ(ϕk) = λ. Clearly,

(5.6) W(λ) ≤ lim
δ→0

Wδ(λ) = sup
δ>0

Wδ(λ).

Since we are ruling out concentration of mass in the limit, we can appeal to the interpolation
arguments of [48, Section 13] and [46, Theorem 2.10] to deduce that the widths W(λ) coincide
with Almgren’s min-max widths, and are therefore realized as the masses of stationary
integral (n− 2)-varifolds in M .

We can now state a more precise version of Theorem 1.5.

Theorem 5.5. The min-max energies Eϵ(C2) and Eϵ(λ) for λ ∈ Hn−1(M ;Z) satisfy

(5.7) lim inf
ϵ→0

Eϵ(C2) ≥ 2πW([M ])

and

(5.8) lim inf
ϵ→0

Eϵ(λ) ≥ 2πW(λ).

The remainder of the section is devoted to its proof.
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5.3. Taming min-max families to avoid energy concentration. To ensure that the
min-max energies Eϵ are bounded below by the masses of cycles satisfying (5.3), we first
argue that the energies Eϵ are almost achieved as the maximum energy in families (uy,∇y)
satisfying a uniform energy density bound∫

Br(p)
eϵ(uy,∇y) ≤ Crn−2

for ϵ(M, δ) > 0 sufficiently small and r ≥ δ.

Lemma 5.6. Given δ > 0 and Λ <∞, there exists C(M,Λ) <∞ such that the following

holds. If ϵ < δ, for any family F ∈ C2 ⊂ C0(D̄2, X̂) (or F ∈ Cλ ⊂ C0([0, 1], X̂) for
λ ∈ Hn−1(M ;Z)) satisfying

(5.9) max
y

Eϵ(Fy) < Λ,

there exists another family F ′ = (u′,∇′) ∈ C2 (resp. Cλ) of smooth couples such that

max
y

Eϵ(F
′
y) < Λ

and

max
y, r≥δ, p∈M

∫
Br(p)

eϵ(u
′
y,∇′

y)

rn−2
≤ C(M,Λ).

Proof. First, given a family F ∈ C2 or F ∈ Cλ satisfying (5.9), we can apply a uniform

mollification to obtain a new family F̃ also satisfying (5.9) that defines a continuous map
into the space of smooth pairs (uy,∇y), equipped with the C∞ topology. Thus, we may
assume without loss of generality that the original family F defines a continuous map into
the space of smooth pairs.

In Section 6 below, we investigate a natural L2 gradient flow system for the energies Eϵ,
given by a flow of pairs (ut,∇t = d− iαt) satisfying

(5.10) ∂tut = −∇∗
t∇tut +

1

2ϵ2
(1− |ut|2)ut

and

(5.11) ∂tαt = −d∗dαt + ϵ−2⟨iut,∇tut⟩.
As discussed in Section 6, it is not difficult to establish long-time existence for the flow, and
continuous dependence on smooth initial data. Moreover, it is obvious that minimizers of Eϵ
are stationary under the flow; as a consequence, given a family y 7→ Fy = (uy,∇y) in C2
(resp. Cλ) mapping continuously into the space of smooth pairs as above, we may define a
new family F ′ ∈ C2 (resp. Cλ) by letting F ′

y = (u′y,∇′
y) be the solution of (5.10)–(5.11) at

time t = 2 with initial data (uy,∇y) = Fy. Since the gradient flow decreases energy, it is
obvious that

max
y

Eϵ(F
′
y) ≤ max

y
Eϵ(Fy) < Λ.

Finally, by Proposition 6.3 below (the main result of Section 6), we have the density estimate∫
Br(p)

eϵ(u
′
y,∇′

y) ≤ C(M,Λ)rn−2

for all r ≥ ϵ, so that the family F ′ satisfies the desired properties. □
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Remark 5.7. Note, moreover, that we may always deform an initial family (uy,∇y) to one
(vy,∇y) with |vy| ≤ 1 pointwise, without increasing the energy, by setting vy :=

uy
max{1,|uy |} .

In particular, for the purposes of estimating the min-max energies, we may always assume
that our families (uy,∇y) satisfy |uy| ≤ 1 pointwise, without loss of generality.

To prove Theorem 5.5, we will use this lemma in concert with the following technical
lemma, which follows in a straightforward way from the results of Section 3.

Lemma 5.8. Given Λ, C0 ∈ (0,∞), for any δ > 0 there exists ϵ0(M,Λ, δ, C0) such that, if
ϵ ∈ (0, ϵ0) and (u,∇) is a smooth pair satisfying |u| ≤ 1,

Eϵ(u,∇) ≤ Λ,

and

max
r≥δ, p∈M

r2−n
∫
Br(p)

eϵ(u,∇) ≤ C0,

then there exist a smooth ϕ :M → S1 and a unit section v ∈ Up(L) (i.e., v ∈W 1,p(M,S1))
for all p ∈ (1, n

n−1), satisfying

(5.12) ∥u− v∥L1(M) ≤ δ,

(5.13) ∥d(ϕ−1v)∥Lp(M) ≤ C(p,M,Λ),

(5.14) M(J(v)) ≤ Λ,

and

(5.15) ∥J(v)∥(Br(p)) ≤ 2C0r
n−2

for all p ∈M and r ≥ δ. Moreover, the map ϕ is chosen such that

∥ϕ∗(dθ)−Π(α)∥L2(M) ≤ C(M),

where ∇ = d− iα and Π(α) is the closed component of the Hodge decomposition of α.

Proof. The proof follows a straightforward argument by contradiction, using the analysis
of Section 3. If the statement were false, then we could find some fixed δ > 0, a sequence
ϵj → 0, and pairs (uj ,∇j = d− iαj) such that

(5.16) Eϵj (uj ,∇j) ≤ Λ,

and

(5.17) max
r≥δ, p∈M

r2−n
∫
Br(p)

eϵj (uj ,∇j) ≤ C0,

for which there are no ϕj :M → S1 and vj ∈ Up(L) satisfying (5.12)–(5.15). By Lemma 3.4
(and its proof), we can find maps ϕj :M → S1 such that

∥d(ϕ−1
j uj)∥Lp(M) ≤ C(p,M,Λ) and ∥αj − ϕ∗j (dθ)∥Lp(M) ≤ C(p,M,Λ)

for every p ∈ (1, n
n−1), while

∥ϕ∗j (dθ)−Π(αj)∥L2(M) ≤ C(M).

In particular, the maps ϕ−1
j uj are uniformly bounded in W 1,p for p ∈ (1, n

n−1), and—as

discussed in the proof of Theorem 1.2(i)—a subsequence therefore converges strongly in L1
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and weakly in W 1,p to a singular unit section v ∈ Up(L) (i.e., v ∈W 1,p(M,S1), since L is
now trivial), while the gauge-invariant (n− 2)-currents J(uj ,∇j) converge weakly to J(v).
Moreover, by (5.16), (5.17), and the lower semicontinuity of mass under weak convergence,
we see that

M(J(v)) ≤ lim inf
j→∞

M(J(uj ,∇j)) ≤ Eϵj (uj ,∇j) ≤ Λ

and

∥J(v)∥(Br(p)) ≤ lim inf
j→∞

∥J(uj ,∇j)∥(Br(p)) ≤ lim inf
j→∞

∫
Br(p)

eϵj (uj ,∇j) ≤ C0r
n−2

for all r ≥ δ and p ∈M . In particular, for j sufficiently large, we see that ϕj and ϕjv satisfy
(5.12)–(5.15) (in place of ϕ and v) with respect to uj , giving the desired contradiction. □

Remark 5.9. In particular, recall from Corollary 3.3 that for any v ∈ Up(L) withM(J(v)) <∞,
we have J(v) = 2πΓ for an integral (n− 2)-cycle Γ ∈ Zn−2(M ;Z).

