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Abstract. We give a detailed proof of some facts about the blow-up of horizontal

curves in Carnot–Carathéodory spaces.

1. Introduction

One of the main open problems in sub-Riemannian geometry regards the study of

the regularity of length minimizing curves. Several related technical issues appear

when one uses a blow-up procedure to pass to the nilpotent approximation around

a given point. Typical problems one has to face when passing to such a “tangent”

structure concern: proving that any blow-up κ of a length minimizer γ is length mini-

mizing in the nilpotent approximation; proving that κ is parametrized by arclength if

so is γ; proving that a curve with left (respectively, right) derivative gives a (suitably

defined) left (resp., right) half-line κ in the blow-up.

In this paper we give detailed proofs of these facts: in a special case, some of them

were already sketched in [17, Section 3.2]. Though of a technical nature, these results

are crucially used in [9, 11, 14]. The papers [9, 11] deal with the minimality problem

for curves with corner-type singularities, i.e., for curves possessing a point where left

and right derivatives to the curve exist and are not equal. In [14] it was shown that

the tangent cone (see Definition 3.1) to a length minimizer at any of its (interior)

points contains a horizontal line; in doing so, one uses the rich algebraic structure of

the nilpotent approximation and, actually, of the Carnot group lifting the nilpotent

approximation, see Section 4 below.

Let M be a connected n-dimensional C∞-smooth manifold and X = {X1, . . . , Xr},
r ≥ 2, a system of C∞-smooth vector fields on M that are pointwise linearly indepen-

dent and satisfy the Hörmander condition introduced below. We call the pair (M,X )

a Carnot–Carathéodory (CC) structure. Given an interval I ⊆ R, a Lipschitz curve

2010 Mathematics Subject Classification. 53C17, 49K30, 28A75.
Key words and phrases. Length minimizers, Carnot–Carathéodory spaces, sub-Riemannian ge-
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γ : I → M is said to be horizontal if there exist functions h1, . . . , hr ∈ L∞(I) such

that for a.e. t ∈ I we have

γ̇(t) =
r∑
i=1

hi(t)Xi(γ(t)). (1.1)

The function h ∈ L∞(I;Rr) is called the control of γ. Letting |h| := (h21+ . . .+h2r)
1/2,

the length of γ is then defined as

L(γ) :=

∫
I

|h(t)| dt.

Since M is connected, by the Chow–Rashevsky theorem (see e.g. [4, 16, 3]) for any

pair of points x, y ∈M there exists a horizontal curve joining x to y. We can therefore

define a distance function d : M ×M → [0,∞) letting

d(x, y) := inf
{
L(γ) | γ : [0, T ]→M horizontal with γ(0) = x and γ(T ) = y

}
. (1.2)

The resulting metric space (M,d) is a Carnot–Carathéodory space. Since our analysis

is local, our results apply in particular to sub-Riemannian manifolds (M,D , g), where

D ⊂ TM is a completely non-integrable distribution and g is a smooth metric on D .

If the closure of any ball in (M,d) is compact, then the infimum in (1.2) is a

minimum, i.e., any pair of points can be connected by a length-minimizing curve. A

horizontal curve γ : [0, T ]→M is a length minimizer if L(γ) = d(γ(0), γ(T )).

The main contents of the paper are the following:

(i) we define a tangent Carnot–Carathéodory structure (M∞,X ∞) at any point of M ,

using exponential coordinates of the first kind, see Section 2;

(ii) in Section 3, we define the tangent cone for a horizontal curve, at a given time, as

the set of all possible blow-ups in (M∞,X ∞) of the curve, and we show that this

cone is always nonempty, see Proposition 3.2;

(iii) we show that, if the curve has a right derivative at the given time, the (positive)

tangent cone consists of a single half-line, see Theorem 3.5;

(iv) if the curve is a length minimizer, in Theorem 3.6 we show that all the blow-ups

are length minimizers in (M∞,X ∞), as well;

(v) in Section 4, we show that a tangent Carnot–Carathéodory structure can be lifted

to a free Carnot group. Most of the results in this section are well known (see [10]).

However, we add some details on the stability of length minimality under lifting.

In this paper we chose to work in exponential coordinates of the first kind. Some

of the results hold and are well known in a general system of privileged coordinates.

