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Abstract. Given a Hermitian line bundle L → M over a closed, oriented Riemannian
manifold M , we study the asymptotic behavior, as ϵ → 0, of couples (uϵ,∇ϵ) critical
for the rescalings

Eϵ(u,∇) =

∫
M

(
|∇u|2 + ϵ2|F∇|2 + 1

4ϵ2
(1− |u|2)2

)
of the self-dual Yang–Mills–Higgs energy, where u is a section of L and ∇ is a Her-
mitian connection on L with curvature F∇.

Under the natural assumption lim supϵ→0 Eϵ(uϵ,∇ϵ) < ∞, we show that the energy
measures converge subsequentially to (the weight measure µ of) a stationary integral
(n− 2)-varifold. Also, we show that the (n− 2)-currents dual to the curvature forms
converge subsequentially to 2πΓ, for an integral (n− 2)-cycle Γ with |Γ| ≤ µ.

Finally, we provide a variational construction of nontrivial critical points (uϵ,∇ϵ)
on arbitrary line bundles, satisfying a uniform energy bound. As a byproduct, we
obtain a PDE proof, in codimension two, of Almgren’s existence result for (nontrivial)
stationary integral (n− 2)-varifolds in an arbitrary closed Riemannian manifold.

1. Introduction

A level set approach for the variational construction of minimal hypersurfaces was
born from the work of Modica–Mortola [30], Modica [29], and Sternberg [34]. Start-
ing from a suggestion by De Giorgi [12], they highlighted a deep connection between
minimizers uϵ :M → R of the Allen–Cahn functional

Fϵ(v) :=

∫
M

(
ϵ|dv|2 + 1

4ϵ
(1− v2)2

)
,

and two-sided minimal hypersurfaces in M , showing essentially that the functionals Fϵ
Γ-converge to (43 times) the perimeter functional on Caccioppoli sets. Several years
later, Hutchinson and Tonegawa [19] initiated the asymptotic study of critical points vϵ
of Fϵ with bounded energy, without the energy-minimality assumption. They showed,
in particular, that their energy measures concentrate along a stationary, integral (n−1)-
varifold, given by the limit of the level sets v−1

ϵ (0).
These developments, together with the deep regularity work by Tonegawa and Wick-

ramasekera on stable solutions [38], opened the doors to a fruitful min-max approach to
the construction of minimal hypersurfaces, providing a PDE alternative to the rather
involved discretized min-max procedure implemented by Almgren and Pitts [5, 31] in
the setting of geometric measure theory. This promising min-max approach based on
the Allen–Cahn functionals was recently developed by Guaraco and Gaspar–Guaraco
[16, 14], and has been used successfully to attack some profound questions concern-
ing the structure of min-max minimal hypersurfaces—most notably in Chodosh and
Mantoulidis’s work on the multiplicity one conjecture [11].
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The initial motivation for this paper is to find, in a similar vein, a natural way to
construct minimal varieties of codimension two through PDE methods. Recently, other
attempts in this direction have been made by Cheng [10] and the second-named author
[33], based on the study of the Ginzburg–Landau functionals

Fϵ(v) :=
1

| log ϵ|

∫
M

(
|dv|2 + 1

4ϵ2
(1− |v|2)2

)
on complex-valued maps v : M → C. While the Ginzburg–Landau approach can
be employed successfully to produce nontrivial stationary rectifiable (n − 2)-varifolds
(building on the analysis of [28], [8], and others), and leads to existence results of
independent interest for solutions of the Ginzburg–Landau equations, it is not yet known
whether the varifolds produced in this way are integral, nor is it known whether the
full energies Fϵ(vϵ) of the min-max critical points converge to the mass of the limiting
minimal variety in the case b1(M) ̸= 0.

While it is possible that these and other technical difficulties may be overcome with
sufficient effort—and establishing integrality in particular remains a fascinating open
problem—they point to the deeper fact that the Ginzburg–Landau functionals, though
intimately related to the (n − 2)-area, do not provide a straightforward regularization
of the codimension-two area functional. Indeed, we stress that the Ginzburg–Landau
energies should be understood first and foremost as a relaxation of the Dirichlet energy
for singular maps to S1, and while the limiting singularities of critical points may
coincide with minimal varieties, the associated variational problems exhibit substantial
qualitative differences at both large and small scales.

In the present paper, we consider instead the self-dual Yang–Mills–Higgs energy

(1.1) E(u,∇) :=

∫
M

(
|∇u|2 + |F∇|2 +W (u)

)
and its rescalings (for ϵ ∈ (0, 1])

(1.2) Eϵ(u,∇) :=

∫
M

(
|∇u|2 + ϵ2|F∇|2 + ϵ−2W (u)

)
,

for couples (u,∇) consisting of a section u of a given Hermitian line bundle L → M ,
and a metric connection ∇ on L. Here, the nonlinear potential W : L→ R is given by

(1.3) W (u) :=
1

4
(1− |u|2)2,

while F∇ ∈ Ω2(End(L)) denotes the curvature of ∇.
For the trivial bundle L = C × R2 on the plane M = R2, a detailed study of the

functional (1.1) and its critical points can be found in the doctoral work of Taubes
[35, 36]. In [36], all finite-energy critical points (u,∇) of (1.1) in the plane are shown
to solve the first order system1

(1.4) ∇∂1u± i∇∂2u = 0; ∗F∇ = ±1

2
(1− |u|2)

known as the vortex equations—a two-dimensional counterpart of the instanton equa-
tions in four-dimensional Yang–Mills theory. In particular, all such solutions (u,∇)

1Here and elsewhere, we implicitly identify F∇ with the two-form ω given by F∇(X,Y ) = −iω(X,Y ).
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minimize energy among pairs (u,∇) with fixed vortex number

N :=
1

2π

∫
R2

∗F∇ ∈ Z,

and carry energy exactly E(u,∇) = 2π|N |. In [35], Taubes shows moreover that there
exist solutions of (1.4) with any prescribed zero set

u−1(0) = {z1, . . . , zN} ⊂ R2,

which are unique up to gauge equivalence, so that [35] and [36] together give a complete
classification of finite-energy critical points of (1.1) in the plane.

In [18], Hong, Jost, and Struwe initiate the study of the rescaled functionals (1.2) in
the limit ϵ → 0 for line bundles L → Σ over a closed Riemann surface Σ. The main
result of [18] shows that, for solutions (uϵ,∇ϵ) of the rescaled vortex equations (given
by replacing 1

2(1 − |u|2) with 1
2ϵ2

(1 − |uϵ|2) in (1.4)), the curvature ∗ 1
2πF∇ϵ converges

as ϵ → 0 to a finite sum of Dirac masses of total mass | deg(L)|, away from which
∇ϵ converges to a flat connection ∇0, and uϵ to a unit section u0 with ∇0u0 = 0,
up to change of gauge. While the authors of [18] focus on the vortex equations over
Riemann surfaces, they suggest that the asymptotic analysis of the rescaled functionals
Eϵ may also yield interesting results in higher dimension, pointing to similarities with
the Allen–Cahn functionals for scalar-valued functions.

In the present paper, we develop the asymptotic analysis as ϵ→ 0 for critical points
of Eϵ associated to line bundles L → M over Riemannian manifolds Mn of arbitrary
dimension n ≥ 2. The bulk of the paper is devoted to the proof of the following theorem,
which describes the limiting behavior as ϵ→ 0 of the energy measures

µϵ :=
1

2π
eϵ(uϵ,∇ϵ) volg

and curvatures F∇ϵ for critical points (uϵ,∇ϵ) satisfying a uniform energy bound.

Theorem 1.1. Let L→M be a Hermitian line bundle over a closed, oriented Riemann-
ian manifold Mn of dimension n ≥ 2, and let (uϵ,∇ϵ) be a family of critical points for
Eϵ satisfying a uniform energy bound

Eϵ(uϵ,∇ϵ) ≤ Λ <∞.

Then, as ϵ→ 0, the energy measures

µϵ :=
1

2π
eϵ(uϵ,∇ϵ) volg

converge subsequentially, in duality with C0(M), to the weight measure µ of a stationary,
integral (n− 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(V ) = lim
ϵ→0

{|uϵ| ≤ δ}

in the Hausdorff topology. The (n − 2)-currents dual to the curvature forms 1
2πF∇ϵ

converge subsequentially to an integral (n− 2)-cycle Γ, with |Γ| ≤ µ.

As will be clear from the proofs, orientability will be assumed only to show the
statement concerning the current Γ.

Roughly speaking, Theorem 1.1 says that the energy of the critical points concen-
trates near the zero sets u−1

ϵ (0) of uϵ as ϵ → 0, which converge to a (possibly rather
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singular) minimal submanifold of codimension two. In the case dim(M) = 3, for in-
stance, it follows from the results above and work of Allard and Almgren [3] that energy
concentrates along a stationary geodesic network with integer multiplicities. The con-
vergence of the curvature, moreover, to an integral cycle Poincaré dual to c1(L), with
mass bounded above by limϵ→0Eϵ(uϵ,∇ϵ), provides a higher dimensional analog to the
limiting behavior described in two dimensions by Hong–Jost–Struwe [18].

At first glance, the obvious advantages of Theorem 1.1 over analogous results for
the complex Ginzburg–Landau equations (cf., e.g., [28, 8, 33]) are the integrality of the
limit varifold V , and the concentration of the full energy measure to V , independent
of the topology of M . Indeed, Theorem 1.1 and the analysis leading to its proof align
much more closely with the work of Hutchinson and Tonegawa [19] on the Allen–Cahn
equations than they do with related results (e.g. [28, 8]) for the complex Ginzburg–
Landau equations. The parallels between the analysis presented here and that of the
Allen–Cahn equations in [19] are in fact quite striking in places—a point to which we
will draw the reader’s attention throughout the paper.

Remark 1.2. We warn the reader, however, that while the qualitative analysis of the
Allen–Cahn functionals does not depend on the precise choice of the double-well po-
tential W , the analysis of the abelian Yang–Mills–Higgs functionals (1.1)–(1.2) seems
to depend quite strongly on the choice W (u) = 1

4(1 − |u|2)2. Indeed, already in two

dimensions, replacing W with a potential Wλ(u) :=
λ
4 (1−|u|2)2 for some λ ̸= 1 yields a

dramatically different qualitative behavior, breaking the symmetry which leads to the
first-order equations (1.4), and introducing interactions between disjoint components of
the zero set (see, e.g., [21, Chapters I–III]). This should serve as one indication that
the analysis of the abelian Higgs model is somewhat more delicate than that of related
semilinear scalar equations, in spite of the strong parallels.

To get some idea of the role played by gauge invariance, note that unit sections of a
Hermitian line bundle are indistinguishable up to change of gauge (when no preferred
connection has been selected) and, for a given unit section u of L, one can always
choose locally a connection with respect to which u appears constant. Thus, while most
of the energy of solutions vϵ to the complex Ginzburg–Landau equations falls on annular
regions—relatively far from the zero set—where vϵ resembles a harmonic S1-valued map,
the energy eϵ(uϵ,∇ϵ) of a critical pair (uϵ,∇ϵ) for the abelian Yang–Mills–Higgs energy
instead concentrates near the zero set u−1

ϵ (0), with |∇ϵuϵ| vanishing rapidly outside this
region.

Of course, the results of Theorem 1.1 would be of limited interest if nontrivial critical
points (uϵ,∇ϵ) could be found only in a few special settings. After completing the proof
of Theorem 1.1, we therefore establish the following general existence result, showing
that nontrivial families satisfying the hypotheses of Theorem 1.1 arise naturally on any
line bundle (including, importantly, the trivial bundle) over any Riemannian manifold
Mn, from variational constructions.

Theorem 1.3. For any Hermitian line bundle L → M over an arbitrary closed base
manifold Mn, there exists a family (uϵ,∇ϵ) satisfying the hypotheses of Theorem 1.1,
with nonempty zero sets u−1

ϵ (0) ̸= ∅. In particular, the energy µϵ of these families
concentrates (subsequentially) on a nontrivial stationary integral (n − 2)-varifold V as
ϵ→ 0.
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For nontrivial bundles L → M , this follows from a fairly simple argument, showing
that the minimizers (uϵ,∇ϵ) of Eϵ satisfy uniform energy bounds as ϵ → 0. For these
energy-minimizing solutions, we expect moreover that the limiting minimal variety µ =
θHn−2 Σ, i.e. the weight measure |V | of V , coincides with the weight measure |Γ| of
the limiting (n− 2)-cycle Γ = limϵ→0 ∗ 1

2πF∇ϵ , and that Γ minimizes (n− 2)-area in its
homology class. While we do not take up this question here, we believe that it would be
interesting to study the convergence of the functionals (1.2) to the (n−2)-area functional
in a Γ-convergence framework. Let us mention that an asymptotic study for minimizers
of the Ginzburg–Landau functional, on a domain with boundary, was successfully carried
out by Lin and Rivière [27], who were able to identify the concentration measure with
the weight of an integral current. (See also [1], [22] for related Γ-convergence results in
that setting.)

Remark 1.4. We remark that a very special class of minimizers for Eϵ are given by
solutions (uϵ,∇ϵ) of the first-order vortex equations in Kähler manifolds (M2n, ωK) of
higher dimension; these generalize the system (1.4) from the two-dimensional setting
by replacing ∗F∇ in (1.4) by the inner product ⟨F∇, ωK⟩ with the Kähler form ωK , and

requiring additionally that F 0,2
∇ = 0. As in the two-dimensional setting, solutions of

this first-order system minimize the energy Eϵ in appropriate line bundles on Kähler
manifolds, and it was shown by Bradlow2 [9] that the moduli space of solutions corre-
sponds to the space of complex subvarieties in M (of complex codimension one) via the
zero locus (uϵ,∇ϵ) 7→ u−1

ϵ (0).
In particular, the zero loci u−1

ϵ (0) in this case are already area-minimizing subvari-
eties, before passing to the limit ϵ → 0. Note that the analysis of the vortex equations
plays a key role in the study of Seiberg–Witten invariants of Kähler surfaces [39], and
a similar analysis figures crucially into Taubes’s work relating the Seiberg–Witten and
Gromov–Witten invariants of symplectic four-manifolds [37]. For a concise introduction
to the higher-dimensional vortex equations and connections to Seiberg–Witten theory,
we refer the interested reader to the survey [13] by Garćıa-Prada.

For the trivial bundle L ∼= C × M , we prove Theorem 1.3 by applying min-max
methods to the functionals (1.2), to produce nontrivial families (uϵ,∇ϵ) satisfying a
uniform energy bound as ϵ → 0. While we consider only one min-max construction in
the present paper, we remark that many more may be carried out in principle, due to
the rich topology of the space

M := {(u,∇) : 0 ̸≡ u ∈ Γ(C×M), ∇ a Hermitian connection}/G,
where G := Maps(M,S1) is the gauge group. Indeed, on a closed oriented manifold M ,
one can show that the homotopy groups πi(M) are given by

π1(M) ∼= H1(M ;Z), π2(M) ∼= Z, and πi(M) = 0 for i ≥ 3;

it may be of interest to note that these are isomorphic to the homotopy groups of the
space Zn−2(M ;Z) of integral (n− 2)-cycles in M , as computed by Almgren [4].

As an application of Theorem 1.3, we obtain a new proof of the existence of stationary
integral (n− 2)-varifolds in an arbitrary Riemannian manifold—a result first proved by

2The precise form of the energies considered by Bradlow in [9] differs slightly from the functionals
Eϵ considered here, but the analysis is essentially the same.
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Almgren in 1965 [5] using a powerful, but rather involved geometric measure theory
framework. As already mentioned, similar constructions for the Allen–Cahn equations
have been carried out successfully by Guaraco [16] and Gaspar–Guaraco [14], yielding
new proofs of the existence of minimal hypersurfaces of optimal regularity, and leading
to other recent breakthroughs in the min-max theory of minimal hypersurfaces (e.g.,
[11]).

In [11] and [16] (building on results of [38]), the stability properties of the min-max
critical points for the Allen–Cahn functionals play a central role in controlling the regu-
larity and multiplicity of the limit hypersurface. To obtain an improved understanding
of min-max families (uϵ,∇ϵ) and the associated minimal varieties in the abelian Higgs
setting, it would likewise be very interesting to refine the conclusions of Theorem 1.1
under the assumption that the families (uϵ,∇ϵ) satisfy a uniform Morse index bound as
ϵ→ 0. We hope to take up this line of investigation in future work.

1.1. Organization of the paper. In Section 2 we fix notation and record some basic
properties satisfied by critical pairs (u,∇) for the energies Eϵ.

In Section 3, we record some useful Bochner identities for the gauge-invariant quan-
tities |u|2, |F∇|2, and |∇u|2, and use them to establish an initial rough estimate on

ξϵ := ϵ|F∇| − (1−|u|2)
2ϵ , whose role should be compared to that of the discrepancy func-

tion in the Allen–Cahn setting. Under suitable assumptions on the curvature of M , the
fact that ξϵ ≤ 0 follows quickly from the aforementioned Bochner identities and the max-
imum principle. Without the curvature assumptions, some nontrivial additional work
is required to obtain the pointwise upper bound ξϵ ≤ C(M,Eϵ(u,∇)). This estimate is
the key ingredient to obtain the sharp (n− 2)-monotonicity of the energy, and relies on
the specific choice of coupling constants appearing in the self-dual Yang–Mills–Higgs
functionals.

In Section 4 we derive the stationarity equation for inner variations, from which an
obvious (n− 4)-monotonicity property of the energy follows rather immediately. Using
our rough initial bounds on ξϵ from Section 3, we deduce an intermediate (n − 3)-
monotonicity; we use this to reach the pointwise bound ξϵ ≤ C(M,Eϵ(u,∇)), from
which we finally infer the sharp (n− 2)-monotonicity.

In Section 5 we show that, similar to the Allen–Cahn setting, the energy density
eϵ(u,∇) decays exponentially away from the set u−1(0)—more precisely, away from
{|u|2 ≥ 1− βd} for some βd independent of ϵ.

Section 6, which constitutes the main part of the paper, contains an initial description
of the limiting varifold, showing that it is stationary, (n − 2)-rectifiable, and has a
lower density bound on the support. Then we establish its integrality with a blow-up
analysis, employing the estimates from the preceding sections to reduce the problem
to a statement for entire planar solutions, already contained in the work of Jaffe and
Taubes [21]. We then use this analysis to show that the level sets u−1

ϵ (0) converge to
the support of V in the Hausdorff topology, and conclude the section with a discussion
of the asymptotics for the curvature forms 1

2πF∇ϵ .
In Section 7, we show that Eϵ satisfies a variant of the Palais–Smale property on

suitable function spaces, allowing us to produce critical points via classical min-max
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methods. We provide a variational construction to get nontrivial critical points satisfy-
ing the assumptions of our main theorem, with energy bounded from above and below,
both for nontrivial and trivial line bundles.