5.4. Filling in cycles by filling maps. The results of the preceding subsection will allow
us to relate min-max families F ∈ C2 or F ∈ Cλ for the energies Eϵ to certain discrete
families of (n− 2)-cycles with the desired mass bounds. In what follows, we collect some
technical lemmas which will allow us to identify the images of those families of (n− 2)-cycles
under the Almgren isomorphism.

Lemma 5.10. Given u, v ∈W 1,p(M,S1), for p ∈ (1, 2), there exists w ∈W 1,p(M× [0, 1], S1)
satisfying the boundary condition

w(x, 0) = u(x, 0), and w(x, 1) = v(x, 1),

in the trace sense, for which the estimate

∥∂tw∥Lp(M×[0,1]) ≤ C(p)∥u− v∥Lp(M)

holds, and such that the pushforward π∗[J(w)] of the distributional Jacobian J(w) under the
projection π :M × [0, 1] →M satisfies

M(π∗[J(w)]) ≤ C

∫
M

|u− v|(|du|+ |dv|).

Proof. The proof combines ideas from [13, Section 3] and [31]. First, we mollify u and v to
obtain maps uδ, vδ ∈ C∞(M,D2) with

∥uδ − u∥W 1,p(M) + ∥vδ − v∥W 1,p(M) < δ.

Let wδ :M × [0, 1] → D2 be the linear interpolation

wδ(x, t) := (1− t)uδ(x) + tvδ(x).

Consider then the (n− 1)-currents

Γδy := π∗[w
−1
δ {y}]



32 D. PARISE, A. PIGATI, AND D. STERN

given by pushing forward the (n− 1)-dimensional submanifold w−1
δ {y} for every regular

value y ∈ D. Then for any ζ ∈ Ωn−1(M), and each regular value y ∈ D of wδ, we have

⟨Γδy, ζ⟩ =
∫
w−1

δ {y}
π∗(ζ)

=

∫
w−1

δ {y}
∗
(
ζ ∧ J(wδ)

|J(wδ)|

)
dHn−1

=

∫
w−1

δ {y}
∗(ζ ∧ dt ∧ ι∂tJ(wδ))|J(wδ)|−1 dHn−1.

In particular, since

|ι∂tJ(wδ)| ≤ 2|∂twδ||dt ∧ dwδ| ≤ 2|uδ − vδ|(|duδ|+ |dvδ|),

it follows that

M(Γδy) ≤
∫
w−1

δ {y}

|uδ − vδ|(|duδ|+ |dvδ|)
1
2 |J(wδ)|

dHn−1,

and applying the standard coarea formula for the smooth map wδ, we arrive at

(5.18)

∫
D
M(Γδy) ≤

∫
M

|uδ − vδ|(|duδ|+ |dvδ|).

Now, for each y ∈ D1/4, fix a map Φy ∈ C∞(D1 \ {y}, S1) satisfying

(5.19) Φy(z) =

{
z−y
|z−y| for z ∈ D1/4(y) ⊂ D1/2,
z
|z| for |z| ≥ 3/4,

and

|dΦy(z)| ≤
C

|z − y|
on D1

for some fixed constant C. Then, writing

wδ,y := Φy ◦ wδ,

if y ∈ D1/4 is a regular value of wδ, we see that wδ,y belongs to W 1,p(M × [0, 1], S1) and

satisfies J(wδ,y) = 2πw−1
δ {y}, as well as

∥dwδ,y∥pLp(M×[0,1]) ≤ C

∫
M×[0,1]

|dwδ|(x, t)p|wδ(x, t)− y|−p dx dt

and

∥∂twδ,y∥pLp(M×[0,1]) ≤ C

∫
M×[0,1]

|uδ − vδ|p(x)|wδ(x, t)− y|−p dx dt.

Integrating the latter two estimates over y ∈ D1/4 and applying Fubini’s theorem, we see
that ∫

D1/4

∥dwδ,y∥pLp(M×[0,1]) dy ≤
∫
M×[0,1]

|dwδ(x, t)|p
(∫

D1/4

|wδ(x, t)− y|−p dy
)
dx dt

≤ C(p)∥dwδ∥pLp(M×[0,1]),
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and similarly ∫
D1/4

∥∂twδ,y∥pLp(M×[0,1]) ≤ C(p)∥uδ − vδ∥pLp(M).

Combining these estimates together with (5.18), we can find y = yδ ∈ D1/4 such that

∥dwδ,y∥Lp(M×[0,1]) ≤ C(p)∥dwδ∥Lp(M×[0,1])

and
∥∂twδ,y∥Lp(M×[0,1]) ≤ C(p)∥uδ − vδ∥pLp(M),

together with

M(π∗[J(wδ,y)]) = 2πM(Γδy) ≤ C

∫
M

|uδ − vδ|(|duδ|+ |dvδ|).

Since wδ,yδ is bounded in W 1,p(M × [0, 1], S1), we may take a subsequential limit

w = lim
δ→0

wδ,yδ

as δ → 0, to obtain a map w ∈W 1,p(M × [0, 1], S1) with the desired properties. □

Remark 5.11. On a manifold with Lipschitz boundary (N, ∂N) of dimension m (e.g. N =
M × [0, 1] or N = M × [0, 1]2 where M is our underlying manifold), given a map w ∈
W 1,p(N,S1) ∩W 1,p(∂N, S1), recall that the (interior) distributional Jacobian J(w) is the
(m− 2)-current given by

(5.20) ⟨J(w), ζ⟩ :=
∫
N
w∗(dθ) ∧ dζ +

∫
∂N

w∗(dθ) ∧ ζ.

In the sequel, we endow M × [0, 1] with the orientation such that M × {1} is oriented
as M . Using the product orientation on M × [0, 1]2 and the induced one on the boundary
M×∂[0, 1]2, note that τ ∧v is positively oriented on the latter manifold when v is a positively
oriented n-vector of M and τ is tangent to ∂[0, 1]2, pointing counter-clockwise.

Remark 5.12. The distributional Jacobian behaves well when concatenating maps. Indeed,
for any two w1, w2 ∈W 1,p(M × [0, 1], S1)∩W 1,p(M ×{0, 1}, S1), if w1 ∗w2 :M × [0, 1] → S1

is the usual concatenation, we have that

π∗[J(w1 ∗ w2)] = π∗[J(w1)] + π∗[J(w2)].

Reasoning by induction one can then prove that the above identity holds for an arbitrary
finite concatenation.

Lemma 5.13. Let F ∈W 1,p(M × I2, S1) ∩W 1,p(M × ∂I2, S1). Letting π :M × I2 →M
be the canonical projection, the n-current

Ξ := π∗[J(F )] ∈ Dn(M)

depends only on F |M×∂I2, is given by

⟨Ξ, φ dvolg⟩ = 2π

∫
M
φ(x) deg

(
F |{x}×∂I2

)
dx,

and satisfies
M(Ξ) ≤ ∥∂tF∥L1(M×∂I2),

where ∂tF denotes the partial derivative of F along the ∂I2 direction.
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Proof. Since any n-form ζ ∈ Ωn(Mn) is closed, (5.20) implies

⟨J(F ), π∗ζ⟩ =
∫
M×∂I2

F ∗(dθ) ∧ π∗ζ =

∫
M
ζ(x)

(∫
{x}×∂I2

F ∗(dθ)
)
dx,

from which the desired results follow. □

Hence, if F1, F2 ∈W 1,p(M × I2, S1) ∩W 1,p(M × ∂I2, S1) are two such maps, satisfying

F1(x, 1, t) = F2(x, 0, t),

and Φ = F1 ∗ F2 is the map given by concatenating along one face of the square, i.e.,

(5.21) Φ(x, s, t) :=

{
F1(x, 2s, t) on M × [0, 1/2]× I,

F2(x, 2s− 1, t) on M × [1/2, 1]× I,

we have

(5.22) π∗[J(F1)] + π∗[J(F2)] = π∗[J(F1 ∗ F2)].