However, one of the key results, namely Theorem 3.5, is valid only in exponential

coordinates of the first kind: see Remark 3.10. In Remark 3.11 we discuss a statement

of Theorem 3.5 valid in a general system of privileged coordinates. Also, it is possible
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to define the tangent cone in a coordinate-free way based solely on the controls: see

Remark 3.13.

We also decided to work with a system of pointwise linearly independent vector

fields (constant rank). This assumption makes the proof of Theorem 2.3 less compli-

cated. We believe that our results also hold for a system of Hörmander vector fields

with varying rank.

Finally, it is our pleasure to thank the two anonymous referees. Their careful

reading and detailed comments helped us to improve the paper in a substantial way.

2. Nilpotent approximation: definition of a tangent structure

In this section we introduce some basic notions about Carnot–Carathéodory spaces.

Then we describe the structure of a specific frame of vector fields Y1, . . . , Yn (con-

structed below) in exponential coordinates, see Theorem 2.3. We also prove a lemma

describing the infinitesimal behaviour of the Carnot–Carathéodory distance d near 0,

with respect to suitable anisotropic dilations, see Lemma 2.4. General references for

this section are [1, 2, 10].

We denote by Lie(X1, . . . , Xr) the real Lie algebra generated by X1, . . . , Xr through

iterated commutators. The evaluation of this Lie algebra at a point x ∈M is a vector

subspace of the tangent space TxM . If, for any x ∈M , we have

Lie(X1, . . . , Xr)(x) = TxM,

we say that the system X = {X1, . . . , Xr} satisfies the Hörmander condition and we

call the pair (M,X ) a Carnot–Carathéodory (CC) structure.

Given a point x0 ∈ M , let ϕ ∈ C∞(U ;Rn) be a chart such that U is an open

neighborhood of x0 and ϕ(x0) = 0. Then V := ϕ(U) is an open neighborhood of

0 ∈ Rn and the system of vector fields Yi := ϕ∗Xi, with i = 1, . . . , r, still satisfies the

Hörmander condition in V .

For a multi-index J = (j1, . . . , jk) with k ≥ 1 and j1, . . . , jk ∈ {1, . . . , r}, define the

iterated commutator

YJ := [Yj1 , . . . , Yjk−1
, Yjk ]

where, here and in the following, for given vector fields V1, . . . , Vq we use the short

notation [V1, . . . , Vq] to denote the commutator [V1, [· · · , [Vq−1, Vq] · · · ]]. We say that

YJ is a commutator of length `(J) := k and we denote by Lj the linear span of

{YJ(0) | `(J) ≤ j}, so that

{0} = L0 ⊆ L1 ⊆ · · · ⊆ Ls = Rn

for some minimal s ≥ 1. We select multi-indices J1 = (1), . . . , Jr = (r), Jr+1, . . . , Jn
such that, for each 1 ≤ j ≤ s,

`(JdimL(j−1)+1) = · · · = `(JdimLj) = j
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and such that, setting Yi := YJi , the vectors Y1(0), . . . , YdimLj(0) form a basis of Lj.

In particular, we have dimL1 = r.

Possibly composing ϕ with a diffeomorphism (and shrinking U and V ), we can

assume that for any point x = (x1, . . . , xn) ∈ V we have

x = exp
( n∑
i=1

xiYi

)
(0). (2.3)

Such coordinates (x1, . . . , xn) are called exponential coordinates of the first kind as-

sociated with the frame Y1, . . . , Yn. To each coordinate xi we assign the weight

wi := `(Ji) and we define the anisotropic dilations δλ : Rn → Rn

δλ(x) := (λw1x1, . . . , λ
wnxn), λ > 0. (2.4)

Definition 2.1. A function f : Rn → R is δ-homogeneous of degree w ∈ N if

f(δλ(x)) = λwf(x) for all x ∈ Rn, λ > 0. We will refer to such a w as the δ-degree of

f .

We will frequently use the anisotropic (pseudo-)norm

‖x‖ :=
n∑
i=1

|xi|1/wi , x ∈ Rn. (2.5)

The norm function, x 7→ ‖x‖, is δ-homogeneous of degree 1.