Finally, the Appendix addresses the issue of showing regularity of critical points, as
obtained from Section 7, when they are read in a local or global Coulomb gauge.
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2. The Yang–Mills–Higgs equations on U(1) bundles

Let M be a closed, oriented Riemannian manifold, and let L → Mn be a complex
line bundle over M , endowed with a Hermitian structure ⟨·, ·⟩. Denote by W : L → R
the nonlinear potential

W (u) :=
1

4
(1− |u|2)2.

For a Hermitian connection ∇ on L, a section u ∈ Γ(L) and a parameter ϵ > 0, denote
by Eϵ(u,∇) the scaled Yang–Mills–Higgs energy

(2.1) Eϵ(u,∇) :=

∫
M

(
|∇u|2 + ϵ2|F∇|2 + ϵ−2W (u)

)
,

where F∇ is the curvature of ∇. Throughout, we will identify the curvature F∇ with a
closed real two-form ω via

(2.2) F∇(X,Y )u = [∇X ,∇Y ]u−∇[X,Y ]u = −iω(X,Y )u.

In computing inner products for two-forms, we follow the convention

|ω|2 =
∑

1≤j<k≤n
ω(ej , ek)

2 =
1

2

n∑
j,k=1

ω(ej , ek)
2(2.3)

with respect to a local orthonormal basis {ej}nj=1 for TM .

Note that Eϵ enjoys the U(1) gauge invariance

Eϵ(u,∇) = Eϵ(e
iθu,∇− idθ),

for any (smooth) θ :M → R. More generally, we have

Eϵ(u,∇) = Eϵ(φu,∇− iφ∗(dθ)),

for any φ :M → S1, identifying S1 with the unit circle in C.
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It is easy to check that the smooth pair (u,∇) gives a critical point for the energy
Eϵ, with respect to smooth variations, if and only if it satisfies the system

∇∗∇u =
1

2ϵ2
(1− |u|2)u,(2.4)

ϵ2d∗ω = ⟨∇u, iu⟩.(2.5)

We denote ∆H = dd∗ + d∗d the usual positive definite Hodge Laplacian on differential
forms and note that, in our convention, the adjoint to d : Ω1(M) → Ω2(M) is

(d∗ω)(ek) = −
n∑
j=1

(Dejω)(ej , ek).

Since the curvature form ω is closed, taking the exterior derivative of (2.5) gives

ϵ2(∆Hω)(ej , ek) = (d⟨∇u, iu⟩)(ej , ek)
= ⟨i∇eju,∇eku⟩ − ⟨i∇eku,∇eju⟩
+ ⟨iu, F∇(ej , ek)u⟩

= ψ(u)(ej , ek)− |u|2ω(ej , ek);

i.e.,

(2.6) ϵ2∆Hω = −|u|2ω + ψ(u),

where

ψ(u)(ej , ek) := 2⟨i∇eju,∇eku⟩.
For future reference, we record the simple bound

(2.7) |ψ(u)| ≤ |∇u|2.

To confirm (2.7), fix x ∈ M and note that the linear map ∇u(x) : TxM → Lx has a
kernel of dimension at least n − 2. Take an orthonormal basis {ej} of TxM such that
ej ∈ ker∇u(x) for j > 2. We compute at x that

|ψ(u)| = 2|⟨i∇e1u,∇e2u⟩| ≤ 2|∇e1u||∇e2u| ≤ |∇e1u|2 + |∇e2u|2,

which gives (2.7).

3. Bochner identities and preliminary estimates

From the equations (2.6) and (2.4), we apply the standard Bochner–Weitzenböck
formulas to obtain some identities which will play a central role in our analysis. For the
curvature two-form ω, it will be useful to record the Bochner identity

(3.1) ∆
1

2
|ω|2 = |Dω|2 + ϵ−2(|u|2|ω|2 − ⟨ψ(u), ω⟩) +R2(ω, ω),

where D is the Levi–Civita connection and R2 denotes the Weitzenböck curvature op-
erator for two-forms on the base Riemannian manifold M . For any δ > 0 we have

(|ω|2 + δ2)1/2∆(|ω|2 + δ2)1/2 + |D|ω||2 ≥ ∆
1

2
(|ω|2 + δ2) = ∆

1

2
|ω|2.
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Since |D|ω||2 ≤ |Dω|2, (3.1) implies

(|ω|2 + δ2)1/2∆(|ω|2 + δ2)1/2 ≥ ϵ−2(|u|2|ω|2 − ⟨ψ(u), ω⟩) +R2(ω, ω).

Dividing by (|ω|2 + δ2)1/2 and letting δ → 0, we obtain

(3.2) ∆|ω| ≥ ϵ−2(|u|2|ω| − |ψ(u)|)− |R−
2 ||ω|,

in the distributional sense (and classically on {|ω| > 0}). Note that, by (2.7), the
relation (3.2) also gives us the cruder subequation

(3.3) ∆|ω| ≥ ϵ−2|u|2|ω| − ϵ−2|∇u|2 − |R−
2 ||ω|.

For the modulus |u|2 of the Higgs field u, we record

(3.4) ∆
1

2
|u|2 = |∇u|2 − 1

2ϵ2
(1− |u|2)|u|2,

and observe that a simple application of the maximum principle yields the pointwise
bound

|u|2 ≤ 1 on M.

For the energy density |∇u|2 of the Higgs field u, we see that

∆
1

2
|∇u|2 = |∇2u|2 − ⟨∇(∇∗∇u),∇u⟩+ ⟨d∗ω, ⟨iu,∇u⟩⟩

− 2⟨ω, ψ(u)⟩+R1(∇u,∇u)

= |∇2u|2 − 2⟨ω, ψ(u)⟩+ 1

ϵ2
|⟨iu,∇u⟩|2

− 1

2ϵ2
(1− |u|2)|∇u|2 + 1

ϵ2
|⟨u,∇u⟩|2 +R1(∇u,∇u)

= |∇2u|2 + 1

2ϵ2
(3|u|2 − 1)|∇u|2 − 2⟨ω, ψ(u)⟩+R1(∇u,∇u),

where at p ∈M we let R1(∇u,∇u) = Ric(ei, ej)⟨∇eiu,∇eju⟩ and ∇2
ei,eju = ∇ei(∇eju),

for any local orthonormal frame {ei}ni=1 with Dei(p) = 0.
Next, we introduce the function

(3.5) ξϵ := ϵ|F∇| −
1

2ϵ
(1− |u|2),

and combine (3.3) with (3.4) to see that

∆ξϵ ≥ ϵ−1|u|2|ω| − ϵ−1|∇u|2 − ϵ|R−
2 ||ω|+ ϵ−1|∇u|2 − 1

2ϵ3
(1− |u|2)|u|2

≥ ϵ−2|u|2ξϵ − ϵ∥R−
2 ∥L∞ |ω|.

If R2 > 0, we can actually replace the term −ϵ∥R−
2 ∥L∞ |ω| with cϵ|ω|, for some positive

constant c = c(M); from a simple application of the maximum principle, in this case
we get ξϵ ≤ 0 everywhere on M , and consequently (cf. [21, Theorem III.8.1])

(3.6) ϵ2|F∇|2 ≤
W (u)

ϵ2
pointwise, provided R2 > 0 on M.

This balancing of the Yang–Mills and potential terms, which should be compared with
Modica’s gradient estimate in the asymptotic analysis of the Allen–Cahn equations
(cf. [19, Proposition 3.3]), will play a key role in our analysis, allowing us to upgrade
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the obvious (n− 4)-monotonicity typical of Yang–Mills–Higgs problems to the much
stronger (n− 2)-monotonicity d

dr (r
2−n ∫

Br
eϵ(u,∇)) ≥ 0.

Remark 3.1. We remark that the analog of the identity ∆ξϵ ≥ ϵ−2|u|2ξϵ−ϵ∥R−
2 ∥L∞ |ω|—

and, consequently, the sharp (n − 2)-monotonicity result—fails for choices of coupling
constants other than those corresponding to the self-dual Yang–Mills–Higgs functionals
considered here.

Without the positive curvature assumption, we may still employ the subequation

(3.7) ∆ξϵ ≥
|u|2

ϵ2
ξϵ − C(M)ϵ|F∇|,

to obtain strong estimates for the positive part ξ+ϵ of ξϵ. To begin, denote by G(x, y) the
nonnegative Green’s function for the Laplacian on M , unique up to additive constant,
so that ∆xG(x, y) =

1
vol(M) − δy, and set

(3.8) hϵ(x) :=

∫
M
G(x, y)ϵ|F∇|(y) dy ≥ 0,

so that

(3.9) ∆hϵ(x) =
1

vol(M)
∥ϵF∇∥L1 − ϵ|F∇|(x).

Taking C ′ to be the constant appearing in (3.7), for the difference ξϵ − C ′hϵ we then
have

∆(ξϵ − C ′hϵ) ≥
|u|2

ϵ2
(ξϵ − C ′hϵ) + C ′ |u|2

ϵ2
hϵ − C ′ ∥ϵF∇∥L1

vol(M)

≥ |u|2

ϵ2
(ξϵ − C ′hϵ)− C ′ ∥ϵF∇∥L1

vol(M)
.

(3.10)

Observe that the L1 norm of ξϵ − C ′hϵ is bounded by the energy:

∥ξϵ − C ′hϵ∥L1 ≤ ∥ξϵ∥L1 + C(M)∥hϵ∥L1

≤ ∥ξϵ∥L1 + C(M)∥ϵF∇∥L1

≤ C(M)Eϵ(u,∇)1/2.

(3.11)

(Where the constant C(M) may of course change from line to line.)
Integrating (3.10) against the positive part ζ := (ξϵ−C ′hϵ)

+ and bounding ∥ϵF∇∥L1 ≤
C(M)Eϵ(u,∇)1/2, we get∫

M
|dζ|2 ≤ −

∫
M

|u|2

ϵ2
ζ2 − C(M)Eϵ(u,∇)1/2

∫
M
ζ

≤ −C(M)Eϵ(u,∇)1/2
∫
M
ζ.

Applying (3.11), this gives ∥dζ∥L2 ≤ C(M)Eϵ(u,∇).
Thus, applying Moser iteration, namely integrating (3.10) against powers ζγ with

increasing exponents γ > 1, we deduce that

(3.12) ξϵ − C ′hϵ ≤ ζ ≤ C(M)Eϵ(u,∇)1/2.
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As a simple application of (3.12), we note that by definition (3.8) of hϵ and the
standard estimate (see, e.g., [7, Section 4.2])

G(x, y) ≤ C(M)d(x, y)2−n

if n ≥ 3 (or G(x, y) ≤ −C(M) log(d(x, y)) + C(M) if n = 2), we have the L∞ estimate

∥hϵ∥L∞ ≤ C(M)∥ϵF∇∥Ln−1

(with 2 replacing n−1 when n = 2). If n = 2, this inequality and (3.12) give a pointwise
bound

∥ξ+ϵ ∥L∞ ≤ C(M)∥ϵF∇∥L2 + C(M)Eϵ(u,∇)1/2 ≤ C(M)Eϵ(u,∇)1/2.

In the sequel, we assume n ≥ 3 and aim for a similar pointwise bound. We have

∥hϵ∥L∞ ≤ C(M)∥ϵF∇∥Ln−1 ≤ Cϵ∥F∇∥
n−3
n−1

L∞ ∥F∇∥
2

n−1

L2 .

Using this in (3.12), we compute at a maximum point for |F∇| to see that

∥ϵF∇∥L∞ − 1

2ϵ
(1− |u|2) = ξϵ ≤ C∥ϵF∇∥

n−3
n−1

L∞ Eϵ(u,∇)
1

n−1 + CEϵ(u,∇)1/2,

and, by an application of Young’s inequality, it follows that

(1− Cδ)∥ϵF∇∥L∞ ≤ 1

2ϵ
+ Cδ

3−n
2 Eϵ(u,∇)1/2

for any δ ∈ (0, 1). Taking δ = ϵ2/n, we arrive at the crude preliminary estimate

∥ϵF∇∥L∞ ≤ 1

1− Cϵ2/n

( 1

2ϵ
+ Cϵ3/nϵ−1Eϵ(u,∇)1/2

)
≤ 1

2ϵ
+
α(ϵ)

2ϵ
(1 + Eϵ(u,∇)1/2),

where α(ϵ) → 0 as ϵ→ 0.
Now, consider the function

f := ϵ|ω| − 1 + α(ϵ)(1 + Eϵ(u,∇)1/2)

2ϵ
(1− |u|2).

By virtue of the preceding estimate for ∥F∇∥L∞ , we then see that

f ≤ 1 + α(ϵ)(1 + Eϵ(u,∇)1/2)

2ϵ
|u|2

pointwise. Appealing once again to (3.4) and (3.3), we see that

∆f ≥ |u|2

ϵ2
f − Cϵ|F∇|,

so at a point where f achieves its maximum we have

|u|2

ϵ2
f ≤ Cϵ|F∇| ≤

C(1 + Eϵ(u,∇)1/2)

ϵ
.

On the other hand, we know that |u|2 ≥ ϵ
C(1+Eϵ(u,∇)1/2)

f everywhere, so the preceding

computations yield an estimate of the form

(max f)2

ϵ
≤ C(M,Eϵ(u,∇))

ϵ
,
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provided max f ≥ 0, and we deduce that f ≤ C(M,Eϵ(u,∇)) everywhere. Putting all
this together, we arrive at the following lemma.

Lemma 3.2. Let (u,∇) solve (2.4) and (2.5) on a line bundle L → M , and suppose
Eϵ(u,∇) ≤ Λ. Then there exist a constant C(M,Λ) and a function α(M,Λ, ϵ), with
α(ϵ) → 0 as ϵ→ 0, such that

(3.13) ξϵ ≤ α(ϵ)
(1− |u|2)

ϵ
+ C.

In the next section, we will improve the rough preliminary estimate of Lemma 3.2
to a uniform pointwise bound of the form ξϵ ≤ C(M,Λ), but this will require some
additional effort.

4. Inner variations and improved monotonicity

In this section, we derive the inner variation equation for solutions of (2.4)–(2.5), and
explore the scaling properties of the energy Eϵ(uϵ,∇ϵ) over balls of small radius. Under
the assumption that the curvature operator R2 appearing in (3.3) is positive-definite
(so that (3.6) holds), the analysis simplifies considerably, leading with little effort to the
desired monotonicity of the (n−2)-energy density. Without this curvature assumption,
more work is required, first building on the cruder estimates of the preceding section to
obtain a uniform pointwise bound for ξϵ.

Fixing notation, with respect to a local orthonormal basis {ei} for TM , define the
(0, 2)-tensors ∇u∗∇u and ω∗ω by

(∇u∗∇u)(ei, ej) := ⟨∇eiu,∇eju⟩,(4.1)

ω∗ω(ei, ej) :=

n∑
k=1

ω(ei, ek)ω(ej , ek).(4.2)

Note that tr(∇u∗∇u) = |∇u|2 and tr(ω∗ω) = 2|ω|2. Denote by eϵ(u,∇) the energy
integrand

eϵ(u,∇) := |∇u|2 + ϵ2|F∇|2 +
W (u)

ϵ2
.

The fact that dω = 0 reads

Dω(ei, ej) = Deiω(·, ej) +Dejω(ei, ·),

where D is the Levi–Civita connection of M . Using this identity, it is straightforward
to check that

deϵ(u,∇) = 2 div(∇u∗∇u) + 2⟨∇u,∇∗∇u⟩+ d
W (u)

ϵ2

+ 2ω(⟨iu,∇u⟩#, ·) + 2ϵ2 div(ω∗ω)− 2ϵ2ω((d∗ω)#, ·).

In particular, defining the stress-energy tensor Tϵ(u,∇) by

(4.3) Tϵ(u,∇) := eϵ(u,∇)g − 2∇u∗∇u− 2ϵ2ω∗ω,

for (u,∇) solving (2.4) and (2.5) it follows that

(4.4) div(Tϵ(u,∇)) = 0,
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meaning that
∑

i(DeiTϵ)(ei, ·) = 0. Integrating (4.4) against a vector field X on some
domain Ω ⊆M , we arrive at the usual inner-variation equation

(4.5)

∫
Ω
⟨Tϵ(u,∇), DX⟩ =

∫
∂Ω
Tϵ(u,∇)(X, ν),

where we identify Tϵ(u,∇) with a (1, 1)-tensor and denote by ν the outer unit normal
to Ω. Taking Ω = Br(p) to be a small geodesic ball of radius r about a point p ∈ M ,
and taking X = grad(12d

2
p), where dp is the distance function to p, (4.5) gives

r

∫
∂Br(p)

(eϵ(u,∇)− 2|∇νu|2 − 2ϵ2|ινω|2) =
∫
Br(p)

⟨Tϵ(u,∇), DX⟩

=

∫
Br(p)

⟨Tϵ(u), g⟩+
∫
Br(p)

⟨Tϵ(u), DX − g⟩

=

∫
Br(p)

(neϵ(u,∇)− 2|∇u|2 − 4ϵ2|F∇|2)

+

∫
Br(p)

⟨Tϵ(u), DX − g⟩.

Now, by the Hessian comparison theorem, we know that

|DX − g| ≤ C(M)d2p;

applying this in the relations above, we see that

r

∫
∂Br(p)

eϵ(u,∇) ≥ 2r

∫
∂Br(p)

(|∇νu|2 + ϵ2|ινω|2)

+

∫
Br(p)

(
(n− 2)|∇u|2 + (n− 4)ϵ2|F∇|2 + n

W (u)

ϵ2

)
− C ′(M)r2

∫
Br(p)

eϵ(u,∇).

Setting

(4.6) f(p, r) := eC
′r2
∫
Br(p)

eϵ(u,∇),

it follows from the computations above (temporarily throwing out the additional non-
negative boundary terms) that

(4.7)
∂f

∂r
≥ eC

′r2

r

∫
Br(p)

(
(n− 2)|∇u|2 + (n− 4)ϵ2|F∇|2 + n

W (u)

ϵ2

)
.

At this point, one easily observes that the right-hand side of (4.7) is bounded below by
n−4
r f(p, r), to obtain the monotonicity of the (n− 4)-energy density

∂

∂r
(r4−nf(p, r)) ≥ 0.