Of course, the same statement holds if we define F1 ∗ F2 by concatenation along any other
face of I2.

5.5. One-parameter families corresponding to π1(Zn−2(M ;Z),0). We come now
to the proof of the second inequality in Theorem 5.5, comparing the one-parameter min-
max constructions for the U(1)-Higgs energies and the (n − 2)-mass. That is, for any
λ ∈ Hn−1(M ;Z), our goal in this section is to prove that

(5.23) lim inf
ϵ→0

Eϵ(λ) ≥ 2πW(λ).

To this end, fix 0 ̸= λ ∈ Hn−1(M ;Z) and a small constant δ > 0. Let ψ ∈ C∞(M,S1) be
a fixed but arbitrary map whose (regular) fibers lie in λ ∈ Hn−1(M ;Z). Recall that, by
definition of Cλ, the endpoints (u0,∇0) and (u1,∇1) of a family (ut,∇t)t∈[0,1] in Cλ are given
by

(u0,∇0) = (1, d) and (u1,∇1) = (eiφψ, d− i(ψ∗(dθ) + dφ)),

for some φ :M → R, and after making the gauge tranformation which replaces (ut,∇t) with
(e−itφut,∇t − it dφ), this is equivalent to considering only those families with (u1,∇1) =
(ψ, d− iψ∗(dθ)).

We claim that

(5.24) Λ := lim inf
ϵ→0

Eϵ(λ) <∞.

Proof of (5.24). Since the proof is very similar to the one for two-parameter families, given

in [52, Section 7], we just sketch it. Identifying M with a simplicial complex M̃ in some
Euclidean space RL, by means of a triangulation of M , we can find a piecewise affine map
ψ̃ : RL → C such that ψ̃ = 1 far from M̃ and |ψ̃ − ψ| < 1

2 on M̃ (provided the triangulation

was chosen fine enough). Let y be a small regular value of ψ̃.

By composing ψ̃ with a piecewise affine homeomorphism of C, we can assume that y = 0
and that ψ̃−1(D̄1/2) is an O(ϵ)-neighborhood of ψ̃−1(0), with the bound |dψ̃| = O(ϵ−1). In

particular, the fiber ψ̃−1(0) is contained in finitely many affine (L− 2)-planes Pj . With a

slight perturbation of M̃ , which does not intersect ψ̃−1(D̄1/2), we can assume that all the

simplices in M̃ are transverse to each Pj (when both are translated to the origin).
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Now, since ψ̃ ≡ 1 outside of a compact set, we can find a vector v ∈ RL such that
ψ̃(x− v) = 1 for all x ∈ M̃ , and for t ∈ [0, 1], define

ψ̃t(x) := ψ̃(x− (1− t)v),

so that ψ̃1 = ψ̃ and ψ̃0 = 1 on M̃ . The preimage ψ̃−1
t (D̄1/2) of D̄1/2 in M̃ is then contained

in an O(ϵ) neighborhood of [ψ̃−1{0}+ (1− t)v] ∩ M̃ , which has volume O(ϵ2).

Identifying these ψ̃t with Lipschitz maps in Lip(M,C) via the bi-Lipschitz identification

M ∼= M̃ , we can mollify ψ̃t—e.g., by convolving with the heat kernel for some very small
time—to obtain a continuous path of maps [0, 1] ∋ t 7→ ψ̃t ∈ C∞(M,C) such that

ψ̃0 ≡ 1, |ψ̃1 − ψ| < 1

2
, and vol(ψ̃−1

t (D̄1/2)) ≤ Cϵ2.

Applying [52, Proposition 7.13] to these maps then gives a family (ut,∇t)t∈[0,1] with uniformly

bounded energy from (1, d) to (ψ̄, d− iψ̄∗(dθ)), where ψ̄ = ψ̃

|ψ̃| . Note that since |ψ̃ − ψ| < 1
2 ,

ψ̄ must be homotopic to ψ, e.g. via the path

[0, 1] ∋ s 7→ (1− s)ψ̃ + sψ

|(1− s)ψ̃ + sψ|
.

Thus, concatenating the family t 7→ (ut,∇t) with (ψt, d− iψ∗
t (dθ)), for a homotopy ψt from

ψ̄ to ψ, we get a family in Cλ with the same energy, as desired. □

Now, consider a small ϵ ∈ (0, δ) such that

(5.25) Eϵ(λ) ≤ Λ + δ < Λ + 1.

By Lemma 5.6 and Remark 5.7, we can find a family [0, 1] ∋ t 7→ (ut,∇t = d − iαt) in

Cλ ⊂ C0([0, 1], X̂) such that |ut| ≤ 1,

(5.26) max
t∈[0,1]

Eϵ(ut,∇t) ≤ Eϵ(λ) + ϵ ≤ Λ + 2,

and

(5.27) max
t∈[0,1], r≥ϵ, p∈M

r2−n
∫
Br(p)

eϵ(ut,∇t) ≤ C0(M,Λ).

Now, by the continuity of the path t 7→ (ut,∇t = d− iαt) in X̂, we may select a finite
sequence of times

0 = t0 < t1 < · · · < tN=3k = 1

such that
∥uti+1 − uti∥W 1,2(M) + ∥αti+1 − αti∥W 1,2(M) < δ.

In what follows, we write ui = uti and αi = αti . Suppose now that ϵ < ϵ0(M,Λ+ 2, δ, C0) as
in Lemma 5.8, and for each i = 1, . . . , N = 3k, let

vi ∈W 1,p(M,S1) and ϕi :M → S1

be as in the conclusion of Lemma 5.8, so that

∥ui − vi∥L1(M) ≤ δ,

and

(5.28) ∥d(ϕ−1
i vi)∥Lp(M) ≤ C(p,M,Λ)



36 D. PARISE, A. PIGATI, AND D. STERN

for p ∈ (1, n
n−1), while

M(J(vi)) ≤ Λ + 2δ,

together with

max
r≥δ, p∈M

∥J(vi)∥(Br(p))
rn−2

≤ 2C0,

and

(5.29) ∥ϕ∗i (dθ)−Π(αi)∥L2(M) ≤ C(M).

In this way, we get a sequence

1 = v0, v1, . . . , vN = ψ in W 1,p(M,S1)

such that

∥vi+1 − vi∥L1(M) ≤ Cδ

and the integral (n− 2)-cycles Ti :=
1
2πJ(vi) satisfy

2πM(Ti) ≤ Λ + 2δ

and

max
r≥δ, p∈M

∥Ti∥(Br(p))
rn−2

≤ C0.

Moreover, for each i = 0, . . . , N − 1, the following holds.

Lemma 5.14. For p ∈ [1, n
n−1), there exists wi ∈W 1,p(M × [0, 1], S1) with boundary values

wi(x, 0) = vi(x), wi(x, 1) = vi+1(x),

satisfying

∥∂twi∥Lp(M×[0,1]) ≤ C(p)∥vi+1 − vi∥Lp(M) ≤ C(p)δ1/p

and

M(π∗[J(wi)]) ≤ C(p,M,Λ)δ1−1/p.