We recall two facts about the exponential map, which are discussed e.g. in [15,

pp. 141–147]. First, for any ψ ∈ C∞(V ), we have the Taylor expansion

ψ
(

exp
( n∑
i=1

siYi

)
(0)
)
∼
(
e
∑
i siYiψ

)
(0) (2.6)

where

• the left-hand side is a function of s ∈ Rn near 0;

• the right-hand side is a shorthand for the formal series
∞∑
k=0

1

k!
((s1Y1 + · · ·+ snYn)kψ)(0) =

∞∑
k=0

1

k!

∑
i1,...,ik∈{1,...,n}

si1 · · · sik(Yi1 · · ·Yikψ)(0);

• given a smooth function f(x) and a formal power series S(x), we define the

relation f(x) ∼ S(x) if the formal Taylor series of f(x) at 0 is S(x).

Second, letting S :=
∑n

i=1 siYi and T :=
∑n

i=1 tiYi, the following formal Taylor

expansions hold as well:

ψ
(

exp(S) ◦ exp(T )(0)
)
∼
(
eT eSψ

)
(0) = (eP (T,S)ψ)(0), (2.7)

where

P (T, S) :=
∞∑
p=1

(−1)p+1

p

∑
ki+`i≥1

[T k1 , S`1 , . . . , T kp , S`p ]

k1! · · · kp!`1! · · · `p!(k1 + `1 + · · ·+ kp + `p)
. (2.8)
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Above, the notation T k stands for T, . . . , T , k times.

Remark 2.2. The formal power series identity eT eS = eP (T,S) is a purely algebraic

fact which holds in any (noncommutative, graded, complete) associative real algebra,

see e.g. [8, Section X.2]: this principle will be used in the proofs of Theorem 2.3 and

Lemma 2.4.

The following theorem is proved using exponential coordinates of the first kind.

In the case of exponential coordinates of the second kind, the theorem is proved in

[7]. Theorem 2.3 is also used in [5], where fine properties of functions with bounded

variation (with respect to a family of vector fields) are studied using exponential

coordinates of the first kind.

Theorem 2.3. The vector fields Y1, . . . , Yn are of the form

Yi(x) =
n∑
j=i

aij(x)
∂

∂xj
, x ∈ V, i = 1, . . . , n, (2.9)

where aij ∈ C∞(V ) are functions such that aij = pij + rij and:

(i) for wj ≥ wi, pij are δ-homogeneous polynomials in Rn of degree wj − wi;
(ii) for wj ≤ wi, pij = δij (in particular, pij = 0 for wj < wi);

(iii) rij ∈ C∞(V ) satisfy rij(0) = 0;

(iv) for wj ≥ wi, rij(x) = o(‖x‖wj−wi) as x→ 0.

Proof. Suppose for a moment that

aij(x) = O(‖x‖wj−wi), i, j = 1, . . . , n, wj ≥ wi. (2.10)

Let pij be the sum of all monomials of δ-degree wj − wi in the Taylor expansion of

aij, with the convention that pij = 0 if wj < wi. Statements (i) and (iv) then hold

by construction, while (ii) and (iii) follow from aij(0) = δij, which is a consequence

of (2.3).

Let us show (2.10). We pullback the identity Yi(x) =
∑

j aij(x) ∂
∂xj

to the origin

using the map exp(−X) (locally defined near x), where X :=
∑

k xkYk, for a fixed

x ∈ V . We have

exp(−X)∗(Yi(x)) =
∑
j

aij(x) exp(−X)∗

( ∂

∂xj
(x)
)
, (2.11)

where the sum ranges from 1 to n. The above equation reads∑
`

bi`(x)Y`(0) =
∑
j,`

aij(x)cj`(x)Y`(0)

for suitable smooth coefficients bi`(x), cj`(x). We claim that

bi`(x) = O(‖x‖w`−wi), cj`(x) = O(‖x‖w`−wj), and cj`(0) = δj`.
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Then, defining A := (aij), B := (bi`) and C := 1 − (cj`) (1 denoting the identity

matrix), we obtain three n×n matrices satisfying B(x) = A(x)(1−C(x)) and C(0) =

0. In particular, 1−C(x) is invertible for x close to 0 and (1−C(x))−1 =
∑∞

p=0C(x)p.

This gives

A(x) =
s∑

p=0

B(x)C(x)p + o(|x|s) =
s∑

p=0

B(x)C(x)p + o(‖x‖s)

for any s ∈ N, and (2.10) easily follows.