For general Yang–Mills and Yang–Mills–Higgs problems, this codimension-four energy
growth is well known to be sharp (cf., e.g., [32], [40]). For solutions of (2.4) and (2.5)
on Hermitian line bundles, however, we show now that this can be improved to (near-)
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monotonicity of the (n− 2)-density r2−nf(p, r) on small balls, which constitutes a key
technical ingredient in the proof of Theorem 1.1.

To begin, we rearrange (4.7), to see that

∂f

∂r
≥ n− 2

r
f(r) +

2eC
′r2

r

∫
Br(p)

(W (u)

ϵ2
− ϵ2|F∇|2

)
=
n− 2

r
f(r)− 2eC

′r2

r

∫
Br(p)

ξϵ

(
ϵ|F∇|+

1

2ϵ
(1− |u|2)

)
,

recalling the notation ξϵ := ϵ|F∇| − 1
2ϵ(1 − |u|2). Now, by Lemma 3.2, assuming

Eϵ(u,∇) ≤ Λ, we have the pointwise bound

ξϵ

(
ϵ|F∇|+

1

2ϵ
(1− |u|2)

)
≤ 2
(
C + α(ϵ)

1− |u|2

ϵ

)
eϵ(u,∇)1/2

≤ Ceϵ(u,∇)1/2 + Cα(ϵ)eϵ(u,∇).

Applying this in our preceding computation for ∂f
∂r , we deduce that

∂f

∂r
≥ n− 2

r
f(r)− eC

′r2

r

∫
Br(p)

Ceϵ(u,∇)1/2 − α(ϵ)
eC

′r2

r

∫
Br(p)

Ceϵ(u,∇)

≥ n− 2− Cα(ϵ)

r
f(r)− eC

′r2

r
Crn/2

(∫
Br(p)

eϵ(u,∇)
)1/2

≥ n− 2− C ′′α(ϵ)

r
f(r)− C ′′rn/2−1f(r)1/2

for some constant C ′′(M,Λ) and 0 < r < c(M). Taking ϵ sufficiently small, we arrive
next at the following coarse estimate for the (n− 3)-energy density, which we will then
use to establish an improved bound for ξϵ.

Lemma 4.1. For ϵ ≤ ϵm(M,Λ) sufficiently small, we have a uniform bound

(4.8) sup
0<r<inj(M)

r3−n
∫
Br(p)

eϵ(u,∇) ≤ C(M,Λ).

Proof. The statement is trivial if n = 2, 3, so assume n ≥ 4. In the preceding com-
putation, take ϵ ≤ ϵm(M,Λ) sufficiently small that C ′′α(ϵ) < 1

2 . Then the estimate
gives

f ′(r) ≥ n− 2− 1/2

r
f(r)− C ′′rn/2−1f(r)1/2,

from which it follows that, for 0 < r < c(M),

d

dr
(r3−nf(r)) ≥ r3−nf ′(r) + (3− n)r2−nf(r)

≥ r2−n
((
n− 5

2

)
f(r)− Crn/2f(r)1/2 + (3− n)f(r)

)
≥ r2−n

(1
2
f(r)− Crn/2f(r)1/2

)
.
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If r3−nf(r) has a maximum in (0, c(M)), it follows that f(r) ≤ Crn/2f(r)1/2 there, and
therefore r3−nf(r) ≤ Cr3 ≤ C. Obviously the desired estimate holds at r = 0 and
r = c(M), so (4.8) follows. □

With Lemma 4.1 in hand, we can now improve the bounds of Lemma 3.2 to a uniform
pointwise estimate, as follows.

Proposition 4.2. Let (u,∇) solve (2.4)–(2.5) on a line bundle L→M , with the energy
bound Eϵ(u,∇) ≤ Λ and ϵ ≤ ϵm. Then there is a constant C(M,Λ) such that

(4.9) ξϵ := ϵ|F∇| −
1

2ϵ
(1− |u|2) ≤ C(M,Λ).

Proof. We can assume n ≥ 3, as we already obtained the claim for n = 2 in Section 3.
Recall from that section the function

hϵ(x) :=

∫
M
G(x, y)ϵ|F∇|(y) dy,

where G is the nonnegative Green’s function on M . As discussed in Section 3, we can
deduce from (3.7) a pointwise estimate of the form

(4.10) ξϵ ≤ C(M)hϵ + C(M)Eϵ(u,∇)1/2.

Thus, to arrive at the desired bound (4.9), it will suffice to establish a pointwise bound
of the same form for hϵ.

To this end, recall again that G(x, y) ≤ C(M)d(x, y)2−n, so that by definition we
have

hϵ(x) ≤ C

∫
M
d(x, y)2−nϵ|F∇|(y) dy

≤ C

∫
M
d(x, y)2−neϵ(u,∇)1/2(y) dy

≤ C

∫
M
(d(x, y)−n+1/2 + d(x, y)3−n+1/2eϵ(u,∇)) dy,

where the last line is a simple application of Young’s inequality. Since the integral∫
M d(x, y)−n+1/2 dy is finite, it follows that

hϵ(x) ≤ C(M) + C(M)Λ + C(M)

∫ inj(M)

0
r3−n+1/2

(∫
∂Br(x)

eϵ(u,∇)
)
dr

= C(M,Λ) + C(M)

∫ inj(M)

0

d

dr

(
r−n+7/2

∫
Br(x)

eϵ(u,∇)
)
dr

+ (n− 7/2)C(M)

∫ inj(M)

0
r3−n−1/2

(∫
Br(x)

eϵ(u,∇)
)
dr

≤ C(M,Λ) + C(M)

∫ inj(M)

0
r3−n−1/2

(∫
Br(x)

eϵ(u,∇)
)
dr.
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On the other hand, by Lemma 4.1, we know that r3−n
∫
Br(x)

eϵ(u,∇) ≤ C(M,Λ) for

every r, so we see finally that

hϵ(x) ≤ C(M,Λ) + C(M,Λ)

∫ inj(M)

0
r−1/2 dr ≤ C(M,Λ),

as desired. □

Applying (4.9) in our original computation for f ′(r), we see now that

∂f

∂r
≥ n− 2

r
f(r)− 2eC

′r2

r

∫
Br(p)

ξϵ

(
ϵ|F∇|+

1

2ϵ
(1− |u|2)

)
≥ n− 2

r
f(r)− 2eC

′r2

r

∫
Br(p)

C(M,Λ)eϵ(u,∇)1/2

≥ n− 2

r
f(r)− C(M,Λ)r

n−2
2 f(r)1/2.

In fact, bringing in the extra boundary terms that we have been neglecting, and applying

Young’s inequality to the term r
n−2
2 f(r)1/2, we see that

∂f

∂r
≥ 2eC

′r2
∫
∂Br(p)

(|∇νu|2 + ϵ2|ινF∇|2)

+
n− 2

r
f(r)− Cr

n−2
2 f(r)1/2

≥ 2eC
′r2
∫
∂Br(p)

(|∇νu|2 + ϵ2|ινF∇|2)

+
n− 2

r
f(r)− Cf(r)− Crn−2.

With this differential inequality in place, a straightforward computation leads us finally
to one of our key technical theorems, the monotonicity formula for the (n− 2)-density.

Theorem 4.3. Let (u,∇) solve (2.4)–(2.5) on a Hermitian line bundle L→M , with an
energy bound Eϵ(u,∇) ≤ Λ. Then there exist positive constants ϵm(M,Λ) and Cm(M,Λ)
such that the normalized energy density

(4.11) Ẽϵ(x, r) := eCmrr2−n
∫
Br(x)

eϵ(u,∇)

satisfies

(4.12) Ẽ′
ϵ(r) ≥ 2r2−n

∫
∂Br(x)

(|∇νu|2 + ϵ2|ινF∇|2)− Cm,

for 0 < r < inj(M) and ϵ ≤ ϵm.

As a simple corollary of the monotonicity result (together with a pointwise bound
for |∇u| derived in the following section), we deduce that (u,∇) must have positive
(n− 2)-energy density wherever |u| is bounded away from 1.
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Corollary 4.4 (clearing-out). Let (u,∇) solve (2.4)–(2.5) on a line bundle L → M ,
with Eϵ(u,∇) ≤ Λ and ϵ ≤ ϵm. Given 0 < δ < 1, if

r2−n
∫
Br(x)

eϵ(u,∇) ≤ η(M,Λ, δ)

with x ∈M and ϵ < r < inj(M), then we must have |u(x)| > 1− δ.

Proof. For ϵ ≤ ϵm, Theorem 4.3 gives

ϵ2−n
∫
Bϵ(x)

eϵ(u,∇) ≤ C(M,Λ)η + C(M,Λ)r.

The gradient bound (5.3) in Proposition 5.1 of the following section gives |d|u|| ≤ Cϵ−1.
Hence, if |u(x)| ≤ 1 − δ then |u(y)| < 1 − δ

2 on Bϵδ/(2C)(x), so that 1 − |u(y)|2 ≥
1− |u(y)| > δ

2 . We deduce that

δ2

16
vol(Bϵδ/(2C)(x)) ≤

∫
Bϵ(x)

W (u) ≤ ϵ2
∫
Bϵ(x)

eϵ(u,∇) ≤ Cϵn(η + r).

Since vol(Bϵδ/(2C)(x)) is bounded below by c(M,Λ, δ)ϵn, we can choose η̃(M,Λ, δ) ≤
inj(M) so small that we get a contradiction if r, η ≤ η̃. On the other hand, if r > η̃ then

η̃2−n
∫
Bη̃(x)

eϵ(u,∇) ≤
( inj(M)

η̃

)n−2
η.

Hence, setting η :=
(

η̃
inj(M)

)n−2
η̃ ≤ η̃, we can reduce to the previous case (replacing r

with η̃), reaching again a contradiction. □

5. Decay away from the zero set

Again, let (u,∇) solve (2.4)–(2.5) on a line bundle L → M , with the energy bound
Eϵ(u,∇) ≤ Λ. In the preceding section, we obtained the pointwise estimate

(5.1) |F∇| ≤
1

2ϵ2
(1− |u|2) + 1

ϵ
C(M,Λ)

when ϵ ≤ ϵm. As a first step toward establishing strong decay of the energy away from
the zero set of u, we show in the following proposition that the full energy density

eϵ(u,∇) is controlled by the potential W (u)
ϵ2

.

Proposition 5.1. For (u,∇) as above, we have the pointwise estimates

(5.2) ϵ2|F∇|2 ≤ C(M,Λ)
W (u)

ϵ2
+ C(M,Λ)ϵ

and

(5.3) |∇u|2 ≤ C(M,Λ)
W (u)

ϵ2
+ C(M,Λ)ϵ2,

provided ϵ ≤ ϵd, for some ϵd = ϵd(M,Λ).
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Proof. To begin, let C1 = C1(M,Λ) be the constant from (5.1), and consider the function

f := ϵ|F∇| −
1 + 2C1ϵ

2ϵ
(1− |u|2) = ξϵ − C1 + C1|u|2.

Similar to the proof of Lemma 3.2, observe that C1|u|2 ≥ f pointwise, by (5.1), while
the computations from Section 3 give

∆f ≥ |u|2

ϵ2
f − C ′(M)ϵ|F∇|.

By (5.1) we have |F∇| ≤ 1
2ϵ2

+ C1
ϵ , so at a positive maximum for f it follows that

0 ≥ |u|2

ϵ2
f − C ′ϵ|F∇| ≥

f2

C1ϵ2
− C(M,Λ)

ϵ
,

so that

(max f)2 ≤ Cϵ

(provided max f ≥ 0), and consequently f ≤ Cϵ1/2 everywhere. As a consequence, at
any point, we have either f < 0, in which case

ϵ2|F∇|2 ≤ (1 + 2C1ϵ)
2W (u)

ϵ2
,

or f ≥ 0, in which case

ϵ2|F∇|2 ≤ 2f2 + 2(1 + 2C1ϵ)
2W (u)

ϵ2

≤ Cϵ+ 2(1 + 2C1ϵ)
2W (u)

ϵ2
.

In either scenario, we obtain a bound of the desired form (5.2).
To bound |∇u|2, recall from Section 3 the identity

(5.4) ∆
1

2
|∇u|2 = |∇2u|2 + 1

2ϵ2
(3|u|2 − 1)|∇u|2 − 2⟨ω, ψ(u)⟩+R1(∇u,∇u).

In view of the estimate (5.1) for |F∇| = |ω| and (2.7), we can estimate the term
2⟨ω, ψ(u)⟩ from above by

2|F∇||∇u|2 ≤
1

ϵ2
(1− |u|2)|∇u|2 + C

ϵ
|∇u|2,

to obtain the existence of C2(M,Λ) such that

∆
1

2
|∇u|2 ≥ |∇2u|2 + 1

2ϵ2
(5|u|2 − 3)|∇u|2 − C2

ϵ
|∇u|2.

For ∆|∇u|, this then gives

(5.5) ∆|∇u| ≥ 1

2ϵ2
(5|u|2 − 3)|∇u| − C2

ϵ
|∇u|.

Recalling once again the equation (3.4) for ∆1
2 |u|

2, we define

w := |∇u| − 1

ϵ
(1− |u|2),
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and observe that

∆w ≥ 1

2ϵ2
(5|u|2 − 3)|∇u| − C2

ϵ
|∇u|

+
2

ϵ
|∇u|2 − 1

ϵ3
|u|2(1− |u|2)

=
|u|2

ϵ2
w + |∇u|

(2
ϵ
|∇u| − 3

2

(1− |u|2)
ϵ2

− C2

ϵ

)
=

|u|2

ϵ2
w +

|∇u|
ϵ

(
2w +

1

2ϵ
(1− |u|2)− C2

)
.

We then have

(5.6) ∆w ≥ |u|2

ϵ2
w +

1

ϵ

(
w +

1

ϵ
(1− |u|2)

)(
2w +

1

2ϵ
(1− |u|2)− C2

)
.

If w has a positive maximum, it follows that

2w +
1

2ϵ
(1− |u|2) ≤ C2

at this maximum point; in particular, we deduce then that

|u|2 ≥ 1− 2C2ϵ

at this point, and see from (5.6) that here

0 ≥ 1− 2C2ϵ

ϵ2
w − 1

ϵ

(
w +

1

ϵ
(1− |u|2)

)
C2 ≥

1− 3C2ϵ

ϵ2
w − 2

C2
2

ϵ
.

If ϵ ≤ ϵd(M,Λ) is small enough, it follows that maxw ≤ Cϵ; as a consequence, we check
that

|∇u|2 ≤ C
W (u)

ϵ2
+ Cϵ2,

completing the proof of (5.3). □

As a simple consequence of the estimates in Proposition 5.1, we obtain the following
corollary.

Corollary 5.2. There exist constants 0 < βd(M,Λ) < 1 and C(M,Λ) such that, for
(u,∇) as above, we have

(5.7) ∆
1

2
(1− |u|2) ≥ 1

4ϵ2
(1− |u|2)− Cϵ2

on the set Zβd(u) := {|u|2 ≥ 1− βd}.

Proof. By the formula (3.4) for ∆1
2 |u|

2, we know that

∆
1

2
(1− |u|2) = 1

2ϵ2
|u|2(1− |u|2)− |∇u|2.

Combining this with the estimate (5.3) for |∇u|2, we then deduce the existence of a

constant Ĉ = Ĉ(M,Λ) such that

∆
1

2
(1− |u|2) ≥ |u|2 1

2ϵ2
(1− |u|2)− Ĉ

(1− |u|2)2

2ϵ2
− Cϵ2.
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By taking βd = βd(M,Λ) > 0 sufficiently small, we can arrange that

|u|2 − Ĉ(1− |u|2) ≥ 1− βd − Ĉβd ≥
1

2

on {|u|2 ≥ 1− βd}, from which the claimed estimate follows. □

Next, we employ the result of Corollary 5.2 to show that the quantity (1 − |u|2)
vanishes rapidly away from Zβd(u) (compare [21, Sections III.7–III.8]).

Proposition 5.3. Let (u,∇) be as before, with ϵ ≤ ϵd, and define the set

Zβd := {x ∈M : |u(x)|2 ≤ 1− βd},

where βd(M,Λ) is the constant provided by Corollary 5.2. Defining r :M → [0,∞) by

r(p) := dist(p, Zβ),

we have an estimate of the form

(5.8) (1− |u|2)(p) ≤ Ce−adr(p)/ϵ + Cϵ4

for some C = C(M,Λ) and ad = ad(M) > 0.

Proof. Fix a point p ∈ M , and let r = r(p) = dist(p, Zβ) as above. We can clearly

assume r(p) < 1
2 inj(M). On the ball Br(p), for some constant a = ad > 0 to be chosen

later, consider the function

φ(x) := e(a/ϵ)(dp(x)
2+ϵ2)1/2 ,

where dp(x) := dist(p, x). A straightforward computation then gives

∆φ =
a

ϵ
φ

(
(a/ϵ)d2p
d2p + ϵ2

−
d2p

(d2p + ϵ2)3/2

)

+
a

2ϵ
φ

∆d2p

(d2p + ϵ2)1/2

≤ a2

ϵ2
φ+

a

2ϵ
φ

∆d2p

(d2p + ϵ2)1/2

≤ a2 + C1a

ϵ2
φ

for some C1 = C1(M). Now, fix some constant c2 > 0 to be chosen later, and let

f :=
1

2
(1− |u|2)− c2φ.

Combining the preceding computation with (5.7), we see that, on Br(p),

∆f ≥ 1

4ϵ2
(1− |u|2)− C(M,Λ)ϵ2 − a2 + C1a

ϵ2
c2φ

=
1

2ϵ2
f +

1− 2a2 − 2C1a

2ϵ2
c2φ− C(M,Λ)ϵ2.
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Choosing a = ad(M) > 0 sufficiently small, we can arrange that 2a2 + 2C1a ≤ 1, so
that the above computation gives

(5.9) ∆f ≥ f

2ϵ2
− Cϵ2.

On the boundary of the ball ∂Br(p), it follows from definition of r = r(p) that
|u|2 ≥ 1− βd, and therefore

f(x) ≤ βd
2

− c2φ ≤ βd
2

− c2e
ar/ϵ on ∂Br(p).

Taking c2 := βde
−ar/ϵ, it then follows that f < 0 on ∂Br(p), so we can apply the

maximum principle with (5.9) to deduce that

f ≤ Cϵ4 in Br(p).