Proof. To begin, apply Lemma 5.10 with u = ϕ−1
i vi and v = ϕ−1

i vi+1, to obtain a map

w̃ ∈W 1,p(M × [0, 1]) which restricts to ϕ−1
i vi and ϕ

−1
i vi+1 on M × {0, 1}, and satisfies

∥∂tw̃∥Lp(M×[0,1]) ≤ C(p)∥ϕ−1
i (vi − vi+1)∥Lp(M) = C(p)∥vi+1 − vi∥Lp(M)

and

M(π∗[J(w̃)]) ≤ C

∫
M

|ϕ−1
i (vi − vi+1)|(|d(ϕ−1

i vi)|+ |d(ϕ−1
i vi+1)|)

≤ ∥vi − vi+1∥Lp′ (M)(∥d(ϕ
−1
i vi)∥Lp(M) + ∥d(ϕ−1

i vi+1)∥Lp(M)).

Now, we know that

∥vi − vi+1∥Lp′ (M) ≤ C(p)∥vi+1 − vi∥1−1/p
L1(M)

≤ C(p)δ1−1/p

and

∥d(ϕ−1
i vi)∥Lp(M) ≤ C(p,M,Λ),
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while

∥d(ϕ−1
i vi+1)∥Lp(M)

= ∥v∗i+1(dθ)− ϕ∗i (dθ)∥Lp(M)

≤ ∥d(ϕ−1
i+1vi+1)∥Lp(M) + ∥ϕ∗i+1(dθ)− ϕ∗i (dθ)∥Lp(M)

≤ C(p,M,Λ) + ∥ϕ∗i+1(dθ)−Π(αi+1)∥Lp(M) + ∥ϕ∗i (dθ)−Π(αi)∥Lp(M)

+ ∥Π(αi − αi+1)∥Lp(M)

≤ C(p,M,Λ),

which together with the preceding estimates gives

M(π∗[J(w̃)]) ≤ C(p,M,Λ)δ1−1/p.

Taking wi := ϕiw̃, one sees that wi satisfies the conclusions of the claim, since J(wi) = J(w̃)
and ∂twi = ϕi∂tw̃. □

In particular, by (5.20), we see that the (n− 1)-currents Γi :=
1
2ππ∗[J(wi)] ∈ In−1(M ;Z)

give fill-ins
∂Γi = Ti+1 − Ti

of small mass (taking p = n+1
n )

M(Γi) ≤ C(M,Λ)δ1/(n+1).

Thus, the sequence T0, T1, . . . , TN=3k defines a discrete family

β : I(1, k)0 → Zn−2(M ;Z)
with

m(β, r) ≤ C0r
n−2 for r ≥ δ,

together with

max
i

M(Ti) ≤
1

2π
(Λ + 2δ),

and
f(β) ≤ C(M,Λ)δ1/(n+1).

Moreover, for δ < δ0(M,Λ) sufficiently small, the class Ψ(β) ∈ Hn−1(M ;Z) associated to β
by Almgren’s isomorphism is given by

Ψ(β) := [Γ],

where
Γ :=

∑N−1
i=0 Γi.

Now, by Remark 5.12, we can identify Γ with the projected Jacobian

2πΓ = π∗[J(w0 ∗ w1 ∗ · · · ∗ wN−1)] = π∗[J(w)]

of the concatenated map w := w0 ∗ · · · ∗ wN−1 :M × [0, 1] → S1, which satisfies

w(x, 0) = 1 and w(x, 1) = ψ(x).

In particular, for any ζ ∈ Ωn−1(Mn), it follows that

2π⟨Γ, ζ⟩ =
∫
M×[0,1]

w∗(dθ) ∧ dζ +
∫
M
ψ∗(dθ) ∧ ζ.
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Hence, the action of Γ on closed (n − 1)-forms agrees with that of 1
2π

∫
M ψ∗(dθ) ∧ ·. In

particular, since there is no torsion in Hn−1(M ;Z), it follows that
[Γ] = [ψ−1{θ}] = λ ∈ Hn−1(M ;Z),

as desired.
That is, letting η(δ) := max{δ, Cδ1/(n+1)}, we see that β ∈ Aη(δ)(λ), so that

Wη(δ)(λ) ≤ max
i

M(Ti) ≤
1

2π
(Λ + 2δ) =

1

2π
lim inf
ϵ→0

Eϵ(λ) +
1

π
δ.

Finally, taking the limit as δ → 0 and using (5.6), we get the desired estimate (5.23).

5.6. Two-parameter families and the generator of π2(Zn−2(M ;Z),0). In this
subsection, we complete the proof of Theorem 5.5, establishing the inequality for the
two-parameter families

(5.30) lim inf
ϵ→0

Eϵ(C2) ≥ 2πW([M ]).

To begin, set
Λ := lim inf

ϵ→0
Eϵ(C2),

which is finite (see [52, Section 7]), and fix some small δ > 0. Again let L → M be the
trivial line bundle, and consider a two-parameter family

D̄2 ∋ y 7→ (uy,∇y = d− iαy)

belonging to C2 ⊂ C0(D̄2, X̂), so that

(uθ,∇θ) ≡ (θ, d) for all θ ∈ ∂D = S1.

Choose a small ϵ ∈ (0, δ) such that

Eϵ(C2) ≤ Λ + δ;

by Lemma 5.6 and the subsequent remark, we can select our family D̄ ∋ y 7→ (uy,∇y) in C2
such that |uy| ≤ 1,

max
y∈D̄

Eϵ(uy,∇y) ≤ Λ + 2δ,

and

max
y∈D̄, r≥δ, p∈M

r2−n
∫
Br(p)

eϵ(uy,∇y) ≤ C0(M,Λ).

Now, identifying D̄ with the square I2 = [0, 1]2 in the usual bi-Lipschitz way, by the

continuity of the family I2 ∼= D̄ ∋ y 7→ (uy,∇y) ∈ X̂, we can choose k sufficiently large that
the discrete assignment

I(2, k)0 ∋ a 7→ (ua,∇a) = (ua, d− iαa) ∈ X̂

satisfies
∥ua − ub∥W 1,2(M) + ∥αa − αb∥W 1,2(M) < δ

for any adjacent vertices a, b ∈ I(2, k)0. By Lemma 5.8, for each vertex a ∈ I(2, k)0, there
exist

va ∈W 1,p(M,S1) and ϕa :M → S1

such that
∥ua − va∥L1(M) ≤ δ
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and
∥d(ϕ−1

a va)∥Lp(M) ≤ C(p,M,Λ)

for p ∈ [1, n
n−1), while

M(J(va)) ≤ Λ + 2δ,

together with

max
r≥δ, p∈M

∥J(va)∥(Br(p))
rn−2

≤ 2C0,

and
∥ϕ∗a(dθ)−Π(αa)∥L2(M) ≤ C(M).

The following lemma, and its proof, is identical to Lemma 5.14.

Lemma 5.15. For each pair of adjacent vertices a, b ∈ I(2, k)0, there exists wa,b ∈
W 1,p(M × [0, 1], S1) satisfying the boundary conditions

wa,b(x, 0) = va(x) and wa,b(x, 1) = vb(x),

while for every p ∈ [1, n
n−1),

∥∂twa,b∥Lp(M×[0,1]) ≤ C(p)∥vb − va∥Lp(M) ≤ C(p)δ1/p,

and
M(π∗[J(wa,b)]) ≤ C(p,M,Λ)δ1−1/p.

Remark 5.16. If the vertices a, b lie on the boundary ∂I2, so that ua and ub are constant
maps to S1, then we take va = ua, vb = ub, and simply let wa,b be the geodesic interpolation
in S1 between the two constants.

In particular, for each pair of adjacent vertices a, b ∈ I(2, k)0, the (n− 1)-current

Γa,b :=
1

2π
π∗[J(wa,b)] ∈ In−1(M ;Z)

provides a small-mass fill-in
∂Γa,b = Tb − Ta

for the difference of the integral (n− 2)-cycles Ta := 1
2πJ(va); namely, taking p = n+1

n in the
preceding lemma, we have

M(Γa,b) ≤ C(M,Λ)δ
1

n+1 .