The proof of cj`(0) = δj` follows from the definition of cj` and from ∂
∂xj

= Yj(0),

which in turn comes from (2.3), as already observed.

We prove the claim bi`(x) = O(‖x‖w`−wi). By (2.3), the left-hand side of (2.11)

satisfies

exp(−X)∗(Yi(x)) =
d

dt
exp(−X) ◦ exp(tYi) ◦ exp(X)(0)

∣∣∣
t=0
.

Using (2.7) and Remark 2.2, for any smooth ψ we obtain

ψ
(

exp(−X) ◦ exp(tYi) ◦ exp(X)(0)
)
∼ eP (P (X,tYi),−X)ψ(0),

the left-hand side being interpreted as a function of (x, t). We now differentiate

this identity at t = 0. Since W (t) := P
(
P (X, tYi),−X

)
vanishes at t = 0, one

has d
dt

(eW (t)ψ)(0)
∣∣∣
t=0

= d
dt

(W (t)ψ)(0)
∣∣∣
t=0

and, letting ψ range among the coordinate

functions, we deduce that any finite-order expansion in x of exp(−X)∗(Yi(x)) is a

linear combination of terms of the form

xi1 · · · xip [Yi1 , . . . , Yim , Yi, Yim+1 , . . . , Yip ](0)

where p ≥ 1 and 0 ≤ m ≤ p. By Jacobi’s identity, the iterated commutator

[Yi1 , . . . , Yim , Yi, Yim+1 , . . . , Yip ](0) is a linear combination of the vectors YJ(0) with

`(J) = w :=
∑p

q=1wiq + wi and so, by construction, it is a linear combination of the

vectors Y`(0) with w` ≤ w. Hence, letting wα :=
∑n

q=1 αqwq for all α ∈ Nn, we have

exp(−X)∗(Yi(x)) ∼
∑
`

∑
α:wα≥w`−wi

dαi`x
αY`(0),

for suitable coefficients dαi` ∈ R. This gives the required estimate.

The proof of cj`(x) = O(‖x‖w`−wj) is analogous to the preceding argument, once

we observe that

exp(−X)∗

( ∂

∂xj
(x)
)

=
d

dt
exp(−X) ◦ exp(X + tYj)(0)

∣∣∣
t=0
.

We can omit the details. �

Lemma 2.4. For any compact set K ⊂ Rn and any ε > 0 there exist η > 0 and

λ > 0 such that λd(δ1/λ(x), δ1/λ(y)) < ε for all x, y ∈ K with |x − y| < η and all

λ ≥ λ.
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Proof. Let ψ ∈ C∞(V ) be an arbitrary smooth function. Using (2.6) and Remark

2.2, we have the following identity of formal power series in (s, t) ∈ Rn × Rn: letting

S :=
∑n

i=1 siYi and T :=
∑n

i=1 tiYi,

ψ(exp(S)(0)) ∼ (eSψ)(0) = (eT e−T eSψ)(0) = (eT eP (−T,S)ψ)(0). (2.12)

The truncation PN(−T, S) of the series P (−T, S) up to δ-degree N := wn is

PN(−T, S) =
∑

1≤`(J)≤N

qJ(s, t)YJ , (2.13)

where the sum is over all J such that 1 ≤ `(J) ≤ N and qJ is a homogeneous

polynomial with δ-degree `(J), i.e., qJ(δλs, δλt) = λ`(J)qJ(s, t). This follows from the

fact that any iterated commutator [Yi1 , . . . , Yik ] is a constant linear combination of

the vector fields YJ ’s with `(J) =
∑k

j=1wij (which in turn is a consequence of Jacobi’s

identity).

Moreover, using (2.13) and applying (2.7) with the vector fields YJ in place of

Y1, . . . , Yn, we have the following formal Taylor expansion in (s, t) at 0 ∈ R2n

ψ
(

exp(PN(−T, S)) ◦ exp(T )(0)
)
∼
(

eT ePN (−T,S)ψ
)

(0),

which, by (2.12), coincides with the one of ψ(exp(S)(0)) up to δ-degree N . Since

this holds for any ψ, we deduce (for instance letting ψ range among the coordinate

functions) that

exp(S)(0) = exp(PN(−T, S)) ◦ exp(T )(0) + o(|s|N + |t|N),

which by (2.3) gives

s = exp(PN(−T, S))(t) + o(|s|N + |t|N) =: f(s, t) + o(|s|N + |t|N).