Evaluating at p, this gives

Cϵ4 ≥ f(p) =
1

2
(1− |u|2)(p)− βde

−ar(p)/ϵea,

so that

(1− |u|2)(p) ≤ C(M,Λ)e−ar(p)/ϵ + C(M,Λ)ϵ4,

as desired. □

Combining these estimates with those of Proposition 5.1, we arrive immediately at
the following decay estimate for the energy integrand eϵ(u,∇).

Corollary 5.4. Defining Zβd and r(p) = dist(p, Zβd) as in Proposition 5.3, there exist
ad(M) > 0 and Cd(M,Λ) such that

(5.10) eϵ(u,∇)(p) ≤ Cd
e−adr(p)/ϵ

ϵ2
+ Cdϵ.

6. The energy-concentration varifold

This section is devoted to the proof of the main result of the paper, which we recall
now.

Theorem 6.1. Let (uϵ,∇ϵ) be a family of solutions to (2.4)–(2.5) satisfying a uniform
energy bound Eϵ(uϵ,∇ϵ) ≤ Λ as ϵ→ 0. Then, as ϵ→ 0, the energy measures

µϵ :=
1

2π
eϵ(uϵ,∇ϵ) volg

converge subsequentially, in duality with C0(M), to the weight measure of a stationary,
integral (n− 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(V ) = lim
ϵ→0

{|uϵ| ≤ δ}

in the Hausdorff topology. The (n− 2)-currents dual to the curvature forms 1
2πωϵ con-

verge subsequentially to an integral (n− 2)-cycle Γ, with |Γ| ≤ µ.
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6.1. Convergence to a stationary rectifiable varifold.
Let (uϵ,∇ϵ) be as in Theorem 6.1, and pass to a subsequence ϵj → 0 such that the

energy measures µϵj converge weakly-* to a limiting measure µ, in duality with C0(M).
Note that, for 0 < r < R < inj(M), Theorem 4.3 yields

eCRR2−nµ(BR(x)) + CR ≥ lim sup
ϵ→0

eCRR2−nµϵ(BR(x)) + CR

≥ lim inf
ϵ→0

eCrr2−nµϵ(Br(x)) + Cr

≥ eCrr2−nµ(Br(x)) + Cr

with C = Cm, so approximating R with smaller radii we deduce

eCRR2−nµ(BR(x)) + CR ≥ eCrr2−nµ(Br(x)) + Cr,(6.1)

and in particular the (n− 2)-density

Θn−2(µ, x) := lim
r→0

(ωn−2r
n−2)−1µ(Br(x))

is defined. As a first step toward the proof of Theorem 6.1, we show that this density
is bounded from above and below on the support spt(µ).

Proposition 6.2. There exists a constant 0 < C = C(M,Λ) <∞ such that

(6.2) C−1 ≤ r2−nµ(Br(x)) ≤ C for x ∈ spt(µ), 0 < r < inj(M),

and thus C−1 ≤ Θn−2(µ, x) ≤ C for all x ∈ spt(µ).

Proof. The upper bound follows from (6.1), which gives (when R = inj(M))

r2−nµ(Br(x)) ≤ eCmrr2−nµ(Br(x)) + Cmr

≤ C(M,Λ)µ(M) + C(M,Λ) inj(M)

≤ C(M,Λ).

To see the lower bound, let βd = βd(M,Λ) ∈ (0, 1) be the constant given by Corollary
5.4, and again set

Zβ(uϵ) := {x ∈M : |uϵ(x)|2 ≤ 1− β}.
Let Σ be the set of all limits x = limϵ xϵ, with xϵ ∈ Zβd(uϵ); that is, take

Σ :=
⋂
η>0

⋃
0<ϵ<η

Zβd(uϵ).

We then claim that

(6.3) spt(µ) ⊆ Σ

and

(6.4) µ(Br(x)) ≥ c(M,Λ)rn−2 for x ∈ Σ, 0 < r < inj(M).

Once both (6.3) and (6.4) are established, the lower bound in (6.2) follows immediately.
To establish (6.3), fix some p ∈M\Σ; by definition of Σ, there must exist δ = δ(p) > 0

such that

dist(p, Zβd(uϵ)) ≥ 2δ
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for all ϵ sufficiently small. Applying Corollary 5.4 for all x ∈ Bδ(p), we deduce that

µ(Bδ(p)) ≤ lim inf
ϵ→0

1

2π

∫
Bδ(p)

eϵ(uϵ,∇ϵ)

≤ lim
ϵ→0

∫
Bδ(p)

(Cϵ−2e−aδ/ϵ + Cϵ)

= 0.

In particular, p ∈M \ spt(µ), confirming (6.3).
To see (6.4), let x ∈ Σ. Note that, by definition of Σ, there exist points xϵ ∈ Zβd(uϵ)

with xϵ → x as ϵ→ 0 (along a subsequence). We then see that

|uϵ(xϵ)|2 ≤ 1− βd

and Corollary 4.4 gives c(M,Λ) such that

µϵ(Br(xϵ)) ≥ c(M,Λ)rn−2

for ϵ < r < inj(M). Since for any δ > 0 we have Br(xϵ) ⊆ Br+δ(x) eventually, it follows
that µ(Br+δ(x)) ≥ crn−2, hence

µ(Br(x)) ≥ crn−2

for 0 < r < inj(M), which is (6.4). □

With Proposition 6.2 in place, we will invoke a result by Ambrosio and Soner [6] to
conclude that the limiting measure µ = limϵ→0 µϵ coincides with the weight measure of
a stationary, rectifiable (n− 2)-varifold. Recall from Section 4 the stress-energy tensors

Tϵ = eϵ(uϵ,∇ϵ)g − 2∇ϵu
∗
ϵ∇ϵuϵ − 2ϵ2F ∗

∇ϵ
F∇ϵ .

We record first the following lemma; in its statement, we canonically identify (and pair
with each other) tensors of rank (2, 0), (1, 1), and (0, 2), using the underlying metric g.

Lemma 6.3. As ϵ→ 0, the tensors Tϵ converge (subsequentially) as Sym(TM)-valued
measures, in duality with C0(M, Sym(TM)), to a limit T satisfying

(6.5) ⟨T,DX⟩ = 0 for all vector fields X ∈ C1(M,TM),

(6.6)
1

2π
⟨T, φg⟩ ≥ (n− 2)⟨µ, φ⟩ for every 0 ≤ φ ∈ C0(M),

and

(6.7) −
∫
M

|X|2 dµ ≤ 1

2π
⟨T,X ⊗X⟩ ≤

∫
M

|X|2 dµ for all X ∈ C0(M,TM).

Proof. For each ϵ > 0, note that, by definition of Tϵ, for every continuous vector field
X ∈ C0(M,TM) we have∫

M
⟨Tϵ, X ⊗X⟩ =

∫
M
eϵ(uϵ,∇ϵ)|X|2 −

∫
M

2|(∇ϵ)Xuϵ|2 −
∫
M

2ϵ2|ιXF∇ϵ |2.

Evaluating (2.3) in an orthonormal basis such that X is a multiple of e1, we see that
|ιXF∇ϵ |2 ≤ |F∇ϵ |2|X|2, while |(∇ϵ)Xuϵ|2 ≤ |∇ϵuϵ|2|X|2. We deduce that

(6.8) −
∫
M

|X|2eϵ(uϵ,∇ϵ) ≤
∫
M
⟨Tϵ, X ⊗X⟩ ≤

∫
M
eϵ(uϵ,∇ϵ)|X|2.
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As an immediate consequence, we see that the uniform energy bound Eϵ(uϵ,∇ϵ) ≤ Λ
gives a uniform bound on ∥Tϵ∥(C0)∗ as ϵ → 0, so we can indeed extract a weak-*

subsequential limit T ∈ C0(M, Sym(TM))∗, for which (6.7) follows from (6.8).
The stationarity condition (6.5) for the limit T follows from (4.5). It remains to

establish the trace inequality (6.6). For this, we simply compute, for nonnegative φ ∈
C0(M),∫

M
⟨Tϵ, φg⟩ =

∫
M
φ(neϵ(uϵ,∇ϵ)− 2|∇ϵuϵ|2 − 4ϵ2|F∇ϵ |2)

=

∫
M
(n− 2)φeϵ(uϵ,∇ϵ) + 2

∫
M
φ
(W (uϵ)

ϵ2
− ϵ2|F∇ϵ |2

)
≥ 2π(n− 2)⟨µϵ, φ⟩ − 4π

∫
M
φeϵ(uϵ,∇ϵ)

1/2
(
ϵ|F∇ϵ | −

(1− |uϵ|2)
2ϵ

)+
.

Recalling from Proposition 4.2 that

ϵ|F∇ϵ | −
(1− |uϵ|2)

2ϵ
≤ C(M,Λ),

we then see that

⟨T, φg⟩ = lim
ϵ→0

∫
M
⟨Tϵ, φg⟩ ≥ 2π(n− 2)⟨µ, φ⟩ − C lim

ϵ→0

∫
M
φeϵ(uϵ,∇ϵ)

1/2.

In particular, (6.6) will follow once we show that limϵ→0

∫
M eϵ(uϵ,∇ϵ)

1/2 = 0.
But this is straightforward: from Proposition 6.2 we know that for 0 < δ < inj(M)

we have

µ(Bδ(x)) ≥ c(M,Λ)δn−2 for x ∈ Σ = spt(µ).

Since vol(B5δ(x)) ≤ C(M)δn, a simple Vitali covering argument then implies that the
δ-neighborhood Bδ(Σ) of Σ satisfies a volume bound

vol(Bδ(Σ)) ≤ C(M,Λ)δ2.

With this estimate in hand, we then see that∫
M
eϵ(uϵ,∇ϵ)

1/2 =

∫
Bδ(Σ)

eϵ(uϵ,∇ϵ)
1/2 +

∫
M\Bδ(Σ)

eϵ(uϵ,∇ϵ)
1/2

≤ vol(Bδ(Σ))
1/2Λ1/2 + C(M)µϵ(M \Bδ(Σ))1/2.

Fixing δ and taking the limit as ϵ→ 0, we have µϵ(M \Bδ(Σ)) → 0. Since vol(Bδ(Σ)) ≤
Cδ2, we find that

lim sup
ϵ→0

∫
M
eϵ(uϵ,∇ϵ)

1/2 ≤ CδΛ1/2.

Finally, taking δ → 0, we conclude that
∫
M eϵ(uϵ,∇ϵ)

1/2 → 0 as ϵ → 0, completing the
proof. □

Estimate (6.7) says that |T | is absolutely continuous with respect to µ, so by the
Radon–Nikodym theorem we can write the limiting Sym(TM)-valued measure T from
Lemma 6.3 as

(6.9)
1

2π
⟨T, S⟩ =

∫
M
⟨P (x), S(x)⟩ dµ(x)
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for some L∞ (with respect to µ) section P :M → Sym(TM). Moreover, it follows from
(6.6) and (6.7) that −g ≤ P (x) ≤ g and tr(P (x)) ≥ n − 2 at µ-a.e. x ∈ M , so that
1
2πT defines in a natural way a generalized (n−2)-varifold in the sense of Ambrosio and
Soner, namely a Radon measure on the bundle

An,n−2(M) := {S ∈ Sym(TM) : −ng ≤ S ≤ g, tr(S) ≥ n− 2}.(6.10)

We refer the reader to [6, Section 3]. Note that in [6] the authors work in the Euclidean
space and require the trace to be equal to n − 2 in (6.10); however, the main result
on generalized varifolds, namely [6, Theorem 3.8], still holds in our setting. Indeed, in

the proof of part (a) of that theorem, the condition
∑m+1

i=1 λi = m that the authors

obtain becomes
∑m+1

i=1 λi ≥ m in our setting (with m = n − 2), and the constraint
λi ≤ 1 still ensures the conclusion λi ≥ 0 for all i. Similarly, for part (b), the condition∑m

i=1 λi = m has to be replaced by
∑m

i=1 λi ≥ m, and this still implies λi = 1 for all
i = 1, . . . ,m.

Hence, in view of the stationarity condition (6.5) and the density bounds of Proposi-
tion 6.2, we can apply [6, Theorem 3.8(c)] to conclude that 1

2πT can be identified with
a stationary, rectifiable (n− 2)-varifold with weight measure µ (so, in particular, spt(µ)
is (n − 2)-rectifiable), and that P (x) is given µ-a.e. by the orthogonal projection onto
the (n − 2)-subspace Tx spt(µ) ⊂ TxM . We collect this information in the following
statement.

Proposition 6.4. For a family (uϵ,∇ϵ) satisfying the hypotheses of Theorem 6.1, after
passing to a subsequence, there exists a stationary, rectifiable (n − 2)-varifold V =
v(Σn−2, θ) such that

(6.11) lim
ϵ→0

1

2π

∫
M
⟨Tϵ(uϵ,∇ϵ), S⟩ =

∫
Σ
θ(x)⟨TxΣ, S(x)⟩ dHn−2

for every continuous section S ∈ C0(M,Sym(TM)). The energy measure µ is given by
µ = θHn−2 Σ. Also, we can choose Σ := spt(µ) and θ(x) := Θn−2(µ, x).

6.2. Integrality of the limit varifold and convergence of level sets.
We now show that the varifold V is integer rectifiable. Given x ∈ spt(µ) and s > 0,

we define Mx,s to be the ball of radius s−1 inj(M) in the Euclidean space (TxM, gx) and
define ιx,s :Mx,s →M by ιx,s(y) := expx(sy). We endow Mx,s with the smooth metric
gx,s := s−2ι∗x,sg, which converges locally smoothly to the Euclidean metric gx as s→ 0.

By rectifiability, for µ-a.e. x the dilated varifolds Vx,s := (ι−1
x,s)∗(V Binj(M)(x)) in

Mx,s satisfy

Vx,s ⇀ v(TxΣ,Θn−2(x))(6.12)

as s → 0, in duality with Cc(TxM). Fix x ∈ spt(µ) such that (6.12) holds. The
integrality of V will follow once we prove that Θ = Θn−2(µ, x) is an integer.

We can identify (TxM, gx) with Rn by a linear isometry such that TxΣ = {0}×Rn−2.
We also call µx,s the mass measure of Vx,s; equivalently,

µx,s := s2−n(ι−1
x,s)∗(µ Binj(M)(x)).
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With a diagonal selection, changing our sequence ϵ → 0 accordingly, we can find
scales sϵ → 0 such that we have the convergence of Radon measures

lim
ϵ→0

µ̂ϵ = lim
s→0

µx,s = ΘHn−2 TxΣ,

where (ûϵ, ∇̂ϵ) is the pullback of (usϵϵ,∇sϵϵ) by means of ιx,sϵ , and µ̂ϵ is the associated

energy measure. Note that (ûϵ, ∇̂ϵ) is stationary for Eϵ in the line bundle ι∗x,sϵL, with
respect to the base metric gx,sϵ . We introduce the notation

eTϵ (ûϵ, ∇̂ϵ) :=
n∑
i=3

(|(∇ϵ)∂i ûϵ|
2 + ϵ2|ι∂iF∇̂ϵ

|2).

Balls will be denoted by Br(y) or Bn
r (y), depending on whether they are with respect

to gx,sϵ or gRn , respectively. The volume |E| of a set E will be always understood with
respect to the Euclidean metric.

The next proposition, which exploits quantitatively the monotonicity formula, is sim-
ilar to an estimate in the proof of [26, Lemma 2.1].

Proposition 6.5. As ϵ→ 0 we have

lim
ϵ→0

∫
B2

2×B
n−2
2

eTϵ (ûϵ, ∇̂ϵ) = 0.

Proof. Let Cm be the constant in Theorem 4.3. We first note that, given y ∈ {0}×Rn−2,

lim
ϵ→0

µ̂ϵ(Br(y)) = Θωn−2r
n−2;

indeed, for any η > 0, Bn
r−η(y) ⊆ Br(y) ⊆ Bn

r+η(y) eventually. Setting yϵ := ιx,sϵ(y) ∈
M , we deduce that

lim
ϵ→0

(eCmsϵr(sϵr)
2−nµsϵϵ(Bsϵr(yϵ)) + Cmsϵr)

= lim
ϵ→0

(eCmsϵrr2−nµ̂ϵ(Br(y)) + Cmsϵr)

= Θωn−2.

(6.13)

Pick 3 ≤ i ≤ n and fix R > 0. Choosing y := −2Rei, we can apply (4.12) between
the radii sϵR and 3sϵR to obtain that∫

B3sϵR(pi)\BsϵR(pi)
d2−npi (|∇νR,iusϵϵ|

2 + s2ϵϵ
2|ινR,iF∇sϵϵ

|2)

≤ (eCm(3sϵR)(3sϵR)
2−nµsϵϵ(B3sϵR(pi)) + Cm(3sϵR))

− (eCm(sϵR)(sϵR)
2−nµsϵϵ(BsϵR(pi)) + Cm(sϵR)),

where pi := ιx,sϵ(−2Rei) and νR,i := grad dpi . Now (6.13) and the comparability of gx,sϵ
with gRn give

lim
ϵ→0

∫
B3R(−2Rei)\BR(−2Rei)

(|∇ν̃R,i
ûϵ|2 + ϵ2|ιν̃R,i

F∇̂ϵ
|2) = 0,
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where ν̃R,i is the gradient of the distance function d−2Rei , both with respect to the

metric gx,sϵ . Since eventually B3R(−2Rei) \ BR(−2Rei) includes B2
2 × Bn−2

2 for R big
enough, we get

lim
ϵ→0

∫
B2

2×B
n−2
2

(|∇ν̃R,i
ûϵ|2 + ϵ2|ιν̃R,i

F∇̂ϵ
|2) = 0.(6.14)

By monotonicity, as ϵ→ 0 we have

lim sup
ϵ→0

∫
B2

2×B
n−2
2

eϵ(ûϵ, ∇̂ϵ) ≤ lim sup
ϵ→0

s2−nϵ

∫
B5sϵ (x)

esϵϵ(usϵϵ,∇sϵϵ)

≤ C(M,Λ).

(6.15)

The smooth convergence gx,sϵ → gRn gives ν̃R,i(y) → YR,i(y) :=
y+2Rei
|y+2Rei| uniformly on

B2
2 ×Bn−2

2 . Hence, the bound (6.15) and (6.14) give

lim
ϵ→0

∫
B2

2×B
n−2
2

(|∇YR,i
ûϵ|2 + ϵ2|ιYR,i

F∇̂ϵ
|2) = 0.(6.16)

Now YR,i → ei = ∂i as R→ ∞, and the statement follows from (6.16) and the uniform
bound (6.15). □

We now state the main technical result of the section, which will be shown later.
Fix a cut-off function χ ∈ C∞

c (B2
2) with χ(z) = 1 for |z| ≤ 3

2 and 0 ≤ χ ≤ 1, and let
χ̂(z, t) := χ(z).