Thus, setting β(a) := Ta gives a discrete family

β : I(2, k)0 → Zn−2(M ;Z)
satisfying

m(β, r) ≤ C0r
n−2 for r ≥ δ,

together with

max
a∈I(2,k)0

M(Ta) ≤
1

2π
(Λ + 2δ),

and

f(β) ≤ C(M,Λ)δ
1

n+1 .

It remains to show that the homology class Ψ(β) ∈ Hn(M ;Z) associated to β by Almgren’s
isomorphism is the fundamental class [M ].
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For each 2-cell □ ∈ I(2, k)2 with vertices a, b, c, d (ordered counter-clockwise), let F :
M × ∂□ → S1 be the concatenation given by wa,b along the edge [a, b] of ∂□, wb,c on [b, c],
and so on. We apply Lemma 5.10 to interpolate between F and 1, obtaining an extension
F□ ∈W 1,p(M ×□, S1) ∩W 1,p(M × ∂□, S1) of the map F , so that

Ξ□ :=
1

2π
π∗[J(F□)] ∈ In(M ;Z)

has boundary

∂Ξ□ =
1

2π
π∗[J(F )] = Γa,b + Γb,c + Γc,d + Γd,a.

In particular, since ∥∂twa,b∥Lp(M×[a,b]) ≤ C(p)δ1/p = C(n)δn/(n+1) (and similarly for the
other edges), it follows from Lemma 5.13 that Ξ□ is the (unique) small-mass fill-in of
Γa,b + · · ·+ Γd,a, provided δ < δ0(M,Λ) is sufficiently small. In particular, we see that

Ψ(β) = [
∑

□∈I(2,k)2Ξ□] ∈ Hn(M ;Z).

By concatenating the maps F1 and F2 associated to adjacent boxes □1,□2 along the
shared edge, we obtain a map Φ = F1 ∗ F2 which satisfies

π∗[J(Φ)] = 2πΞ□1 + 2πΞ□2 .

In particular, concatenating all maps along each row of the grid, we obtain a column of
maps, which we may again concatenate to obtain finally a map

F ∈W 1,p(M × I2, S1) ∩W 1,p(M × ∂I2, S1)

for which

π∗[J(F )] = 2π
∑

□Ξ□.

On the other hand, it is clear from the construction that the restriction of F to M × ∂I2 has
the form

F (x, t) = h(t)

for a fixed homeomorphism h : ∂I2 → S1. In particular, it follows that

deg
(
F |{x}×∂I2

)
= 1

for all x ∈M , so that

2π
∑

□Ξ□ = π∗[J(F )] = 2π[M ],

by Lemma 5.13.
Thus, Ψ(β) = [M ], as desired, and again setting η(δ) := max{δ, Cδ1/(n+1)}, we see that

β ∈ Aη(δ)([M ]), and consequently

Wη(δ)([M ]) ≤ max
a∈I(2,k)0

M(Ta) ≤
1

2π
(Λ + 2δ) =

1

2π
lim inf
ϵ→0

Eϵ(C2) +
1

π
δ.

Taking the limit as δ → 0 and using (5.6), we then get the desired estimate (5.30), completing
the proof of Theorem 5.5.
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6. Huisken-type monotonicity along the gradient flow

In Lemma 5.6 of the previous section, we made use of the fact that a continuous family
of pairs y 7→ (uy,∇y) may be deformed to a family (u′y,∇′

y) with Eϵ(u
′
y,∇′

y) ≤ Eϵ(uy,∇y)

satisfying uniform bounds on the (n− 2)-energy densities r2−n
∫
Br(p)

eϵ(u
′
y,∇′

y) in terms of

the initial energies Eϵ(uy,∇y). We achieve this by showing that the natural L2 gradient
flow for these energies satisfies a variant of Huisken’s monotonicity formula [35] for the
codimension-two mean curvature flow. In addition to its applications above, the result may
be of independent interest, in that it provides strong evidence that these gradient flows
provide a regularization of the codimension-two Brakke flow—a relationship which we plan
to explore further in future work. We also show that this Eϵ-gradient flow satisfies long-time
existence and continuous dependence on initial data (the fact that we are working with the
abelian gauge group U(1) is of course crucial here).

6.1. Definition, Bochner identities, and bounds for the gradient flow. Let L→M
be the trivial line bundle over a closed, oriented Riemannian manifold (Mn, g). We will
assume n ≥ 3 throughout this section.

We will say that the smooth couples (ut,∇t = d − iαt)t∈[0,∞) solve the gradient flow
equations for Eϵ if they satisfy the coupled nonlinear heat equations{

∂tut = −∇∗
t∇tut +

1
2ϵ2

(1− |ut|2)ut,
∂tαt = −d∗dαt + ϵ−2⟨iut,∇tut⟩.

(6.1)

Note that they are formally the gradient flow of 1
2Eϵ with respect to the L2-scalar product

⟨(u, α), (v, β)⟩ =
∫
M
(⟨u, v⟩+ ϵ2⟨α, β⟩),

where u and v are sections, and α and β are one-forms. We defer the proof of long-time
existence, uniqueness and continuous dependence on initial data to the end of the section.
In what follows, we will also assume that the initial section u0 ∈ Γ(L) satisfies |u0| ≤ 1
pointwise.

Assuming the initial data (u0,∇0) satisfies the energy bound

(6.2) Eϵ(u0,∇0) ≤ Λ,

it is easy to see that we have

Eϵ(ut,∇t) ≤ Λ

for all t > 0, as the energy is decreasing along the flow. Similar to results for the stationary
case in [52] (and analogous work of Ilmanen for the parabolic Allen–Cahn equation in
codimension one [37]), a key ingredient in establishing the desired monotonicity result will
be bounding the discrepancy function

(6.3) ξt := ϵ|dαt| −
1− |ut|2

2ϵ

along the flow.
As in the stationary case [52, Section 3], it is straightforward to check that solutions of

(6.1) satisfy the following identities: letting

ωt := dαt
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and

ψ(ut,∇t)(ej , ek) := 2⟨i∇eju,∇eku⟩,
we have

(6.4) ϵ2(∂t +∆H)ωt = ψ(ut,∇t)− |ut|2ωt,
from which one obtains the parabolic Bochner identity

(6.5) −ϵ2(∂t + d∗d)
1

2
|ωt|2 = |ut|2|ωt|2 + ϵ2|Dωt|2 − ⟨ψ(ut,∇t), ωt⟩+ ϵ2R2(ωt, ωt),

where R2 denotes the Weitzenböck curvature operator for two-forms. Also,

(6.6) −(∂t + d∗d)
1

2
|ut|2 = |∇tut|2 −

1

2ϵ2
(1− |ut|2)|ut|2.

Remark 6.1. It is an easy consequence of (6.6) and the parabolic maximum principle that
|ut| ≤ 1 for all t > 0, for initial sections u0 satisfying |u0| ≤ 1.

By a combination of (6.5) and (6.6), similarly to [52], we find that the discrepancy function
in (6.3) satisfies the weak differential inequality

(6.7) −(∂t + d∗d+ ϵ−2|ut|2)ξt ≥ −C0(M)ϵ|ωt|.
Equivalently, writing

ξ̄t := e−C0tξt,

we have

(6.8) −(∂t + d∗d+ ϵ−2|ut|2)ξ̄t ≥ −C0e
−C0t 1− |ut|2

2ϵ
≥ −C0

2ϵ
(1− |ut|2).

Now, let K(t, x, y) be the heat kernel of M , so that

(∂t + d∗d)K(t, ·, y) = 0 and lim
t→0

K(t, ·, y) = δy.