Now let s = δ1/λ(x) and t = δ1/λ(y) with x, y ∈ K. Since

qJ(s, t) = λ−`(J)qJ(x, y),

by [15, Theorem 4] we get

d(t, f(s, t)) ≤ C
∑

1≤`(J)≤N

|qJ(s, t)|1/`(J) = Cλ−1
∑

1≤`(J)≤N

|qJ(x, y)|1/`(J),

while, by [15, Lemma 2.20(b)],

d(s, f(s, t)) = O(|s− f(s, t)|1/wn) = o(|s|+ |t|) = o(λ−1),

provided λ is sufficiently large. Thus, by the triangle inequality,

λd(δ1/λ(x), δ1/λ(y)) = λd(s, t) ≤ C
∑

1≤`(J)≤N

|qJ(x, y)|1/`(J) +
ε

2
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for all λ ≥ λ, for a suitably large λ > 0. Finally, since PN(S,−S) = 0, we can

assume that qJ vanishes on the diagonal of K × K (possibly replacing qJ(s, t) with

qJ(s, t)− qJ(s, s)). Hence, by compactness of K, we also have

C
∑

1≤`(J)≤N

|qJ(x, y)|1/`(J) < ε

2

whenever x, y ∈ K are such that |x− y| < η, for a suitably small η > 0. �

We now introduce the vector fields Y ∞1 , . . . , Y ∞r in Rn defined by

Y ∞i (x) :=
n∑
j=1

pij(x)
∂

∂xj
,

and we let X ∞ = {Y ∞1 , . . . , Y ∞r }. The vector fields Y ∞1 , . . . , Y ∞r are known as

the nilpotent approximation of Y1, . . . , Yr at the point 0. In the literature, they are

sometimes denoted by Ŷi. By Proposition 2.5 below, the pair (Rn,X ∞) is a Carnot–

Carathéodory structure. We set M∞ := Rn and we call (M∞,X ∞) a tangent Carnot–

Carathéodory structure to (M,X ) at the point x0 ∈M .

Proposition 2.5. The vector fields Y ∞1 , . . . , Y ∞r are pointwise linearly independent

and satisfy the Hörmander condition in Rn. Moreover, any iterated commutator

Y ∞J := [Y ∞j1 , [. . . , [Y
∞
jk−1

, Y ∞jk ] . . . ]] of length `(J) = k > s vanishes identically.

Proof. We claim that Theorem 2.3 implies Y ∞i = limλ→∞ λ
−1(δλ)∗Yi, for all i =

1, . . . , r, in the (local) C∞-topology (the vector field λ−1(δλ)∗Yi being defined on

δλ(V )). Indeed, since Yi(x) = Y ∞i (x) +
∑

j rij(x) ∂
∂xj

, we have

λ−1((δλ)∗Yi)(x) = Y ∞i (x) +
n∑
j=1

λwj−1rij(δ1/λ(x))
∂

∂xj
,

because λ−1(δλ)∗Y
∞
i = Y ∞i . By Theorem 2.3, the monomials in the Taylor expansion

of rij have δ-degree greater than wj − 1. Thus, for any α ∈ Nn,

∂|α|

∂xα
(λwj−1rij(δ1/λ(x))) = λwj−1−wα

∂|α|rij
∂xα

(δ1/λ(x)),

where wα :=
∑

` α`w`. The monomials in the expansion of
∂|α|rij
∂xα

have δ-degree greater

than wj − 1− wα, hence
∣∣∣∂|α|rij∂xα

(δ1/λ(x))
∣∣∣ = o(λ−(wj−1−wα)) and the claim follows.

In particular, we deduce that for any multi-index J

Y ∞J = lim
λ→∞

λ−`(J)(δλ)∗YJ , (2.14)

in the local C∞-topology. Hence, defining the n× n matrix Dλ :=diag[λw1 , . . . , λwn ]

and recalling that `(Jp) = wp, for all p = 1, . . . , n we have

Y ∞Jp (x) = lim
λ→∞

λ−wpDλYJp(δ1/λ(x)).
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Now the first statement follows from

det(Y ∞J1 , . . . , Y
∞
Jn )(x) = lim

λ→∞
λ−

∑
i wi det(Dλ) det(YJ1 , . . . , YJn)(δ1/λ(x))

= det(YJ1 , . . . , YJn)(0) = det(Y1, . . . , Yn)(0),

which is a nonzero constant. This gives the first part of the statement.