Proposition 6.6. There exists Fϵ ⊆ Bn−2
1 with |Fϵ| ≥ 1

4 |B
n−2
1 | such that

sup
t∈Fϵ

dist
(∫

R2×{t}
χ(z)eϵ(ûϵ, ∇̂ϵ)(z, t), 2πN

)
→ 0 as ϵ→ 0.(6.17)

Before giving the proof, let us see how this implies the integrality of V .

Proof of Theorem 6.1. As ϵ→ 0, we have both (6.17) and

lim
ϵ→0

1

2π

∫
R2×Bn−2

1

χ̂eϵ(ûϵ, ∇̂ϵ) = lim
ϵ→0

∫
R2×Bn−2

1

χ̂ dµ̂ϵ = ωn−2Θ,(6.18)

∫
R2×Bn−2

2

|dχ̂| dµ̂ϵ ≤ Cµ̂ϵ((B
2
2 \B2

1)×Bn−2
1 ) → 0,(6.19)

as µ̂ϵ ⇀ ΘHn−2 {0} × Rn−2.
In view of (6.15) and (6.19), for any vector field (Y 3, . . . , Y n) ∈ C∞

c (Bn−2
2 ,Rn−2) we

can integrate (4.4) against χ̂(
∑n

i=3 Y
i∂i) and obtain, in the Euclidean metric,∣∣∣ ∫

R2×Bn−2
2

χ̂⟨Tϵ(uϵ,∇ϵ), dY
i ⊗ ∂i⟩

∣∣∣ ≤ λϵ(∥Y ∥L∞ + ∥DY ∥L∞)

for some sequence λϵ → 0, thanks to the smooth convergence gx,sϵ → gRn .
Invoking Proposition 6.5 and noting that ∥Y ∥L∞ ≤ 2∥DY ∥L∞ , we can conclude that

the nonnegative function fϵ(t) :=
1
2π

∫
R2×{t} χ̂eϵ(ûϵ, ∇̂ϵ) satisfies∣∣∣ ∫

Bn−2
2

fϵ div(Y )
∣∣∣ ≤ λϵ∥DY ∥L∞



28 ALESSANDRO PIGATI AND DANIEL STERN

for a possibly different sequence λϵ → 0. Applying the Hahn–Banach theorem to the
subspace {DY | Y ∈ C∞

c (Bn−2
2 ,Rn−2)} ⊆ C0(B

n−2
2 ,Rn−2 ⊗ Rn−2) (C0 denoting the

closure of Cc), we can find real measures (νϵ)
i
j such that

∂jfϵ =
n∑
i=3

∂i(νϵ)
i
j for all j = 3, . . . , n

as distributions and |(νϵ)ij |(B
n−2
2 ) → 0. Allard’s strong constancy lemma [2, Theo-

rem 1.(4)] gives then ∥∥∥fϵ − 1

ωn−2

∫
Bn−2

1

fϵ

∥∥∥
L1(Bn−2

1 )
→ 0.

Since the sets Fϵ of Proposition 6.6 have positive measure, there clearly exists tϵ ∈ Fϵ
such that ∣∣∣fϵ(tϵ)− 1

ωn−2

∫
Bn−2

1

fϵ

∣∣∣ ≤ 1

|Fϵ|

∥∥∥fϵ − 1

ωn−2

∫
Bn−2

1

fϵ

∥∥∥
L1(Bn−2

1 )
→ 0.

Recalling (6.17), we deduce that

dist
( 1

ωn−2

∫
Bn−2

1

fϵ, 2πN
)
→ 0.

Hence, by (6.18), we get dist(Θ,N) = 0, which concludes the proof that V is integral. □

Proof of Proposition 6.6. Taking into account Proposition 6.5, the classical Hardy–

Littlewood weak-(1,1) maximal estimate (applied to the function t 7→
∫
B2

2×{t} e
T
ϵ (ûϵ, ∇̂ϵ))

gives

1

rn−2

∫
B2

2×B
n−2
r (t)

eTϵ (ûϵ, ∇̂ϵ) ≤ C(n)

∫
B2

2×B
n−2
2

eTϵ (ûϵ, ∇̂ϵ) → 0(6.20)

for all t ∈ Bn−2
1 \ Eϵ1 and 0 < r < 1, where Eϵ1 is a Borel set with |Eϵ1| ≤ 1

4 |B
n−2
1 |.

Similarly, (6.15) and (6.19) give

1

rn−2
µ̂ϵ(B

2
2 ×Bn−2

r (t)) ≤ C(M,Λ),(6.21)

1

rn−2
µ̂ϵ((B

2
2 \B2

1)×Bn−2
r (t)) ≤ C(n)µ̂ϵ((B

2
2 \B2

1)×Bn−2
2 ) → 0(6.22)

for t ∈ Bn−2
1 \ (Eϵ2 ∪ Eϵ3) and 0 < r < 1, with |Eϵ2|, |Eϵ3| ≤ 1

4 |B
n−2
1 |.

Pick any tϵ ∈ Bn−2
1 \ (Eϵ1 ∪ Eϵ2 ∪ Eϵ3) and, for 0 < r < 1, define

Vϵ(r) := {z ∈ B2
1 : dist((z, tϵ), Zβd/2(ûϵ)) < r}

(with the Euclidean distance), where Zβd/2(ûϵ) = {|ûϵ|2 ≤ 1 − βd/2}. In other words,
Vϵ is the tϵ-slice of the neighborhood Bn

r (Zβd/2(ûϵ)).

We claim that, for 0 < r < 1
2 , V

ϵ(r) satisfies a uniform area bound

|Vϵ(r)| ≤ C(M,Λ)r2,(6.23)

provided ϵ < r and ϵ is small enough. Indeed, Vϵ(r) × {tϵ} is covered by the balls
Bn
r (y) with y ∈ (B2

3/2 ×Bn−2
r (tϵ)) ∩ Zβd/2(ûϵ). Vitali’s covering lemma gives a disjoint
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collection {Bn
r (yj) | j ∈ J} such that Vϵ(r) × {tϵ} ⊆

⋃
j B

n
5r(yj). By Corollary 4.4, we

have a bound on the cardinality |J |:

µ̂ϵ(B
2
2 ×Bn−2

2r (tϵ)) ≥
∑
j∈J

µ̂ϵ(B
n
r (yj)) ≥

∑
j∈J

µ̂ϵ(Br/2(yj)) ≥ c(M,Λ)rn−2|J |

(since 1
4gRn ≤ gx,sϵ ≤ 4gRn for ϵ sufficiently small). Using also (6.21), we get |J | ≤

C(M,Λ). Hence, writing yj = (zj , tj), we obtain

|Vϵ(r)| ≤
∑
j∈J

|B2
5r(zj)| ≤ 25π|J |r2 ≤ C(M,Λ)r2,

confirming (6.23).
Given R > 0, let {zϵ1, . . . , zϵN(R,ϵ)} be a maximal subset of Vϵ(Rϵ) with |zϵk − zϵℓ | ≥ 2ϵ.

Since
⋃
k(B

2
1 ∩B2

ϵ (zk)) ⊆ Vϵ((R + 1)ϵ) and the balls B2
ϵ (zk) are disjoint, (6.23) gives a

uniform bound on N(R, ϵ) independent of ϵ (eventually), so up to subsequences we can
assume that N(R) = N(R, ϵ) is constant and that ϵ−1|zϵk − zϵℓ | has a limit rkℓ as ϵ→ 0,
for each k, l.

We say that k ∼ ℓ if rkℓ < ∞; this is evidently an equivalence relation (as rkm ≤
rkℓ+rℓm), so we can pick a set of representatives {k1, . . . , kP } of the distinct equivalence
classes [k1], . . . , [kP ] and conclude that

Vϵ(Rϵ) ⊆
P⋃
j=1

B2
Sϵ(z

ϵ
kj
)

eventually, for any fixed S ≥ S0(R) := max{
∑

ℓ∈[kj ] rkjℓ + 2 | j = 1, . . . , P}.
Fix such an S which is also bigger than the constants C in (6.21) and a−1

d , Cd in
Corollary 5.4. For any fixed δ > 0, (6.20) and (6.21) show that, for ϵ sufficiently
small, Proposition 6.7 below applies to ûϵ(z

ϵ
kj

+ ϵ·, tϵ + ϵ·) (with β := βd). Writing

K = K(βd, δ, S) > S, note that the balls B2
Kϵ(zkj ) are eventually disjoint and included

in {χ = 1}. Hence, Proposition 6.7 and (6.22) give

dist
(∫

R2×{tϵ}
χ̂eϵ(ûϵ, ∇̂ϵ), 2πN

)
≤ Pδ +

∫
B2

2\
⋃P

j=1B
2
Kϵ(z

ϵ
kj

)
eϵ(ûϵ, ∇̂ϵ)(·, tϵ)

≤ Pδ +

∫
B2

2\Vϵ(Rϵ)
eϵ(ûϵ, ∇̂ϵ)(·, tϵ)

≤ (P + 1)δ +

∫
B2

1\Vϵ(Rϵ)
eϵ(ûϵ, ∇̂ϵ)(·, tϵ)

(for ϵ sufficiently small). Choosing δ = δ(R) ≤ 1
(P+1)R , we arrive at the estimate

dist
(∫

R2×{tϵ}
χ̂eϵ(ûϵ, ∇̂ϵ), 2πN

)
≤ 1

R
+

∫
B2

1\Vϵ(Rϵ)
eϵ(ûϵ, ∇̂ϵ)(·, tϵ).

To conclude the proof, it suffices to show that

lim
R→0

lim sup
ϵ→0

∫
B2

1\Vϵ(Rϵ)
eϵ(ûϵ, ∇̂ϵ)(·, tϵ) → 0.(6.24)
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Once we have this, we infer that

lim inf
ϵ→0

dist
(∫

R2×{tϵ}
χ̂eϵ(ûϵ, ∇̂ϵ), 2πN

)
= 0

for the original sequence (tϵ). Noting that the choice of tϵ in Fϵ := Bn−2
1 \Eϵ1 ∪Eϵ2 ∪Eϵ3

was arbitrary, we get

lim inf
ϵ→0

sup
t∈Fϵ

dist
(∫

R2×{t}
χ̂eϵ(ûϵ, ∇̂ϵ), 2πN

)
= 0.

Since the argument applies to an arbitrary subsequence ϵj → 0, the proposition then
follows.

To show (6.24), note that for z ∈ B2
1 the distance of ιx,sϵ((z, t

ϵ)) to the set Zβd/2(usϵϵ)
is (eventually) bounded below by sϵ

2 min{1, rϵ(z)}, where rϵ(z) is the (Euclidean) dis-
tance of (z, tϵ) to Zβd/2(ûϵ)). Since Zβd/2(usϵϵ) ⊇ Zβd(usϵϵ), for any R > 1 Corollary 5.4
gives∫
B2

1\Vϵ(Rϵ)
eϵ(ûϵ, ∇̂ϵ) ≤ Cϵ−2

∫
B2

1\Vϵ(Rϵ)
e−adrϵ(z)/(2ϵ) + Cϵ−2e−ad/(2ϵ) + Csϵϵ

= Cϵ−3

∫
B2

1\Vϵ(Rϵ)

∫ ∞

rϵ(z)

ad
2
e−adr/(2ϵ) dr dz + Cϵ−2e−ad/(2ϵ) + Csϵϵ

= Cϵ−3

∫ ∞

Rϵ

ad
2
e−adr/(2ϵ)|Vϵ(r)| dr + Cϵ−2e−ad/(2ϵ) + Csϵϵ

≤ Cϵ−3

∫ ∞

Rϵ
e−adr/(2ϵ)r2 dr + Cϵ

= C

∫ ∞

R
e−adt/2t2 dt+ Cϵ,

where we used Fubini’s theorem in the second equality. The statement follows. □

The following key technical proposition, used in the proof of Proposition 6.6, re-
lies ultimately on the quantization phenomenon for the energy of entire solutions in
the plane, presented in [21, Chapter III]. For the reader’s convenience, we give a self-
contained proof, including the relevant arguments from [21].

Proposition 6.7. Given 0 < β, δ < 1
2 and S > 1, there exist K(β, δ, S) > S and

0 < κ(β, δ, S, n) < K−1 such that the following is true. Assume (u,∇) is smooth and
solves (2.4) and (2.5), with |u| ≤ 1 and ϵ = 1, on a line bundle L over a cylinder (Q, g),
with Q = B2

κ−1 ×Bn−2
κ−1 . If we have

Zβ/2(u) ∩ (B2
κ−1 × {0}) ⊆ B

2
S × {0},(6.25)

the energy bounds

e1(u,∇) ≤ S,(6.26)

n∑
i=3

∫
B2

κ−1×B
n−2
r

(|∇∂iu|
2 + |ι∂iF∇|2) ≤ κrn−2 for all 0 < r < κ−1,(6.27)
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as well as the decay

e1(u,∇)(p) ≤ Se−S
−1r + κ whenever Br(p) ⊂⊂ Q \ Zβ,(6.28)

and ∥g − gRn∥C2 ≤ κ, then ∣∣∣ ∫
B2

K×{0}
e1(u,∇)− 2π|p|

∣∣∣ < δ,

where p is the degree of u
|u|(S·, 0), as a map from the circle to itself.

Proof. To begin with, fix a real number K(β, δ, S) > S so big that∫ ∞

K
(2πr)Se−S

−1(r−S) < δ.(6.29)

Arguing by contradiction, assume there exists a sequence κj → 0 such that the
statement admits a counterexample (uj ,∇j) (for κ = κj) for a (necessarily trivial)

line bundle Lj over Qj = B2
κ−1
j

× Bn−2

κ−1
j

, with respect to a metric g = gj satisfying

∥g − gRn∥C2 ≤ κj . Fixing a trivialization of Lj over Qj , we can write ∇j = d− iAj for
some real one-form Aj .

By virtue of the uniform pointwise estimate (6.28) for e1(uj ,∇j) ≥ |d|uj ||2, we see
that the functions |uj | are locally equi-Lipschitz. In particular, we can apply the Arzelà–
Ascoli theorem to extract a subsequence |uj | converging in C0

loc to a continuous function
ρ∞ : Rn → R.

Since |∂k|uj || ≤ |(∇j)∂kuj | for all k, (6.27) implies that ρ∞ depends only on the first

two variables. Moreover, (6.25) gives ρ2∞ ≥ 1 − β
2 > 1 − β outside B2

S × Rn−2. In
particular, setting

Rj := max
{
r ≤ κ−1

j : (B2
r \B2

S)×Bn−2
1 ⊆

{
|uj | >

1

2

}}
,

we have Rj → ∞. Let wj :=
uj
|uj | on {|uj | > 1

2}.
The degree pj is uniformly bounded as, for r ≥ S and t ∈ Rn−2,

2πpj =

∫
∂B2

r×{t}
w∗
j (dθ) =

∫
B2

r×{t}
dAj +

∫
∂B2

r×{t}
(w∗

j (dθ)−Aj)

for j sufficiently large, so averaging over S < r < 2S and t ∈ Bn−2
1 we get

2π|pj | ≤ C(S)

∫
B2

2S×B
n−2
1

|dAj |+ C(S)

∫
(B2

2S\B
2
S)×B

n−2
1

|w∗
j (dθ)−Aj |

≤ C(β, S)
(∫

B2
2S×B

n−2
1

e1(uj , Aj)
)1/2

,

as |uj ||w∗
j (dθ) − Aj | ≤ |∇juj |. Thus, up to subsequences we can assume pj = p is

constant.
We now claim that, up to change of gauge, (uj , Aj) → (u∞, A∞) subsequentially in

C1
loc(R2 ×Bn−2

1 ). Let ũj = eiθjuj and Ãj = Aj + dθj be the section and the connection

in the Coulomb gauge on the domain (B
n
5S , gj), with Ãj(ν) = 0 on the boundary (as
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described in the Appendix). Note that Bn
5S includes the cylinder Q′ := B2

4S × Bn−2
1 ,

and observe that, on Q′′ := (B2
4S \B2

S)×Bn−2
1 , ũj has the form

ũj(re
iθ, t) = |uj |eipθ+iψj

for a unique real function ψj with 0 ≤ ψj(2S, 0) < 2π.

Hence, uj = |uj |ei(pθ+ψj−θj) on Q′′ and we can extend ψj − θj uniquely to a function

σj : (B
2
Rj

\ B2
S) × Bn−2

1 → R so that uj = |uj |eipθ+iσj holds true on all the domain of

σj . Finally, we replace (uj , Aj) with (eiτjuj , Aj + dτj), where

τj(z, t) :=

{
θj − χ(|z|)ψj |z| < 4S

−σj |z| > 3S

for a fixed smooth function χ : [0,∞) → [0, 1] such that χ = 0 on [0, 2S] and χ = 1 on
[3S,∞). Observe that, in the cylinder Q′ = B2

4S ×Bn−2
1 , the new couple equals

(ũje
−χ(|z|)ψj , Ãj − d(χ(|z|)ψj)).

The function ψj obeys uniform local W 2,q bounds, on (the interior of) Q′′, for all
1 ≤ q < ∞, thanks to the Coulomb gauge specification (per Proposition A.1 in the
Appendix). Hence, the new couple (uj , Aj) has uniform local W 2,q bounds on Q′.

Moreover, in the exterior annular region Aj := (B2
Rj

\ B2
3S) × Bn−2

1 , we have that

uj(re
iθ, t) = |uj |epiθ and we can obtain local W 2,q bounds noting that

pdθ −Aj = |uj |−2⟨∇juj , iuj⟩.

Indeed, since the right-hand side is bounded by 2e1(uj ,∇j)
1/2 ≤ 2S1/2 and pdθ is a

fixed smooth one-form, we immediately obtain uniform L∞ bounds for Aj locally in Aj .
Next, note that the identity (3.4) applies to give us an estimate

|∆|uj |2| ≤ Ce1(uj ,∇j) + C ≤ CS

in Aj , from which it follows that the modulus |uj | satisfies uniform W 2,q bounds for

every q ∈ (1,∞) locally in Aj . Multiplying (2.4) by e−piθ and taking the imaginary
part gives

|uj |d∗(pdθ −Aj) = 2⟨d|uj |, pdθ −Aj⟩,

from which it follows that d∗Aj satisfies uniform L∞ bounds locally in Aj as well;

together with the obvious pointwise bound |dAj | ≤ e1(uj ,∇j)
1/2 ≤ S1/2, this in partic-

ular yields uniform bounds on the full derivative ∥DAj∥Lq for every q ∈ (1,∞) on fixed
compact subsets of Aj (this follows, e.g., from [20, Lemma 4.7] and a cut-off argument).