Define then

φ(t, x) :=

∫
M
K(t, x, y)|ξ0|(y) dy

and

ψ(t, x) :=

∫ t

0

∫
M
K(t− s, x, y)

C0

2ϵ
(1− |us|2)(y) dy ds.

Thus, φ is the nonnegative solution of the heat equation −(∂t + d∗d)φ = 0, with initial
condition φ(0, x) = |ξ0(x)|. By Duhamel’s principle, ψ is the nonnegative solution of the
inhomogeneous heat equation

−(∂t + d∗d)ψ = −C0

2ϵ
(1− |ut|2),

with boundary data ψ(0, x) = 0. In particular, it follows from (6.8) that

(6.9) −(∂t + d∗d+ ϵ−2|ut|2)(ξ̄t − ψt − φt) ≥
|ut|2

ϵ2
(φt + ψt) ≥ 0,

while ξ0 − ψ0 − φ0 = ξ0 − |ξ0| ≤ 0. Hence, the parabolic maximum principle (for continuous
weak solutions) implies the pointwise bound

(6.10) ξ̄t ≤ φt + ψt.
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We now use the following well-known asymptotics for the heat kernel on a compact manifold
(see, e.g., [42]).

Proposition 6.2. Let Ω := {(x, y) ∈M ×M : d(x, y) < 1
2 inj(M)}. There exists a function

v0 : Ω → (0,∞) with v0(x, x) = 1 and such that

(4πt)n/2ed(x,y)
2/(4t)K(t, x, y) → v0(x, y)

uniformly on Ω, as t→ 0+ (while K(t, x, y) → 0 on the complement).

In particular, since |K(t, x, y)| ≤ C(τ,M) for any t ≥ τ > 0, one has∫
M
K(t, x, y)p dy ≤ C(p)max{t(1−p)n/2, 1}.

Since |ut| ≤ 1 by Remark 6.1, we have automatically∥∥∥1
ϵ
(1− |ut|2)

∥∥∥
L∞(M)

≤ 1

ϵ
and

∥∥∥1
ϵ
(1− |ut|2)

∥∥∥
L2(M)

≤ 2
√
Λ

for every t, and interpolating we see that∥∥∥1
ϵ
(1− |ut|2)

∥∥∥
Lq(M)

≤ C(M,Λ)ϵ(2−q)/q

for 2 ≤ q ≤ ∞. It follows that, for p ∈ (1, n
n−2) with Hölder conjugate q,

ψ(t, x) ≤
∫ t

0
∥K(t− s, x, y)∥Lp(M)Cϵ

(2−q)/q ds

≤ Cϵ(2−q)/q
∫ t

0
(t− s)

n(1−p)
2p ds

≤ C(p,M,Λ)ϵ(2−q)/q
( n
2p

− n− 2

2

)−1
t

n
2p

−n−2
2 ,

provided that q ≥ 2. In particular, taking p := n−1
n−2 and q := n− 1, we arrive at an estimate

of the form

ψ(t, x) ≤ C1(M,Λ)ϵ
3−n
n−1 t

n−2
2(n−1) .

Now, let

ηt := ξ̄t − φt ≤ ψt ≤ C1ϵ
3−n
n−1 t

n−2
2(n−1) ,

and setting

ft := ηt − C1ϵ
3−n
n−1 t

n−2
2(n−1) (1− |ut|2),

note that

ft ≤ C1ϵ
3−n
n−1 t

n−2
2(n−1) |ut|2

pointwise. On the other hand, recalling (6.8), note that ft satisfies

− (∂t + d∗d)ft

≥ |ut|2

ϵ2
ξ̄t −

C0

2ϵ
(1− |ut|2) + C1ϵ

3−n
n−1 t

n−2
2(n−1) (2|∇tut|2 − ϵ−2(1− |ut|2)|ut|2)

≥ |ut|2

ϵ2
ft −

C0

2ϵ
(1− |ut|2),
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and since |ut|2 ≥ cϵ
n−3
n−1 t

2−n
2(n−1) ft, it follows that on {f > 0} we have

−(∂t + d∗d)ft ≥ ϵ−2(cϵ
n−3
n−1 t

2−n
2(n−1) f2t − C0ϵ).

Note that f0 = ξ0 − |ξ0| ≤ 0. For any τ > 0, if f has a positive maximum on [0, τ ]×M at
some point (t, x) with t > 0, then the last weak subequation implies that here

cϵ
n−3
n−1 t

2−n
2(n−1) f2t − C0ϵ ≤ 0,

or equivalently

ft ≤ Cϵ
1

n−1 t
n−2

4(n−1) ≤ Cϵ
1

n−1 τ
n−2

4(n−1) .

The same inequality holds then on all of [0, τ ]×M . Since τ was arbitrary, we obtain

ft ≤ Cϵ
1

n−1 t
n−2

4(n−1)

for all t ≥ 0. Recalling the definitions of f , η, ξ̄ and φ, the preceding estimate tells us that

(6.11) ξt ≤ CeCt
(
φt + ϵ

1
n−1 + ϵ

2
n−1

1− |u|2

ϵ

)
,

where φ is the solution of the heat equation with initial data φ0 = |ξ0|, for a constant
C = C(M,Λ). Finally, noting that

φt ≤ C∥ξ0∥L1(M) ≤ C(M,Λ) for t ≥ 1,

it follows from the above that

(6.12) ξt ≤ CeCt(1 + ϵ
2

n−1

√
eϵ(ut,∇t)) for t ≥ 1.

6.2. Huisken-type monotonicity and (n− 2)-energy-density bounds. As above, let
(ut,∇t) be a solution of the gradient flow with Eϵ(u0,∇0) ≤ Λ and |u0| ≤ 1. Mimicking the
computations leading to Huisken’s monotonicity for the mean curvature flow [35], let us
introduce h(t, x), a positive solution of the backward heat equation

∂th = d∗dh

on [0, T )×M , with
∫
M h = 1. Write et := eϵ(ut,∇t) to lighten the notation and set

Φh(t) :=

∫
M
het.

Integration by parts combined with the gradient flow equations allows us to deduce that

Φ′
h(t) =

∫
M
(∂thet + h∂tet)

=

∫
M
[(d∗dh)et + h(2⟨∇u̇− iα̇u,∇u⟩+ 2ϵ2⟨dα̇, dα⟩ − ϵ−2(1− |u|2)⟨u, u̇⟩)]

=

∫
M
[⟨dh, det⟩ − 2h(|u̇|2 + ϵ2|α̇|2)− 2(⟨∇dhu, u̇⟩+ ϵ2dα(dh, α̇))]

(where we dropped the subscript t from ut, αt, u̇t, and α̇t). Next, recall from [52, Section 4]
the stress-energy tensor

Tϵ(u,∇) := eϵ(u,∇)g − 2∇u∗∇u− 2ϵ2dα∗dα,
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and note (cf. [52, Section 4]) that we have the identities

div(Tϵ) = 2⟨∇u,∇∗∇u⟩+ d
W (u)

ϵ2
+ 2ω(⟨iu,∇u⟩, ·)− 2ϵ2ω(d∗ω, ·)

= −2⟨∇u, u̇⟩ − 2ϵ2dα(·, α̇),

where the second equality follows from (6.1), and throughout we identify one-forms with
their metric dual vector fields. Since det = div(etg), we can now rewrite the term ⟨dh, det⟩
in our computation of Φ′

h(t) as

⟨dh, det⟩ = ⟨dh,div(Tϵ) + 2 div(∇u∗∇u+ ϵ2dα∗dα)⟩,

and apply the formula for div(Tϵ) to see that

Φ′
h(t) = 2

∫
M
⟨dh,div(∇u∗∇u+ ϵ2dα∗dα)⟩

− 2

∫
M
h(|u̇|2 + ϵ2|α̇|2)− 4

∫
M
(⟨∇dhu, u̇⟩+ ϵ2dα(dh, α̇))

= −2

∫
⟨D2h,∇u∗∇u+ ϵ2dα∗dα⟩

− 2

∫
M
(h|u̇+ h−1∇dhu|2 + ϵ2h|α̇+ h−1ιdhdα|2)

+ 2

∫
M
h−1(|∇dhu|2 + ϵ2|ιdhdα|2)

≤ −2

∫
⟨D2h,∇u∗∇u+ ϵ2dα∗dα⟩+ 2

∫
M
h−1(|∇dhu|2 + ϵ2|ιdhdα|2).