In order to prove the last assertion, we use again the fact that λ−1(δλ)∗Y
∞
i = Y ∞i

for i = 1, . . . , r. For any x ∈ Rn and any J with `(J) > s = wn we have, by (2.14),

Y ∞J (x) = lim
λ→∞

λ−`(J)((δλ)∗YJ)(x) = lim
λ→∞

λ−`(J)DλYJ(δ1/λ(x)).

The right-hand side is bounded by λs−`(J)|YJ(δ1/λ(x))| (if λ ≥ 1), which tends to 0 as

λ→∞. This shows that Y ∞J = 0. �

Remark 2.6. Setting Y ∞i := Y ∞Ji for i = 1, . . . , n, the coordinate functions on M∞ =

Rn are exponential coordinates of the first kind for (Y ∞1 , . . . , Y ∞n ), namely

x = exp
( n∑
i=1

xiY
∞
i

)
(0). (2.15)

for any x ∈ Rn. This follows from the fact that, for λ large enough (depending on x),

we have y := δλ−1(x) ∈ V and, using (2.3) with y in place of x,

x = δλ

(
exp

(∑
i

yiYi

)
(0)
)

= exp
(∑

i

xiλ
−wi(δλ)∗Yi

)
(0)→ exp

(∑
i

xiY
∞
i

)
(0)

as λ→∞, since (2.14) gives λ−wi(δλ)∗Yi → Y ∞i in the local C∞-topology.

3. The tangent cone to a horizontal curve

Let (M,X ) be a CC structure and let γ : [−T, T ] → M be a horizontal curve.

Given t ∈ (−T, T ), let ϕ be a chart centered at x0 = γ(t), as in the previous section,

together with the dilations δλ and the tangent CC structure (M∞,X ∞) introduced

above.

Definition 3.1. The tangent cone Tan(γ; t) to γ at t ∈ (−T, T ) is the set of all

horizontal curves κ : R→M∞ such that there exists an infinitesimal sequence ηi ↓ 0

satisfying, for any τ ∈ R,

lim
i→∞

δ1/ηiϕ
(
γ(t+ ηiτ)

)
= κ(τ),

with uniform convergence on compact subsets of R.

We remark that any limit curve as above is automatically (M∞,X ∞)-horizontal:

see e.g. the proof of Theorem 3.6.

The definition of Tan(γ; t) depends on the choice Y1, . . . , Yn of linearly independent

iterated commutators. It also depends on the chart ϕ. However, the tangent cone

can be described in a coordinate-free way in terms of the controls: see Remark 3.13.
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When γ : [0, T ]→M , the tangent cones Tan+(γ; 0) and Tan−(γ;T ) can be defined in

a similar way: Tan+(γ; 0) contains curves in M∞ defined on [0,∞), while Tan−(γ;T )

contains curves defined on (−∞, 0].

When M = M∞ or M = G is a Carnot group, there is already a group of dilations

on M itself. In such cases, when γ(t) = 0, we define the tangent cone Tan(γ; t) as

the set of horizontal limit curves of the form κ(t) = lim
i→∞

δ1/ηiγ(t+ ηiτ).

The tangent cone is closed under uniform convergence of curves on compact sets.

Proposition 3.2. For any horizontal curve γ : [−T, T ] → M the tangent cone

Tan(γ; t) is nonempty for any t ∈ (−T, T ). The same holds for Tan+(γ; 0) and

Tan−(γ;T ), for a horizontal curve γ : [0, T ]→M .

Proof. We prove that Tan+(γ; 0) 6= ∅. The other cases are analogous.

We use exponential coordinates of the first kind centered at γ(0). By (1.1), we

have a.e.

γ̇ =
r∑
i=1

hiYi(γ) =
n∑
j=1

r∑
i=1

hiaij(γ)
∂

∂xj
,

where hi ∈ L∞([0, T ]) and aij = pij + rij, as in Theorem 2.3. Letting K := γ([0, T ]),

we have |γ̇(t)| ≤ C for some constant depending on ‖aij‖L∞(K) and ‖h‖L∞ . This

implies that |γ(t)| ≤ Ct for all t ∈ [0, T ].