Finally, writing (2.5) as

∆HAj = dd∗Aj + |uj |2(pdθ −Aj),

the preceding chain of identities and estimates give a uniform Lq bound on the right-
hand side over any fixed compact subset of Aj , for any q ∈ (1,∞); in particular, this
gives us the desired uniform localW 2,q bounds for Aj (while we already have the desired

W 2,q bounds for uj = |uj |epiθ).



MINIMAL SUBMANIFOLDS FROM THE ABELIAN HIGGS MODEL 33

Thanks to the compact embedding W 2,q ↪→ C1 on bounded regular domains (for
q > n), we obtain a limit couple (u∞, A∞) on R2×Bn−2

1 , as claimed, which solves (2.4)
and (2.5) with respect to the flat metric. Also, |u∞| = ρ∞ and

(∇∞)∂ku∞ = 0, ι∂kdA∞ = 0 for k = 3, . . . , n.(6.30)

The second part of (6.30) implies that we can find a function α ∈ C1(R2 ×Bn−2
1 ) with

α(z, 0) = 0 and ∂kα = (A∞)k, for all z ∈ R2 and all k ≥ 3. Set ũ∞ := e−iαu∞ and

Ã∞ := A∞ − dα, so that

(Ã∞)k = 0, ∂k(Ã∞)ℓ = ∂k(A∞)ℓ − ∂2kℓα = ∂ℓ(A∞ − dα)k = 0

for all k = 3, . . . , n and ℓ = 1, . . . , n (using again the second part of (6.30)). The first

part gives instead ∂kũ∞ = 0 for k = 3, . . . , n. Hence, (ũ∞, Ã∞) depends only on the
first two variables and therefore corresponds to a planar solution of (2.4) and (2.5).

Also, from (6.28) we deduce that

e1(ũ∞, Ã∞)(z, t) = e1(u∞, A∞)(z, t) = lim
j→∞

e1(uj , Aj)(z, t) ≤ Se−S
−1(|z|−S)(6.31)

for |z| > S, as eventually B
n
|z|−S(z, t) ∩ Zβ(uj) = ∅.

Integrating (4.4) on R2 = R2 × {0} against the position vector field we get∫
R2

|dÃ∞|2 =
∫
R2

W (ũ∞).

Thanks to the decay of e1(ũ∞, Ã∞), we can repeat the proof of (3.6): starting from

∆ξ̃∞ ≥ |ũ∞|2ξ̃∞, with ξ̃∞ := |dÃ∞| − 1− |ũ∞|2

2
,

and applying the maximum principle, we deduce that the decaying function ξ̃∞ is non-

positive. We then obtain |dÃ∞| ≤
√
W (ũ∞), so we must have |dÃ∞| =

√
W (ũ∞)

everywhere (cf. [21, Section III.10]).
Observe that, by (3.4) and the strong maximum principle, |ũ∞| < 1 (unless |ũ∞| = 1

everywhere, in which case |dÃ∞| =
√
W (ũ∞) = 0 and |∇̃∞ũ∞| = 0 by (3.4), thus

e1(ũ∞, Ã∞) = 0 and p = 0; so the statement of the proposition holds eventually,

contradiction). As a consequence, | ∗ dÃ∞| = W (ũ∞) > 0 and we get either 1−|ũ∞|2
2 =

∗dÃ∞ everywhere or 1−|ũ∞|2
2 = − ∗ dÃ∞ everywhere. Thus, integrating by parts and

using (2.4), as well as the decay of |pdθ − Ã∞|,∫
R2

e1(ũ∞, Ã∞) =

∫
R2

(|∇̃∞ũ∞|2 + 2W (ũ∞)) =

∫
R2

(⟨∇̃∗
∞∇̃∞ũ∞, ũ∞⟩+ 2W (ũ∞))

=

∫
R2

1− |ũ∞|2

2
= ±

∫
R2

dÃ∞ = ± lim
r→∞

∫
∂B2

r

Ã∞ = ± lim
r→∞

∫
∂B2

r

pdθ = ±2πp.

Hence, the energy of the two-dimensional solution (ũ∞, Ã∞) is 2π|p|. Our choice of
K, namely (6.29), together with (6.31), then ensures that

dist
(∫

B2
K×{0}

e1(u∞, A∞), 2πN
)
< δ.
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As a consequence, this must hold eventually also for (uj , Aj), giving the desired contra-
diction. □

Remark 6.8. As a consequence, one also finds that∫
B2

K×{0}
e1(u,∇) < δ

if |u| > 0 everywhere on the cylinder Q. Indeed, if |u| > 0 everywhere, then the degree
p in the statement of Proposition 6.7 clearly must vanish.

We are now able to address the statement on the convergence of level sets.

Proposition 6.9. For any 0 ≤ δ < 1 we have spt(µ) = limϵ→0{|uϵ| ≤ δ}, in the
Hausdorff topology.

Proof. If x = limϵ→0 xϵ, for points xϵ ∈ {|uϵ| ≤ δ} defined along a subsequence, then
the same argument used in the proof of Proposition 6.2 shows that x ∈ spt(µ). Hence,
for all η > 0, eventually {|uϵ| ≤ δ} is included in the η-neighborhood of spt(µ).

To conclude the proof, it suffices to show that the converse inclusion spt(µ) ⊆
Bη({uϵ = 0}) holds eventually. Arguing by contradiction, assume that there are points
pϵ ∈ spt(µ) whose distance from {uϵ = 0} is at least η, along some subsequence (not
relabeled). Up to further subsequences, let pϵ → p0 ∈ spt(µ).

Since µ is (n− 2)-rectifiable, there exists a point q ∈ spt(µ) with dist(p0, q) <
η
2 , and

such that µ blows up to Θn−2(µ, q)Hn−2 TqΣ at q. Observe that eventually we have

dist(q, {uϵ = 0}) ≥ η

2
.(6.32)

Now, repeating all the preceding blow-up analysis at q, in view of Remark 6.8 we can
improve (6.17) to the uniform convergence∫

R2×{t}
χ(z)eϵ(ûϵ, ∇̂ϵ)(z, t) → 0

for t ∈ Fϵ, which implies that Θn−2(µ, q) = 0. However, since q ∈ spt(µ), this is
impossible, by Proposition 6.2. □

6.3. Limiting behavior of the curvature.
As before, we identify the curvature F∇ϵ with a closed two-form ωϵ by F∇ϵ(X,Y ) =

−iωϵ(X,Y ). Recall that the cohomology class [ 1
2πωϵ] represents the (rational) first

Chern class c1(L) ∈ H2(M ;R) of the complex line bundle L→M .

Theorem 6.10. Let (uϵ,∇ϵ) be a family as in Theorem 6.1. The curvature forms 1
2πωϵ

can be identified with (n − 2)-currents that converge (weakly), as ϵ → 0, to an integer
rectifiable cycle Γ which is Poincaré dual to c1(L), and whose mass measure |Γ| satisfies
|Γ| ≤ µ.

Proof. Recall from Section 2 that

d⟨∇ϵuϵ, iuϵ⟩ = ψ(uϵ)− |uϵ|2ωϵ,
where ψ(uϵ) = ⟨2i∇uϵ,∇ϵuϵ⟩ is a two-form satisfying |ψ(uϵ)| ≤ |∇ϵuϵ|2 pointwise. In
particular, denoting by J(uϵ,∇ϵ) the two-form

J(uϵ,∇ϵ) := ψ(uϵ) + (1− |uϵ|2)ωϵ,
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we can rewrite this identity as

J(uϵ,∇ϵ)− ωϵ = d⟨∇ϵuϵ, iuϵ⟩,(6.33)

and observe that

(6.34) |J(uϵ,∇ϵ)| ≤ |∇ϵuϵ|2 + ϵ2|ωϵ|2 +
1

4ϵ2
(1− |uϵ|2)2 = eϵ(uϵ,∇ϵ).

The dual (n− 2)-currents given by

⟨Γϵ, ζ⟩ :=
1

2π

∫
M
J(uϵ,∇ϵ) ∧ ζ,

for any (n−2)-form ζ ∈ Ωn−2(M), are thus bounded in mass by 1
2πΛ. (Here we compute

the mass with the ℓ2 norm on exterior algebras; for the limit current, by rectifiability
this will coincide with the usual mass, dual to the comass.) Up to subsequences, we can
take a weak limit Γ. The bound |Γϵ| ≤ µϵ implies that also |Γ| ≤ µ.

From (6.33) and integration by parts we get∫
M
ωϵ ∧ ζ =

∫
M
J(uϵ,∇ϵ) ∧ ζ −

∫
M
⟨∇ϵuϵ, iuϵ⟩ ∧ dζ.

Since (as discussed in the proof of Proposition 6.2)∫
M

|⟨∇ϵuϵ, iuϵ⟩| ≤
∫
M
eϵ(uϵ,∇ϵ)

1/2 → 0

as ϵ→ 0, it follows that

(6.35) ⟨Γ, ζ⟩ = 1

2π
lim
ϵ→0

∫
M
J(uϵ,∇ϵ) ∧ ζ =

1

2π
lim
ϵ→0

∫
M
ωϵ ∧ ζ

for every smooth (n− 2)-form ζ ∈ Ωn−2(M).
Since the two-forms ωϵ are closed, for any ξ ∈ Ωn−3(M) we have

⟨∂Γ, ξ⟩ = ⟨Γ, dξ⟩ = 1

2π
lim
ϵ→0

∫
M
ωϵ ∧ dξ =

1

2π
lim
ϵ→0

∫
M
d(ωϵ ∧ ξ) = 0,

so Γ is a cycle. Since µ is (n − 2)-rectifiable, Γ must be a rectifiable (n − 2)-current:
this can be seen by blow-up, applying [25, Proposition 7.3.5]. By (6.35), Γ is Poincaré
dual to c1(L).

To complete the proof, it remains to show that Γ has integer multiplicity. By means
of a diagonal selection of a subsequence, as in the previous subsection, we can de-
duce integrality at those points p ∈ spt(µ) where µ and Γ blow up respectively to
Θn−2(µ, p)Hn−2 TpΣ and a multiple of [TpΣ], using the following lemma. Note that
its hypotheses are verified thanks to Corollary 5.4 and the fact that Zβd(uϵ) necessarily
converges to a subset of TpΣ in the local Hausdorff topology, after rescaling (see the
proof of Proposition 6.2).

Since µ is (n− 2)-rectifiable, we deduce that the limiting current Γ has integer mul-
tiplicity Hn−2-a.e. on its support, as claimed. □

Lemma 6.11. On the Euclidean ball Bn
4 , let (uϵ,∇ϵ) be a sequence of sections and

connections in a trivial line bundle L → Bn
4 (not necessarily satisfying any equation)

for which Eϵ(uϵ,∇ϵ) ≤ Λ, eϵ(uϵ,∇ϵ) → 0 in C0
loc(B

n
4 \P ) and ∗ωϵ → θ1[P ] in Dn−2(B

n
4 ),

where P = {0} × Rn−2. Then θ1 ∈ 2πZ.
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Proof. To begin, fix a test function φ ∈ C1
c (B

2
1 × Bn−2

1 ) of the form φ(x1, . . . , xn) =
ψ(x1, x2)η(x3, . . . , xn), with ψ(x1, x2) = 1 for |(x1, x2)| ≤ 1

2 . In the sequel, we shall
omit the domain of integration when it equals Rn. By assumption, we then have

θ1

∫
P
ηdx3 ∧ · · · ∧ dxn = lim

ϵ→0

∫
φωϵ ∧ dx3 ∧ · · · ∧ dxn.

Fixing trivializations of L over Bn
2 , we write ∇ϵ = d − iAϵ for some one-forms Aϵ, so

that ωϵ = dAϵ, and the right-hand term in the preceding limit becomes∫
ωϵ ∧ (φdx3 ∧ · · · ∧ dxn) =

∫
d(φAϵ ∧ dx3 ∧ · · · ∧ dxn)

+

∫
Aϵ ∧ dφ ∧ dx3 ∧ · · · ∧ dxn

=

∫
η|uϵ|2Aϵ ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

+

∫
η(1− |uϵ|2)Aϵ ∧ dψ ∧ dx3 ∧ · · · ∧ dxn.

On Bn
2 we can choose our trivializations so that d∗Aϵ = 0, and Aϵ(ν) = 0 on ∂Bn

2

(see the Appendix). We then have the L2 control

(6.36)

∫
Bn

2

|Aϵ|2 ≤ C

∫
Bn

2

|dAϵ|2 ≤ Cϵ−2Λ

(see, e.g., [20, Theorem 4.8]), and consequently

∣∣∣ ∫ η(1− |uϵ|2)Aϵ ∧ dψ ∧ dx3 ∧ · · · ∧ dxn
∣∣∣ ≤ C∥1− |uϵ|2∥C0(spt(ηdψ))∥Aϵ∥L1(Bn

2 )

≤ CΛ1/2∥ϵ−1(1− |uϵ|2)∥C0(spt(ηdψ))

≤ CΛ1/2∥eϵ(uϵ,∇ϵ)∥1/2C0(spt(ηdψ))

→ 0

as ϵ → 0, where we have used the fact that dψ(x1, x2) = 0 for |(x1, x2)| ≤ 1
2 , and the

assumption that eϵ(uϵ,∇ϵ) → 0 in C0
loc(B

n
2 \ P ).

Combining our computations thus far, we have arrived at the identity

θ1

∫
P
ηdx3 ∧ · · · ∧ dxn = lim

ϵ→0

∫
η|uϵ|2Aϵ ∧ dψ ∧ dx3 ∧ · · · ∧ dxn.

Noting next that

||uϵ|2Aϵ − ⟨duϵ, iuϵ⟩| = |⟨∇ϵuϵ, iuϵ⟩| ≤ eϵ(uϵ,∇ϵ)
1/2,
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and using again the hypothesis that eϵ(uϵ,∇ϵ) → 0 uniformly on spt(ηdψ), the preceding
identity yields

θ1

∫
P
ηdx3 ∧ · · · ∧ dxn = lim

ϵ→0

∫
η⟨duϵ, iuϵ⟩ ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

= lim
ϵ→0

∫
η|uϵ|2(uϵ/|uϵ|)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn

= lim
ϵ→0

∫
η(uϵ/|uϵ|)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn.

Finally, since the one-form (uϵ/|uϵ|)∗(dθ) is closed on {uϵ ̸= 0} and dη ∧ dx3 ∧ · · · ∧
dxn = 0, integrating by parts on (R2 \B2

1/2)× Rn−2 we see that∫
η(uϵ/|uϵ|)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn =

∫
Rn−2

η(t)

∫
∂B2

1/2
×{t}

(uϵ/|uϵ|)∗(dθ) dt

= 2π deg(uϵ, P )

∫
P
η,

where deg(uϵ, P ) stands for the degree of (uϵ/|uϵ|)(12e
iθ, 0). The statement follows. □

7. Examples from variational constructions

The goal of this section is to show that, for every closed manifold M and every line
bundle L → M endowed with a Hermitian metric, there exist critical couples (uϵ,∇ϵ)
for the Yang–Mills–Higgs functional Eϵ, for ϵ small enough, in such a way that

0 < lim inf
ϵ→0

Eϵ(uϵ,∇ϵ) ≤ lim sup
ϵ→0

Eϵ(uϵ,∇ϵ) <∞.(7.1)

This will be easier when the line bundle is nontrivial, as in this case we can just take
(uϵ,∇ϵ) to be a global minimizer for Eϵ. The upper and lower bounds in (7.1) have
the following immediate consequence—proved previously by Almgren [5] using GMT
methods.

Corollary 7.1. Every closed Riemannian manifold (Mn, g) supports a nontrivial sta-
tionary, integral (n− 2)-varifold.

Proof. We can always equip M with the trivial line bundle L := C ×M . As shown in
the next subsection, there exists a sequence of critical couples (uϵ,∇ϵ) satisfying (7.1).
The statement now follows from Theorem 6.1. □

7.1. Min-max families for the trivial line bundle.
In this section we will show how min-max methods may be applied to the functionals

Eϵ to produce nontrivial critical points in the trivial bundle L = C×M on an arbitrary
closed manifold M of dimension n ≥ 2. The min-max construction that we consider
here is based on two-parameter families parametrized by the unit disk, similar to the
constructions employed in [10] and [33] for the Ginzburg–Landau functionals—with
several technical adjustments to account for the gauge-invariance and other features
particular to the Yang–Mills–Higgs energies.
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One can show that the families we consider induce a nontrivial class in π2(M) for
the quotient

M := {(u,∇) | 0 ̸≡ u ∈ Γ(L), ∇ a Hermitian connection}/{gauge transformations},
and the analysis that follows can be reformulated in terms of min-max methods applied
directly to M, which can be given the structure of a Banach manifold.

Without loss of generality, we assume henceforth thatM is connected. In some proofs
we will also implicitly assume that n = dim(M) ≥ 3, leaving the obvious changes for
n = 2 to the reader.

Definition 7.2. Fix n = dim(M) < p <∞. In what follows, X̂ will denote the Banach
space of couples (u,A), where u ∈ Lp(M,C) and A ∈ Ω1(M,R), both of class W 1,2,
with the norm

∥(u,A)∥ := ∥u∥Lp + ∥du∥L2 + ∥A∥L2 + ∥DA∥L2 .

Denote by X := {(u,A) ∈ X̂ : d∗A = 0} the subspace consisting of those couples for
which the connection form A is co-closed.

Note that, for (u,A) ∈ X, the full covariant derivative
∫
M |DA|2 is bounded by

C(M)
∫
M (|A|2 + |dA|2): see, e.g., [20, Theorem 4.8] for a proof.

Definition 7.3. Given a form A ∈ Ω1(M,R) in L2, we denote by h(A) the harmonic
part of its Hodge decomposition, or equivalently the orthogonal projection of A onto
the (finite-dimensional) space H1(M) of harmonic one-forms.

Remark 7.4. Selection of a Coulomb gauge gives a continuous retraction R : X̂ → X:

namely, given a couple (u,A) ∈ X̂, consider the unique solution θ ∈W 2,2(M,R) to the
equation

∆θ = d∗A,

with
∫
M θ = 0, and set

R((u,A)) := (eiθu,A+ dθ).