Now, setting

Pt := ∇u∗∇u+ ϵ2dα∗dα,

so that the stress-energy tensor Tϵ(u,∇) becomes simply eϵ(u,∇)g − 2Pt, we can rewrite the
preceding inequality as

(6.13) Φ′
h(t) ≤ −2

∫
M
⟨Pt, D2h− h−1dh⊗ dh⟩.

On the other hand, by Hamilton’s matrix Harnack estimate for the heat equation, see [29, p.
132], there exist constants C(M) and B(M) such that, for t ∈ [T − 1, T ),

D2h− dh⊗ dh

h
+

1

2(T − t)
hg ≥ −C[(1 + h log(B/(T − t)n/2)]g.

Applying this in (6.13), we see that for t ∈ [T − 1, T ) the following inequality holds:

Φ′
h(t) ≤

∫
M

( h

T − t
+ C + Ch log(B/(T − t)n/2)

)
⟨Pt, g⟩.
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Now, recalling (6.12), observe that

⟨Pt, g⟩ = |∇u|2 + 2ϵ2|dα|2

= et + ϵ2|dα|2 − (1− |u|2)2

4ϵ2

= et + ξt

(
ϵ|dα|+ 1

2ϵ
(1− |u|2)

)
≤ (1 + CeCtϵ

2
n−1 )et + CeCt

√
et

for t ≥ 1. In particular, setting αn := 2
n−1 , for T ∈ [2, 3] and t ∈ [T − 1, T ) it then follows

that

Φ′
h(t) ≤

1 + Cϵαn

T − t
Φh(t) +

C

T − t

∫
M
h
√
et + C

∫
M
et + C log(B/(T − t)n/2)Φh(t)

≤ 1 + C2ϵ
αn

T − t
Φh(t) +

C2

T − t
Φh(t)

1/2 + C2 + C2 log(B/(T − t)n/2)Φh(t)

for some C2(M,Λ), where we also used the trivial inequality ⟨Pt, g⟩ ≤ 2et. Thus, setting

Ψh(t) := (T − t)1+C2ϵαn
eζ(t)Φh(t),

where |ζ(t)| ≤ C(M,Λ) is the bounded function on [T − 1, T ) given by

ζ(t) := −
∫ t

1
C2 log(B/(T − s)n/2) ds,

we see that
Ψ′
h(t) ≤ C(T − t)−1/2Ψh(t)

1/2 + C

for t ∈ [T − 1, T ) ⊆ [1, 3). From this differential inequality, we can conclude that

(6.14) Ψh(t) ≤ C(M,Λ)(Ψh(T − 1) + 1),

for any t ∈ [T − 1, T ) ⊆ [1, 3).
Specializing, fix T ∈ [2, 3] and x0 ∈M , and let

h(t, x) = hT,x0(t, x) := K(T − t, x, x0),

where K is the heat kernel on M . Then, for t ∈ [T − 1, T ), the inequality in (6.14) leads to
an estimate of the form

(T − t)1+Cϵ
αn

∫
M
K(T − t, x, x0)eϵ(ut,∇t) dx

≤ C

∫
M
K(1, x, x0)eϵ(uT−1,∇T−1) + C

≤ CEϵ(uT−1,∇T−1) + C

≤ C(M,Λ).

In particular, taking t := 2 and T := 2 + δ2 for δ ∈ (0, 1], we see that

(6.15) δ2+2Cϵαn

∫
M
K(δ2, x, x0)eϵ(u2,∇2) dx ≤ C(M,Λ).

Since
inf

ϵ∈(0,1]
ϵ2Cϵ

αn
= c(M,Λ) > 0,
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it follows that

(6.16) max
ϵ≤δ≤1

(
δ2

∫
M
K(δ2, x, x0)eϵ(u2,∇2) dx

)
≤ C(M,Λ).

Finally, using again Lemma 6.2, it follows that

δ2−n
∫
Bδ(x0)

eϵ(u2,∇2) ≤ C(M,Λ) for ϵ ≤ δ ≤ 1.

Thus, we have arrived at the following bound.

Proposition 6.3. If (ut,∇t) is a solution of the gradient flow (6.1) for Eϵ with initial
energy bound Eϵ(u0,∇0) ≤ Λ, then at time 2 the pair (u2,∇2) satisfies

(6.17)

∫
Br(x0)

eϵ(u2,∇2) ≤ C(M,Λ)rn−2,

for all r ∈ [ϵ, 1] and x0 ∈M .

Since (u2,∇2) depends continuously on the initial couple (u0,∇0), this provides in
particular the regularization that we needed in the previous section.

Remark 6.4. Note that, in analogy with the monotonicity formula for critical couples, if we
just used the trivial bound ⟨Pt, g⟩ ≤ 2et we would have obtained

Φ′
h(t) ≤

2

T − t
Φh(t) + C + C log(B/(T − t)n/2)Φh(t),

leading to

(T − t)2
∫
M
hT,x0(t, ·)et ≤ C(M,Λ)

and hence a non-sharp bound Cδn−4 for the energy of (u2,∇2) on a ball Bδ(x0). This would
have sufficed for our present purposes (of ruling out concentration of mass in the min-max
families) only when n > 4.

6.3. Long-time existence of the gradient flow. In this last part we show long-term
existence, uniqueness and continuous dependence on initial conditions for the gradient flow
of Eϵ, on the trivial line bundle. To do so, it is convenient to pass to the Coulomb gauge.
Namely, given a smooth couple (u, α), we can always find a change of gauge

(6.18) (v, β) = (eiθu, α+ dθ) with d∗β = 0.

Indeed, it is enough to take a solution θ : M → R of d∗α + d∗dθ = 0, i.e., ∆Hθ = −d∗α.
The solution is unique once we impose

∫
M θ = 0.

In the sequel, we denote Q := −∆−1
H d∗ : Ω1(M) → Ω0(M) the corresponding operator,

with values into mean-zero functions. By standard elliptic regularity, this operator maps
Hk(M) continuously into Hk+1(M), for any k ∈ N.

Given a smooth solution (ut, αt) to the gradient flow equations, let θt = Qαt. Omitting

the time dependence and passing to the Coulomb gauge as in (6.18) we get θ̇ = ϵ−2Q⟨iu,∇u⟩.
Thus, setting ∇̃ := d− iβ = ∇− idθ, we obtain

β̇ = α̇+ dθ̇

= −d∗dα+ ϵ−2(⟨iu,∇u⟩+ dQ⟨iu,∇u⟩)

= −∆Hβ + ϵ−2(⟨iv, ∇̃v⟩+ dQ⟨iv, ∇̃v⟩),
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since by gauge invariance d∗dα = d∗dβ = ∆Hβ and ⟨iu,∇u⟩ = ⟨iv, ∇̃v⟩. Similarly,

v̇ = eiθu̇+ ieiθθ̇u

= −∇̃∗∇̃v + 1

2ϵ2
(1− |v|2)v + ϵ−2(Q⟨iv, ∇̃v⟩)iv.