By induction on k ≥ 1, we prove the following statement: for any j satisfying

wj ≥ k we have |γj(t)| ≤ Ctk. The base case k = 1 has already been treated. Now

assume that wj ≥ k > 1 and that the statement is true for 1, . . . , k − 1. Since rij is

smooth, we have rij = qij,k + rij,k, where qij,k is a polynomial containing only terms

with δ-homogeneous degree at least wj − wi + 1 = wj and |rij,k(x)| ≤ C|x|k−1 on K

(here |x| denotes the usual Euclidean norm).

Each monomial cαx
α of the polynomial pij + qij,k has δ-degree wα ≥ wj − 1. If

αm = 0 whenever wm ≥ k, then we can estimate

|γ(t)α| =
∏

m:wm≤k−1

|γm(t)|αm ≤ Ctwα ≤ Ctk−1,

using the inductive hypothesis with k replaced by wm ≤ k−1. Otherwise, there exists

some index m with wm ≥ k and αm > 0, in which case

|γ(t)α| ≤ C|γm(t)| ≤ Ctk−1,

using the inductive hypothesis with k replaced by k−1. Thus |pij(γ(t))+qij,k(γ(t))| ≤
Ctk−1. Combining this with the estimate |rij,k(γ(t))| ≤ Ctk−1, we obtain |aij(γ(t))| ≤
Ctk−1. So we finally have

|γj(t)| ≤ ‖h‖L∞
r∑
i=1

∫ t

0

|aij(γ(τ))| dτ ≤ Ctk,
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completing the inductive proof. Applying the above statement with k = wj, we obtain

|γj(t)| ≤ Ctwj , (3.16)

for a suitable constant C depending only on K, T and ‖h‖L∞ .

Now we prove that Tan+(γ; 0) is nonempty. For η > 0 consider the family of curves

γη(t) := δ1/η(γ(ηt)), defined for t ∈ [0, T/η]. The derivative of γη is a.e.

γ̇η(t) =
n∑
j=1

r∑
i=1

hi(ηt)η
1−wjaij(γ(ηt))

∂

∂xj
,

where, by Theorem 2.3 and the estimates (3.16), we have

|aij(γ(ηt))| ≤ C‖γ(ηt)‖wj−1 ≤ C(ηt)wj−1.

This proves that the family of curves (γη)η>0 is locally Lipschitz equicontinuous. By

Ascoli–Arzelà theorem and a diagonal argument, there exists a subsequence (γηi)i
that is converging locally uniformly as ηi → 0 to a curve κ : [0,∞)→ Rn. �

Remark 3.3. The following result was obtained along the proof of Proposition 3.2.

Let (M,X ) be a Carnot–Carathéodory structure. Using exponential coordinates of

the first kind, we (locally) identify M with Rn and we assign to the coordinate xj the

weight wj, as above. Given T > 0 and K compact, there exists a positive constant

C = C(K,T ) such that the following holds: for any horizontal curve γ : [0, T ] → K

parametrized by arclength and such that γ(0) = 0, one has

|γj(t)| ≤ Ctwj , for any j = 1, . . . , n and t ∈ [0, T ]. (3.17)

In Carnot groups, by homogeneity, the constant C is independent of K and T .

Definition 3.4. We say that v ∈ Rn is a right tangent vector to a curve γ : [0, T ]→
Rn at 0 if

γ(t) = tv + o(t), as t→ 0+.

The definition of a left tangent vector is analogous.

The next result is stated in exponential coordinates of the first kind: see Remark

3.11 for a statement which holds in general systems of privileged coordinates. Recall

that V = ϕ(U) is the image of the chart.

Theorem 3.5. Let γ : [0, T ] → V be a horizontal curve parametrized by arclength,

with γ(0) = 0. If γ has a right tangent vector v ∈ Rn at 0, then:

(i) vj = 0 for j > r and |v| ≤ 1;

(ii) Tan+(γ; 0) = {κ}, where κ(t) = tv for t ∈ [0,∞);

(iii) |v| = 1 if γ is also length minimizing.