Note that the continuity of (u,A) 7→ d(eiθu) = eiθ(du + iudθ), from X̂ to L2, follows
from the fact that Lp · L2∗ ⊆ L2, where 2∗ = 2n

n−2 .

Throughout this section, W (u) = f(|u|) will be a smooth radial function given by

W (u) = (1−|u|2)2
4 for |u| ≤ 3/2, and satisfying W (u),W ′(u)[u] > 0 for all |u| > 1. For

technical reasons, we also find it convenient to require that

W (u) = |u|p for |u| ≥ 2,(G)

which evidently gives the additional estimates |u|f ′(|u|)+|u|2f ′′(|u|) ≤ C|u|p for |u| ≥ 2,
for some constant C. For future use, observe also that the potential W (u) then satisfies
a simple bound of the form

(1− |u|)2 ≤ CW (u).(7.2)

Proposition 7.5. The functional Eϵ is of class C
1 on X̂. Moreover, a couple (u,A) is

critical in X̂ for Eϵ if and only if R((u,A)) is critical in X. Critical points are smooth
up to change of gauge.



MINIMAL SUBMANIFOLDS FROM THE ABELIAN HIGGS MODEL 39

Proof. Given a point (u,A) ∈ X̂ and a pair (v,B) ∈ X̂ with ∥(v,B)∥
X̂

≤ 1, direct
computation gives

Eϵ(u+ v,A+B) = Eϵ(u,A) + 2

∫
M
⟨du− iuA, dv − ivA− iuB⟩

+ 2ϵ2
∫
M
⟨dA, dB⟩+ ϵ−2

∫
M
W ′(u)[v] +O(∥(v,B)∥2

X̂
),

where we are using the fact that X̂ · X̂ ⊆ Ln · L2∗ ⊆ L2 to see that

∥vA∥2L2 + ∥uB∥2L2 + ∥vB∥2L2 + Eϵ(u,A)
1/2∥vB∥L2 = O(∥(v,B)∥2

X̂
),

and we invoke our assumptions on the structure of W to see that∫
M
(W (u+ v)−W (u)) =

∫
M
W ′(u)[v] +O(∥(v,B)∥2

X̂
)

for fixed (u,A) ∈ X̂. It follows immediately that Eϵ is C
1 on X̂, with differential

dEϵ(u,A)[v,B] =

∫
M
(2⟨du− iuA, dv − ivA− iuB⟩+ 2ϵ2⟨dA, dB⟩+ ϵ−2W ′(u)[v]).

To confirm the second statement, assume without loss of generality that v and B are
smooth, and observe that

R((u+ tv, A+ tB)) = (etiψũ+ teiθ+tiψv, Ã+ tB + tdψ),

where (ũ, Ã) := R((u,A)) = (eiθu,A+ dθ) and ψ solves ∆ψ = d∗B. This easily gives

R((u+ tv, A+ tB)) = R((u,A)) + t(eiθv + iψũ, B + dψ) + o(t) in X

and, using the gauge invariance Eϵ = Eϵ ◦ R, we deduce that

dEϵ(u,A)[v,B] = dEϵ(ũ, Ã)[e
iθv + iψũ, B + dψ].(7.3)

It follows that if (ũ, Ã) is critical for Eϵ in X then (u,A) is critical for Eϵ in X̂, as
claimed. The converse is similar.

Finally, if (u,A) is critical for Eϵ (in either X̂ or X), then applying the above formula
for the differential with v = (|u| − 1)+u/|u| ∈W 1,2 and B = 0 we get

0 =

∫
M

2⟨(d− iA)u, (d− iA)v⟩+ ϵ−2

∫
M
W ′(u)[v]

≥ ϵ−2

∫
M

|u|−1(|u| − 1)+W ′(u)[u],

where we used the fact that ⟨u ⊗ d((|u| − 1)+/|u|),∇u⟩ equals |u|−1|d|u||2 ≥ 0 a.e. on
{|u| > 1} and vanishes elsewhere. Since W ′(u)[u] > 0 on {|u| > 1} by our assumption
on W , we deduce that |u| ≤ 1. Together with Proposition A.1 and Remark A.3 in the
Appendix, this implies that (u,A) is smooth in an appropriate (Coulomb) gauge. □

We next show that the functionals Eϵ satisfy a suitable variant of the Palais–Smale
condition on X, giving compactness of critical sequences for Eϵ after an appropriate
change of gauge. (Cf. [23] for similar results in the Seiberg–Witten setting.) This holds
provided that X, viewed as a Banach manifold, is equipped with the Finsler structure

∥(v,B)∥(u,A) := ∥v∥Lp + ∥(d− iA)v∥L2 + ∥B∥L2 + ∥DB∥L2 ,
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for any (v,B) ∈ T(u,A)X ∼= X in the tangent space to (u,A). It is clear that this Finsler
norm is locally comparable to the trivial one. Also, we have

∥(v,B)∥(ϕu,A+ϕ∗(dθ)) = ∥(ϕ−1v,B)∥(u,A)
for any ϕ ∈W 2,2(M,S1), and thus

|dEϵ(ϕu,A+ ϕ∗(dθ))[v,B]| = |dEϵ(u,A)[ϕ−1v,B]|
≤ ∥dEϵ(u,A)∥∥(ϕ−1v,B)∥(u,A)
= ∥dEϵ(u,A)∥∥(v,B)∥(ϕu,A+ϕ∗(dθ)),

where ∥dEϵ(u,A)∥ denotes the dual norm on T ∗
(u,A)X

∼= X∗.

Proposition 7.6. The functional Eϵ satisfies the following form of the Palais–Smale
condition: every sequence (uj , Aj) in X with bounded energy and ∥dEϵ(uj , Aj)∥ → 0 in
X∗ (with respect to the Finsler structure) admits a subsequence converging strongly in
X to a critical couple (u∞, A∞), up to possibly replacing (uj , Aj) with

vj · (uj , Aj) := (vjuj , Aj + v∗j (dθ))

for suitable smooth harmonic functions vj :M → S1.

Proof. First, we show that the boundedness of Eϵ(uj , Aj) implies the boundedness of
the sequence in X, up to a change of gauge as in the statement. The assumption (G)
on the potential W gives∫

M
|uj |p ≤ C +

∫
M
W (uj) ≤ C + Eϵ(uj , Aj) ≤ C,(7.4)

that is, uj is uniformly bounded in Lp.
Denote by Λ ⊆ H1(M) the lattice in the space of harmonic one-forms given by

Λ := {−v∗j (dθ) | vj :M → S1 harmonic}

=
{
h ∈ H1(M) :

∫
γ
h ∈ 2πZ for every γ ∈ C1(S1,M)

}
,

and let λj ∈ Λ be a closest integral harmonic one-form to h(Aj) (with respect to the L2

norm, say, on H1(M)). Then λj = −v∗j (dθ) for a suitable harmonic map vj : M → S1,
and

∥λj − h(Aj)∥L2 ≤ C(M).

Replacing (uj , Aj) with the change of gauge (vjuj , Aj − λj) ∈ X, we can then assume
that h(Aj) is bounded; note that, by the remark made after the definition of the Finsler
structure, the new couple still satisfies ∥dEϵ(uj , Aj)∥ → 0.

By standard Hodge theory we can write

Aj = h(Aj) + d∗ξj

for some closed ξj ∈ W 2,2 satisfying ∆Hξj = dAj and ∥d∗ξj∥W 1,2 ≤ C(M)∥dAj∥L2 .
Thus, given the energy bound Eϵ(uj , Aj) ≤ C, we see that

∥Aj∥2W 1,2 ≤ C + 2∥d∗ξj∥2W 1,2 ≤ C + C∥dAj∥2L2 ≤ C,
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whereby Aj is bounded in W 1,2 and, consequently, in L2∗ . As a consequence, we see
next that

∥duj∥2L2 ≤ 2

∫
M

|duj − iujAj |2 + 2

∫
M

|ujAj |2

≤ C + C∥uj∥2Lp∥Aj∥2L2∗

≤ C + C∥uj∥pLp ;

taking into account (7.4), we infer then that ∥duj∥L2 is also bounded as j → ∞.
We have therefore shown that (uj , Aj) is uniformly bounded in X as j → ∞, so

passing to subsequences we can assume that (uj , Aj) converges pointwise a.e. and weakly
(in X) to a limiting couple (u∞, A∞).

In particular, defining r by

1

r
:=

1

2
− 1

q
>

1

2
− 1

n
=

1

2∗
,

where n < q < p is an arbitrary fixed exponent, it follows from the compactness of the
embedding W 1,2 ↪→ Lr that

Aj → A∞ strongly in Lr.

Moreover, the boundedness of uj in L
p and the pointwise convergence to u∞ give

uj → u∞ strongly in Lq.(7.5)

By definition of r, this implies in particular that

lim
j,k→∞

ujAk = u∞A∞ strongly in L2.

Next, compute

dEϵ(uj , Aj)[uj − uk, Aj −Ak] =

∫
M

2⟨(d− iAj)uj , (d− iAj)(uj − uk)− iuj(Aj −Ak)⟩

+

∫
M
(2ϵ2⟨dAj , d(Aj −Ak)⟩+ ϵ−2W ′(uj)[uj − uk]),

and observe that, due to the L2 convergence ujAk → u∞A∞, the right-hand side equals∫
M
(2⟨(d− iAj)uj , d(uj − uk)⟩+ 2ϵ2⟨dAj , d(Aj −Ak)⟩+ ϵ−2W ′(uj)[uj − uk]) + o(1)

as j, k → ∞. For the difference

Dj,k := dEϵ(uj , Aj)[uj − uk, Aj −Ak]− dEϵ(uk, Ak)[uj − uk, Aj −Ak],

we then see that

Dj,k =

∫
M
(2|d(uj − uk)|2 + 2ϵ2|d(Aj −Ak)|2 + ϵ−2(W ′(uj)−W ′(uk))[uj − uk]) + o(1)

as j, k → ∞.
Now, by our assumption (G) on the structure ofW (u), it is not difficult to check (see,

e.g., [17, Corollary 1]) that the zeroth order term in our computation for Dj,k satisfies
a lower bound

(W ′(uj)−W ′(uk))[uj − uk] ≥ C−1|uj − uk|p − C|uj − uk|
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for some constant C > 0. In particular, it follows now from the preceding computations
and the L1 convergence uj → u∞ that

Dj,k ≥
∫
M
(2|d(uj − uk)|2 + 2ϵ2|d(Aj −Ak)|2 + C−1ϵ−2|uj − uk|p) + o(1)

as j, k → ∞. On the other hand, since dEϵ(uj , Aj) → 0 and

∥(uj − uk, Aj −Ak)∥(uj ,Aj) ≤ C

for all j and k, by assumption we know also that

Dj,k → 0 as j, k → ∞,

and it then follows that (uj , Aj) is Cauchy in X. In particular, (uj , Aj) converges
strongly to (u∞, A∞), which necessarily satisfies

dEϵ(u∞, A∞) = lim
j→∞

dEϵ(uj , Aj) = 0. □

Having confirmed that the energies Eϵ satisfy a Palais–Smale condition, we now argue
in roughly the same spirit as [10], [33] to produce nontrivial critical points via min-max
methods. To begin, note that the space X splits as C ⊕ Y , where C is identified with
the set of constant couples (α, 0) and

Y :=
{
(u,A) ∈ X :

∫
M
u = 0

}
.

Definition 7.7. Let Γ denote the set of continuous families of couples F : D → X
parametrized by the closed unit disk D, with

F (eiθ) = (eiθ, 0)

for all θ ∈ R. Equivalently, under the above identification C ⊂ X, we require F |∂D = id.
We denote by ωϵ(M) the “width” of Γ with respect to the energy Eϵ, namely

ωϵ(M) := inf
F∈Γ

max
y∈D

Eϵ(F (y)).

Thanks to Proposition 7.6, we can apply classical min-max theory for C1 functionals
on Banach spaces (see e.g. [15, Theorem 3.2]) to conclude that ωϵ is achieved as the
energy of a smooth critical couple (uϵ, Aϵ). In the following proposition, we show that
ωϵ(M) is positive, so that the corresponding critical couples (uϵ, Aϵ) are nontrivial.

Proposition 7.8. We have ωϵ(M) > 0.

Proof. We argue by contradiction, though the proof could be made quantitative. Since
we are proving only the positivity ωϵ(M) > 0 at this stage—making no reference to the
dependence on ϵ—in what follows we take ϵ = 1 for convenience. Assume that we have
a family F ∈ Γ with maxy∈D E(F (y)) < δ, with δ very small. Writing F (y) = (u,A),
this implies that

∥A− h(A)∥W 1,2 ≤ C∥dA∥L2 < Cδ1/2, ∥DA∥L2 ≤ C(δ1/2 + ∥h(A)∥).(7.6)

When b1(M) ̸= 0, some additional work is required to deduce that the harmonic part
h(A) of A must also be small for all couples (u,A) = F (y) in the family. In particular,
we will need to employ the following lemma, showing that h(A) lies close to the integral
lattice Λ ⊂ H1(M) when E(u,A) < δ.
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Lemma 7.9. There exists C(M) < ∞ such that if (u,A) ∈ X satisfies E(u,A) < δ,
with δ small enough, then

dist(h(A),Λ) ≤ Cδ1/2.

Proof. As in [33], it is convenient to define a box-type norm | · |b on the space H1(M)
of harmonic one-forms as follows. Fix a collection γ1, . . . , γb1(M) ∈ C∞(S1,M) of em-

bedded loops generating H1(M ;Q) and, for h ∈ H1(M), set

(7.7) |h|b := max
1≤i≤b1(M)

∣∣∣ ∫
γi

h
∣∣∣.

Since H1(M) is finite-dimensional, this is of course equivalent to any other norm on
H1(M). Assuming for simplicity that M is orientable, we may fix a collection of dif-
feomorphisms Φi : B

n−1
1 (0)× S1 → T (γi) onto tubular neighborhoods T (γi) of γi, such

that Φi(0, θ) = γi(θ). For every t ∈ Bn−1
1 , set γti (θ) := Φi(t, θ).

Suppose now that (u,A) ∈ X satisfies the energy bound

(7.8) E(u,A) =

∫
M
(|du− iuA|2 + |dA|2 +W (u)) < δ.

As a consequence of the curvature bound ∥dA∥L2 ≤ δ1/2 and the definition of X, it
follows that

∥A− h(A)∥2L2 ≤ Cδ

as well. As in the proof of Proposition 7.6, applying a gauge transformation ϕ · (u,A)
by an appropriate choice of harmonic map ϕ :M → S1, we may assume moreover that

|h(A)|b = distb(h(A),Λ) ≤ π,

which together with the energy bound (7.8) and the definition of X leads us to the
estimate

(7.9)

∫
M

|A|2 ≤ C(M).

(Note that making a harmonic change of gauge preserves not only the energy E(u,A),
but also the distance distb(h(A),Λ), so it indeed suffices to establish the desired estimate
in this gauge.)

Combining these estimates with a simple Fubini argument, we see that there exists
a nonempty set S of t ∈ Bn−1

1 for which

(7.10)

∫
γti

(|du− iuA|2 + |dA|2 +W (u)) < Cδ,

(7.11)

∫
γti

|A− h(A)|2 < Cδ,

and

(7.12)

∫
γti

|A|2 ≤ C.

Recalling the pointwise bound (7.2) for W (u), observe next that

|d(1− |u|)2| = 2(1− |u|)|d|u|| ≤ CW (u) + |du− iuA|2,
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so that, along a curve γti satisfying (7.10), it follows that

(7.13) ∥(1− |u|)2∥C0 ≤ C∥(1− |u|)2∥W 1,1 ≤ Cδ.

Now, choose δ < δ1(M) sufficiently small that (7.13) gives

∥1− |u|∥C0 ≤ η <
1

2

on γti , so that ϕ := u/|u| defines there an S1-valued map ϕ : γti → S1, whose degree is
given by

2π deg(ϕ) =

∫
γti

|u|−2⟨du, iu⟩.

When (7.10)–(7.12) hold, we observe next that∫
γti

|u|2|A− |u|−2⟨iu, du⟩| =
∫
γti

|⟨iu, iuA− du⟩| ≤ Cδ1/2.

Since |u| ≥ 1
2 on γti , it follows that

(7.14)
∣∣∣2π deg(ϕ)− ∫

γti

A
∣∣∣ ≤ ∫

γti

|A− |u|−2⟨iu, du⟩| ≤ Cδ1/2

as well. Combining this with (7.11), we then deduce that∣∣∣2π deg(ϕ)− ∫
γti

h(A)
∣∣∣ ≤ Cδ1/2.(7.15)

On the other hand, we already made a gauge transformation so that∣∣∣ ∫
γi

h(A)
∣∣∣ = ∣∣∣ ∫

γti

h(A)
∣∣∣ ≤ π.

So, for δ chosen sufficiently small that Cδ1/2 < π, it follows that the degree deg(ϕ) = 0.
In particular, we can now conclude that

|h(A)|b = max
i

∣∣∣ ∫
γi

h(A)
∣∣∣ ≤ Cδ1/2,

giving the desired estimate. □

Remark 7.10. If M is not orientable, we have the weaker conclusion dist(h(A), 12Λ) ≤
Cδ1/2 (still sufficient for the sequel): indeed, whenever γi reverses the orientation, we
can still parametrize a double cover of T (γi) in the same way, with γti homotopic to
γi traveled twice; in this case, the bound (7.15) implies that 2

∫
γi
h(A) =

∫
γti
h(A) has

distance to 2πZ bounded by Cδ1/2, from which the claim follows.

Returning to the proof of Proposition 7.8, suppose again that we have a family
D ∋ y 7→ F (y) ∈ X in Γ with

max
y∈D

E(F (y)) < δ.

For δ < δ1(M) sufficiently small, it follows from the lemma that distb(h(A),Λ) < π for
every couple (u,A) = F (y) in the family. In particular, since the assignment (u,A) 7→
h(A) gives a continuous map X → H1(M), and since h(A) = A = 0 for y ∈ ∂D, it
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follows that 0 is the nearest point in the lattice Λ to h(A) for every y ∈ D, and the
estimate therefore becomes

∥h(A)∥ ≤ Cδ1/2.

In particular, combining this with (7.6), we see now that

(7.16) ∥A∥W 1,2 ≤ Cδ1/2

for every couple (u,A) = F (y) in the family.
Now, for (u,A) = F (y), our structural assumption (G) on W (u) gives

∥u∥pLp ≤ C + E(u,A) ≤ C + δ,

which together with the smallness

∥A∥L2∗ ≤ C∥A∥W 1,2 ≤ Cδ1/2

of A in L2∗ (recalling that p > n) gives∫
M

|uA|2 ≤ Cδ.