Let P : Ω1(M) → Ω1(M) denote the Hodge projection on the co-closed part of a one-form.
Since −dQλ equals the exact part of λ, we have λ+ dQλ = Pλ for any λ ∈ Ω1(M). Thus,

expanding ∇̃∗∇̃ in terms of β, the equations (6.1) give the new system

(6.19)

{
v̇ + d∗dv = −2i⟨β, dv⟩ − |β|2v + 1

2ϵ2
(1− |v|2)v + ϵ−2(Q⟨iv, dv − iβv⟩)iv,

β̇ +∆Hβ = ϵ−2P ⟨iv, dv − iβv⟩.

Conversely, given a couple (u0, α0) and setting θ0 := Qα0, from a smooth solution (vt, βt)
of (6.19) with initial condition (eiθ0u0, α0 + dθ0) one recovers a smooth solution (ut, αt) to

the original system (6.1), by letting θ = θt solve θ̇t = ϵ−2Q⟨ivt, (d − iβt)vt⟩, and setting
(u, α) := (e−iθv, β − dθ).

Thus, we reduce ourselves to establishing the long-term existence, uniqueness and
continuous dependence for (6.19). We will use the following classical fact from the theory of
linear parabolic equations.

Lemma 6.5. Given ft ∈ Ωℓ(M) smooth on [0, T ]×M , with 0 < T ≤ 1, the (unique) solution
wt to ∂twt +∆Hwt = ft with initial condition w0 = 0 satisfies

∥w∥C0([0,T ],Hk+1(M)) ≤ C(k, ℓ,M)∥f∥L2([0,T ],Hk(M)),

where the norms are shorthand for maxt∈[0,T ] ∥wt∥Hk+1(M) and (
∫ T
0 ∥ft∥2Hk(M)

dt)1/2.

As a consequence, we get a well-defined operator

Tℓ,k : L
2([0, T ], Hk(M)) → C0([0, T ], Hk+1(M))

mapping f to w.
Using this lemma, short-time existence and uniqueness easily follow using the Banach

fixed-point theorem. Namely, fix an integer k > n
2 and, given a smooth initial condition

(v0, β0), let w
0 denote the constant couple w0

t = (v0, β0). For R > 0, the subset S of

YT := C0([0, T ], Hk+1(M)×Hk(M)),

given by the couples wt with initial value w0 = (v0, β0) and ∥w − w0∥YT ≤ R, forms a
complete metric space with the distance induced by YT . To any w = (v, β) ∈ S we can
associate the solution F (w) = (v′, β′) of{

v̇′ + d∗dv′ = −2i⟨β, dv⟩ − |β|2v + 1
2ϵ2

(1− |v|2)v + ϵ−2(Q⟨iv, dv − iβv⟩)iv,

β̇′ +∆Hβ
′ = ϵ−2P ⟨iv, dv − iβv⟩.

Denoting G(wt) and H(wt) the right-hand sides of the two equations, note that they belong
to C0([0, T ], Hk(M)), since Hk(M) is an algebra and P and Q map Hk(M) into itself. Hence,
F (w) ∈ YT is well-defined. For the same reason, letting R′ := R+ ∥v0∥Hk+1(M) + ∥β0∥Hk(M),

note that for a fixed t ∈ [0, T ] we have

∥G(w1
t )−G(w2

t )∥Hk(M) ≤ C(M,R′)∥w1
t − w2

t ∥Hk+1(M)×Hk(M)
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and similarly

∥H(w1
t )−H(w2

t )∥Hk(M) ≤ C(M,R′)∥w1
t − w2

t ∥Hk+1(M)×Hk(M),

whenever w1, w2 ∈ S. As a consequence, Lemma 6.5 gives

∥F (w1)− F (w2)∥YT ≤ C(M,R′)
√
T∥w1 − w2∥YT .

Hence, for T small enough, we have ∥F (w1)−F (w2)∥YT ≤ 1
2∥w

1−w2∥YT and, by continuity,

∥F (w0)− w0∥YT ≤ R/2; in particular,

∥F (w)− w0∥YT ≤ ∥F (w)− F (w0)∥YT + ∥F (w0)− w0∥YT ≤ R

for w ∈ S, and thus F (w) ∈ S as well. The Banach fixed-point theorem applies and gives
a unique w ∈ S with F (w) = w, as desired. Since R was arbitrary, this also establishes
uniqueness in this regularity class.

Let [0, T̄ ) be the maximal time of existence in the same class. From standard L2 regularity
theory for linear parabolic equations, it then follows that the solution (v, β) is smooth on
[0, T̄ )×M .

We shall now prove long-time existence of the flow. Assume by contradiction that T̄ <∞.
As we already saw in Section 6.1, the corresponding solution (u, α) to the original system
(6.1) satisfies

sup
[0,T̄ )×M

|dα| <∞.

In a similar fashion, we can derive a bound for |∇u|. Indeed, as in [52, Section 3], we have
the Bochner identity

− (∂t + dd∗)
1

2
|∇u|2 = |∇2u|2 + 3|u|2 − 1

2ϵ2
|∇u|2 − 2⟨ω, ψ(u,∇)⟩+R1(∇u,∇u)

and, in particular, using the bound |ψ(u,∇)| ≤ |∇u|2, we easily deduce the weak subequation

−(∂t + d∗d)|∇u| ≥ 3|u|2 − 1

2ϵ2
|∇u| − 2|ω||∇u| − C(M)|∇u|.

Recalling that

−(∂t + d∗d)
1− |u|2

ϵ
=

|u|2

ϵ2
1− |u|2

ϵ
− 2

ϵ
|∇u|2,

we obtain for the difference w := |∇u| − 1−|u|2
ϵ that

− (∂t + d∗d)w ≥ |u|2

ϵ2
w + |∇u|

(2
ϵ
|∇u| − 1− |u|2

2ϵ2
− 2|ω| − C(M)

)
.

For any 0 < τ < T̄ , if w attains a positive maximum on [0, τ ]×M at some point (t, x) with
t > 0, it then follows that here

2

ϵ
|∇u| ≤ 1− |u|2

2ϵ2
+ 2|ω|+ C(M).

Hence,

|∇u| ≤ 1

ϵ
+ sup

[0,T̄ )×M
w ≤ 2

ϵ
+ ϵ sup

[0,T̄ )×M
|ω|+ ϵ

2
C(M) + ∥∇0u0∥L∞(M)
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on all of [0, T̄ )×M . By gauge invariance, we then get

sup
[0,T̄ )×M

|dβ| <∞ and sup
[0,T̄ )×M

|dv − iβv| <∞.

In particular, the co-exact part of βt is also bounded. From (6.1) it follows that∫
M
(|u̇t|2 + ϵ2|α̇t|2) = −1

2

d

dt
Eϵ(ut, αt),

from which we deduce the bound
∫ T̄
0

∫
M |α̇|2 <∞ just by integrating the above expression.

In particular, α̇ ∈ L1([0, T̄ ], L2(M)), giving α ∈ C0([0, T̄ ], L2(M)). Thus, the harmonic part
αht in the Hodge decomposition of αt stays bounded. Since βht = αht and β has no exact
part, this implies that

sup
[0,T̄ )×M

|β| <∞.

Also, note that |v| = |u| ≤ 1 as a simple application of the maximum principle to the
equation satisfied by |u|2, provided |u0| ≤ 1, implying

sup
[0,T̄ )×M

|dv| <∞.

From Lp regularity theory (see, e.g., [61]), it follows that v, β ∈ Lp([0, T̄ ],W k,p(M)) for
all k ∈ N, 1 < p < ∞ and, hence, v and β extend smoothly to [0, T̄ ] ×M . Since we can
extend the solution past T̄ , we arrive at a contradiction. This shows that T̄ = ∞. Finally,
continuous dependence (in the smooth topology) on the initial condition for the system (6.1)
follows from the same property for (6.19), whose proof can be found for instance in [15, 47].
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