Combining this with the fact that
∫
M |du − iuA|2 ≤ E(u,A) < δ by assumption, we

then deduce that ∫
M

|du|2 ≤ Cδ

as well.
Finally, by (7.2) and the Poincaré inequality, we have

1−
∣∣∣ 1

vol(M)

∫
M
u
∣∣∣ ≤ C

∫
M

|1− |u||+ C

∫
M

∣∣∣u− 1

vol(M)

∫
M
u
∣∣∣

≤ C
(∫

M
W (u)

)1/2
+ C

(∫
M

|du|2
)1/2

≤ Cδ1/2.

As a consequence, we find that
∫
M uy is nonzero for all (uy, Ay) = F (y) in the family.

But then the averaging map

D → C, y 7→
∫
M uy

|
∫
M uy|

(7.17)

gives a retraction D → ∂D, whose nonexistence is well known. This gives the desired
contradiction. □

Having shown positivity ωϵ(M) > 0 of the min-max energies, we can now deduce the
lower bound in (7.1) from the following simple fact.

Proposition 7.11. There exist c(M) > 0 and ϵ0(M) > 0 such that the following holds,
for ϵ ≤ ϵ0. If (u,∇) is critical for the functional Eϵ, then either Eϵ(u,∇) ≥ c or
Eϵ(u,∇) = 0.

Remark 7.12. For future reference, we make the obvious observation that the trivial
case Eϵ(u,∇) = 0 can only occur when the bundle L is trivial.
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Proof. By Proposition 7.5, critical points are smooth up to change of gauge. We claim
that, whenever Eϵ(u,∇) > 0, u has to vanish at some point x0 ∈ M . Once we have
this, assume e.g. Eϵ(u,∇) ≤ 1; Corollary 4.4 (with Λ = 1) gives a constant ϵ0 > 0 such
that r2−nEϵ(u,∇, Br(x0)) has a lower bound independent of ϵ and r, for any radius
ϵ < r < inj(M), provided that ϵ ≤ ϵ0.

We show the contrapositive, namely we assume that u is nowhere vanishing and show
that the energy is zero. Note that L must be trivial and we can use the section u

|u| to

identify L isometrically with the trivial line bundle C×M , equipped with the canonical
Hermitian metric. Under this identification, u : M → C takes values into positive real
numbers. Writing ∇ = d− iA and observing that ⟨∇u, iu⟩ = −|u|2A, (2.5) becomes

ϵ2d∗dA+ |u|2A = 0.

Integrating against A we get
∫
M (ϵ2|dA|2 + u2|A|2) = 0, so A = 0 and ∇ is the trivial

connection. At a minimum point y0 for u, (3.4) gives

0 ≤ 1

2
∆|u|2 = |du|2 − 1

2ϵ2
(1− |u|2)|u|2 = − 1

2ϵ2
(1− u2)u2,

which forces u(y0) ≥ 1 and thus u = 1 everywhere, giving Eϵ(u,∇) = 0. □

Finally, we turn to the uniform upper bound. In the next statement, L → M is a
Hermitian line bundle with a fixed Hermitian reference connection ∇0. We identify any
other Hermitian connection ∇ with the real one-form A such that ∇s = ∇0s − is ⊗ A
for all sections s.

Proposition 7.13. Given a smooth section u : M → L, we can find a smooth couple
(u′, A′) such that

Eϵ(u
′, A′) ≤ Cϵ−2 vol

({
|u| ≤ 1

2

})
+ C(1 + ϵ2∥∇0u∥2L∞)

∫
{|u|≤ 1

2
}
|∇0u|2

+ Cϵ2
∫
M

|ω0|2
(7.18)

for a universal constant C.

Proof. On {u ̸= 0} we let

w :=
u

|u|
, iw ⊗A := ∇0w.

Note that the compatibility of ∇0 with the Hermitian metric on L forces ⟨∇0w,w⟩ = 0,
so that A is a real one-form.

We fix a smooth function ρ : [0,∞] → [0, 1] with

ρ(t) = 0 for t ≤ 1

4
, ρ(t) = 1 for t ≥ 1

2
and we set

(u′, A′) := ρ(|u|)(w,A),
where the right-hand side is meant to be zero on {u = 0}.

Writing F∇0 = −iω0, observe that (∇0 − iA)w = 0, hence

|dA+ ω0| = |FA| = 0 on {u ̸= 0}.
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In particular, eϵ(u
′, A′) = 0 on {|u| > 1

2}.
From the estimates |d|u|| ≤ |∇0u| and |A| = |∇0w| ≤ 2|u|−1|∇0u|, it follows that also

|∇0u
′| ≤ C|∇0u|,

|A′| ≤ C|∇0u|,
|dA′| ≤ |ρ′(|u|)d|u| ∧A|+ |ω0| ≤ C|∇0u||d|u||+ |ω0|,

and the statement follows immediately. □

Proof of (7.1). The method used in [33, Section 3] gives a continuous map H : D →
W 1,2 ∩ C0(M,C) such that H(y) ≡ y for y ∈ ∂D and

∥dH(y)∥L∞ ≤ Cϵ−1,∫
{|H(y)|≤ 3

4
}
|dH(y)|2 ≤ C,

vol
({

|H(y)| ≤ 3

4

})
≤ Cϵ2

(7.19)

for all y ∈ D—the full Dirichlet energy having a worse bound
∫
M |dH(y)|2 ≤ C log ϵ−1,

which is the natural one in the setting of Ginzburg–Landau. By approximation, we can
assume that H takes values in C∞(M,C), continuously in y, and still satisfies the same
uniform bounds (7.19) (possibly increasing C and replacing 3

4 with 1
2).

To each section H(y) of the trivial line bundle, Proposition 7.13 assigns in a con-
tinuous way an element F (y) ∈ X. From the way F (y) is constructed, it is clear that
F ∈ Γ. Finally, combining (7.18) with (7.19) gives

ωϵ(M) ≤ max
y∈D

Eϵ(F (y)) ≤ C. □

7.2. Minimizers for nontrivial line bundles.
Suppose now that L is a nontrivial line bundle, equipped with a Hermitian metric.

Fix a smooth Hermitian connection ∇0 and identify any other Hermitian connection ∇
with the real one-form A such that

∇ = ∇0 − iA.

We can define X̂ and X as in the previous subsection. With this notation, observe that
the curvature of ∇ is given by

F∇ = F∇0 − idA.

Hence, writing F∇0 = −iω0, we have

Eϵ(u,∇) =

∫
M

|∇0u− iu⊗A|2 + ϵ−2

∫
M
W (u) + ϵ2

∫
M

|ω0 + dA|2.

Definition 7.14. For a fixed n < p <∞, we define X̂ to be the Banach space of couples
(u,A), where u : M → L is an Lp section and A ∈ Ω1(M,R), both of class W 1,2, with
the norm

∥(u,A)∥ := ∥u∥Lp + ∥∇0u∥L2 + ∥A∥L2 + ∥DA∥L2 .

We let X := {(u,A) ∈ X̂ : d∗A = 0}.
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The analogous statements to Remark 7.4 and Propositions 7.5 and 7.6 hold, with
identical proofs (replacing du and uA with ∇0u and u⊗A, respectively).

Arguing as in the proof of Proposition 7.6, it is easy to see that a minimizing sequence
for Eϵ in X converges weakly—up to change of gauge—to a global minimizer (uϵ, Aϵ).
We now show that the energy of these minimizers enjoys uniform upper and lower
bounds as ϵ→ 0.

Proof of (7.1). The lower bound in (7.1) follows directly from Proposition 7.11 and
Remark 7.12. In order to obtain the upper bound, pick a smooth section s : M → L
transverse to the zero section (see, e.g., [24, Theorem IV.2.1]) and let N := {s = 0},
which is a smooth embedded (n − 2)-submanifold of M . Proposition 7.13 applied to
ϵ−1s gives a couple (u′ϵ, A

′
ϵ) with

Eϵ(u
′
ϵ, A

′
ϵ) ≤ Cϵ−2 vol

({
|ϵ−1s| ≤ 1

2

})
+ Cϵ2

∫
M

|ω0|2.

By transversality of s, the set {|s| ≤ ϵ
2} is contained in a C(s)ϵ-neighborhood of N ,

whose volume is bounded by C(s)ϵ2. We infer that

Eϵ(uϵ, Aϵ) ≤ Eϵ(u
′
ϵ, A

′
ϵ) ≤ Cϵ−2 vol

({
|s| ≤ ϵ

2

})
+ C ≤ C. □

Remark 7.15. When M is oriented, N can be oriented in such a way that [N ] ∈
Hn−2(M,R) is Poincaré dual to the Euler class e(L) ∈ H2(M,R) of the line bundle,
which equals the first Chern class c1(L). The fact that the energy of our competitors
concentrates along N suggests that, given a sequence of global minimizers (uϵ, Aϵ), up
to subsequences the corresponding energy concentration varifold is induced by an inte-
gral mass-minimizing current whose homology class is Poincaré dual to c1(L). Theorem
6.10 provides the natural candidate Γ, which also satisfies |Γ| ≤ µ.

Appendix. Interior regularity in the Coulomb gauge

In this short appendix, we describe the essential ingredients needed to establish local
regularity in the Coulomb gauge for finite-energy critical points (u,A) of the (ϵ = 1)
abelian Higgs energy E(u,A), collecting some estimates which will be of use elsewhere
in the paper.

Consider the manifold with boundary (Ω
n
, g) given by a smooth, contractible domain

Ωn ⊂⊂ Rn equipped with a C2 metric g, and let L ∼= C × Ω be the trivial line bundle
over Ω, with the standard Hermitian structure. With respect to the metric g, we then
define the Yang–Mills–Higgs energy

E(u,A) :=

∫
Ω
e(u,A) =

∫
Ω
|du− iu⊗A|2 + |dA|2 +W (u)

as in the preceding section. By (the first part of) Proposition 7.5, it is easy to see that
a pair (u,A) in W 1,2 with

(A.1) |u| ≤ 1
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is a critical point for E (with respect to smooth perturbations supported in Ω) if and
only if the equations

d∗dA = ⟨du− iu⊗A, iu⟩,(A.2)

∆u = 2⟨idu,A⟩+ |A|2u− 1

2
(1− |u|2)u− i(d∗A)u(A.3)

are satisfied distributionally in Ω, where all geometric quantities and operators are
defined with respect to the metric g.

Now, given a pair (u,A) in W 1,2 satisfying (A.2)–(A.3) and

(A.4) E(u,A) ≤ Λ <∞,

we can select a local Coulomb gauge adapted to Ω as follows. Denote by θ ∈W 2,2(Ω,R)
the unique solution of the Neumann problem

(A.5) ∆θ = d∗A in Ω;
∂θ

∂ν
= −A(ν) on ∂Ω

with zero mean
∫
Ω θ = 0. Then the gauge-transformed pair

(ũ, Ã) := (eiθu,A+ dθ)

lies in W 1,2 and continues to satisfy (A.2)–(A.3), with

E(ũ, Ã) = E(u,A) ≤ Λ,

but now with the additional constraints

(A.6) d∗Ã = 0 on Ω; Ã(ν) = 0 on ∂Ω.

For the remainder of the section, we will assume that the pair (u,A) is already in the
Coulomb gauge on Ω, so that A satisfies (A.6). Note that (A.2)–(A.3) then become

∆u = 2⟨idu,A⟩+ |A|2u− 1

2
(1− |u|2)u,(A.7)

∆HA = ⟨du− iu⊗A, iu⟩.(A.8)

We now establish the local regularity for critical points (u,A) in the Coulomb gauge,
giving in particular local estimates for (u,A) in W 2,q norms.

Proposition A.1. Let (u,A) solve (A.2)–(A.3) in the Coulomb gauge (A.6) on (Ω, g),
with |u| ≤ 1. If

(A.9) E(u,A; Ω) ≤ Λ

and

(A.10) ∥g∥C2 + ∥g−1∥C2 ≤ Λ,

then for every compactly supported subdomain Ω′ ⊂⊂ Ω and q ∈ (1,∞) there exists
Cq(Λ,Ω,Ω

′) <∞ such that

(A.11) ∥u∥W 2,q(Ω′) + ∥A∥W 2,q(Ω′) ≤ Cq.
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Proof. To begin, note that (A.8) and standard Bochner–Weitzenböck identities give the
(weak) subequation

∆
1

2
|A|2 = −⟨∆HA,A⟩+ |DA|2 +Ric(A,A)

≥ −|du− iu⊗A||A|+ |DA|2 − C(Λ)|A|2
(A.12)

for |A|2. On the other hand, as in Section 3, we also obtain from (A.3) the relation

∆
1

2
|u|2 = |du− iu⊗A|2 − 1

2
(1− |u|2)|u|2.(A.13)

Recalling that |u| ≤ 1 and using Young’s inequality, we can combine (A.12)–(A.13) to
find an estimate of the form

(A.14)
1

2
∆(|A|2 + |u|2) ≥ α(|DA|2 + |du|2)− C(α,Λ)|A|2 − C(Λ),

for any 0 < α < 1.
By standard estimates for one-forms A satisfying (A.6) (see, e.g., [20, Theorem 4.8]),

we have the global L2 bound

∥A∥W 1,2(Ω) ≤ C(Λ,Ω)∥dA∥L2(Ω) ≤ C(Λ,Ω),

hence |u|, |A| are both bounded in W 1,2 in terms of Λ (and Ω).
Note that (A.8) gives a local W 2,2 bound on A, by standard elliptic regularity. This,

together with Sobolev embedding and (A.7), gives

∥u∥W 2,p(Ω0) + ∥A∥W 2,2(Ω0) + ∥|A|p∥W 1,2(Ω0) ≤ C(Λ,Ω,Ω0)(A.15)

for all Ω0 ⊂⊂ Ω and some 1 < p < 2, depending only on n. We need the following
observation, stated and proved separately for the sake of clarity.

Lemma A.2. Defining f ∈W 1,2(Ω) by

f := (1 + |A|2 + |u|2)1/2,

we have the subequation

∆fp ≥ −C(p,Λ)fp(A.16)

and, for all Ω0 ⊂⊂ Ω,

∥fp∥W 1,2(Ω0) ≤ C(Λ,Ω,Ω0).

Proof. Since u ∈ L∞ ∩W 1,2 ∩W 2,p
loc and A ∈W 2,2

loc , a standard approximation argument

shows that |u|2, |A|2 ∈W 2,1
loc , so that (A.14) holds pointwise a.e.

Likewise, we have f ∈W 2,1
loc and the chain rule applies, giving

∆f = f−1(|DA|2 + |du|2 − ⟨A,D∗DA⟩+ ⟨u,∆u⟩)− f−1|df |2

pointwise. The first term equals f−1∆1
2f

2, so recalling (A.14) we obtain

∆f ≥ αf−1(|DA|2 + |du|2)− C(α,Λ)f − f−1|df |2.



MINIMAL SUBMANIFOLDS FROM THE ABELIAN HIGGS MODEL 51

Also, since f ∈W 1,2 ∩W 2,p
loc , we have the pointwise inequalities

∆fp = p(p− 1)fp−2|df |2 + pfp−1∆f

≥ pαfp−2(|DA|2 + |du|2)− C(α,Λ)fp + p(p− 2)fp−2|df |2

≥ p(α+ p− 2)fp−2|df |2 − C(α,Λ)fp.

Choosing α := 2−p, inequality (A.16) follows. The second claim is an easy consequence
of (A.15) and the fact that |u| ≤ 1. □

Returning to the proof of Proposition A.1, we can now apply Moser iteration to
(A.16), obtaining in particular that

(A.17) ∥A∥L∞(Ω1) ≤ C(Λ,Ω,Ω1)

for any Ω1 ⊂⊂ Ω.
Now, fixing some intermediate domain Ω′ ⊂⊂ Ω1 ⊂⊂ Ω between Ω′ and Ω, (A.7)

together with the L∞(Ω1) estimate for A give pointwise bounds of the form

(A.18) |∆u| ≤ C(Λ,Ω,Ω1)(|du|+ 1) in Ω1.

And since
|du| ≤ |du− iu⊗A|+ |A| ≤ e(u,A) + C

in Ω1, we obtain from the energy bound E(u,A) ≤ Λ and (A.18) the simple estimate

∥∆u∥L2(Ω1) ≤ C(Λ,Ω,Ω1),

and consequently
∥u∥W 2,2(Ω2) ≤ C

for any Ω′ ⊂⊂ Ω2 ⊂⊂ Ω1. Returning to the pointwise bound (A.18), we can now
employ a simple iteration argument—combining Lq regularity theory with the Sobolev

embedding W 2,r ↪→ W 1, rn
n−r—over successive domains between Ω′ and Ω, to arrive at

the desired W 2,q estimates for u.
Returning finally to (A.8), it therefore follows from the preceding estimates that

∥A∥L∞(Ω′′) + ∥∆HA∥L∞(Ω′′) ≤ C(Λ,Ω,Ω′′)

for some intermediate domain Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. In particular, this gives us upper
bounds for ∥∆A∥Lq(Ω′′) for every q ∈ (1,∞), and Lq regularity theory therefore gives us

the desired estimates for A in W 2,q(Ω′). □

Finally, we remark that higher regularity of u and A in the Coulomb gauge follows
in a standard way—e.g., via Schauder theory—from the W 2,q estimates obtained in the
preceding proposition.

Remark A.3. With local regularity established, note that it is easy to find a globally

smooth couple (ũ, ∇̃) gauge equivalent to any critical pair (u,∇) for Eϵ on L → M .
Indeed, for any critical pair (u,∇) with u ∈W 1,2∩L∞ and ∇ = ∇0− iA (where ∇0 is a
smooth reference connection and A ∈W 1,2), it follows from the local regularity results
above that the gauge-invariant objects |u|2 and dA = F∇ − F∇0 are smooth globally.

Making a change of gauge (u,∇) → (ũ, ∇̃ = ∇0 − iÃ) such that

dÃ = dA and d∗Ã = 0,
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it follows from the smoothness of dA that the new connection ∇̃ = ∇0 − iÃ is smooth.
And since ũ satisfies

∇̃∗∇̃ũ =
1

2ϵ2
(1− |u|2)ũ

where both ∇̃ and |u|2 are smooth, standard results for linear elliptic equations imply
that ũ ∈ Γ(L) is a smooth section as well.
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