A similar statement holds if γ : [−T, 0]→ V has a left tangent vector at 0.
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Proof. (i) Since Yi(x) = ∂
∂xi

+ o(1) as x→ 0, we have

γj(t) =

∫ t

0

r∑
i=1

hi(s)δij ds+ o(t). (3.18)

We deduce that vj = 0 for j > r and

|v| = lim
t→0+

∣∣∣γ(t)

t

∣∣∣ ≤ lim
t→0+

1

t

∫ t

0

|h(s)| ds = 1.

(ii) Since γj(t) = vjt+ o(t) for j ≤ r, it suffices to show that

γj(t) = o(twj), j > r. (3.19)

Up to a rotation of the vector fields Y1, . . . , Yr, which by (2.3) corresponds to a rotation

of the first r coordinates, we can assume that v2 = . . . = vr = 0. Notice that Theorem

2.3 still applies in these new exponential coordinates. From (3.18) we get

lim
t→0+

1

t

∫ t

0

hi(s) ds =

{
v1 i = 1

0 i = 2, . . . , r.
(3.20)

By Remark 3.3 we have ‖γ(t)‖ = O(t). We now show (3.19) by induction on j ≥ r+1.

Assume the claim holds for 1, . . . , j − 1. The coordinate γj, with j > r, is

γj(t) =
r∑
i=1

∫ t

0

hi(s)aij(γ(s)) ds =

∫ t

0

h1(s)a1j(γ(s)) ds+
r∑
i=2

∫ t

0

hi(s)aij(γ(s)) ds.

By Theorem 2.3, aij = pij + rij with rij(x) = o(‖x‖wj−1), so we deduce that

aij(γ(s)) = pij(γ(s)) + rij(γ(s)) = pij(γ(s)) + o(swj−1), i = 1, . . . , r.

From (2.3) we deduce that for i = 1, . . . , r we have Yi(0, . . . , xi, . . . , 0) = ∂
∂xi

, hence

aij(0, . . . , xi, . . . , 0) = 0, j > r. (3.21)

The polynomial pij(x) is δ-homogeneous of degree wj−wi = wj−1 and so it contains

no variable xk with k ≥ j. Condition (3.21) implies that pij(x) does not contain

the monomial x
wj−1
i , either. Thus, when i = 1 each monomial in p1j(x) contains at

least one of the variables x2, . . . , xj−1. By the inductive assumption, it follows that

p1j(γ(s)) = o(swj−1), and thus a1j(γ(s)) = o(swj−1). This implies that∫ t

0

h1(s)a1j(γ(s)) ds = o(twj).

Now we consider the case i = 2, . . . , r. Letting pij = cijx
wj−1
1 + p̂ij with cij ∈ R

and âij := p̂ij + rij, we have âij(γ(s)) = o(swj−1) as in the previous case and thus∫ t

0

hi(s)âij(γ(s)) ds = o(twj).
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We claim that, for i = 2, . . . ,m, we also have∫ t

0

hi(s)γ1(s)
wj−1 ds = o(twj).

Indeed, since vi = 0 we have Hi(s) :=
∫ s
0
hi(s

′) ds′ = o(s), so integration by parts

gives∫ t

0

hi(s)γ1(s)
wj−1 ds = Hi(t)γ1(t)

wj−1 − (wj − 1)

∫ t

0

Hi(s)γ1(s)
wj−2γ̇1(s) ds

= o(twj) +

∫ t

0

o(swj−1) ds = o(twj).

This ends the proof of (3.19) and hence of (ii).

(iii) By Theorem 3.6 below, κ is parametrized by arclength. But (v1, . . . , vr) equals

its (continuous) control h(t) at t = 0, so |v| = 1. �

For λ > 0, we define the vector fields Y λ
1 , . . . , Y

λ
r in δλ(V ) by

Y λ
i (x) := λ−1((δλ)∗Yi)(x) =

n∑
j=1

λwj−1aij(δ1/λ(x))
∂

∂xj
, x ∈ δλ(V ).

In the proof of Proposition 2.5 it was shown that

Y λ
i → Y ∞i (3.22)

locally uniformly in Rn as λ→∞, together with all the derivatives.

We denote by dλ the Carnot–Carathéodory metric of (δλ(V ),X λ), with X λ :=

{Y λ
1 , . . . , Y

λ
r }. The distance function dλ is related to the distance function d via the

formula

dλ(x, y) = λd
(
δ1/λ(x), δ1/λ(y)

)
, (3.23)

for all x, y ∈ δλ(V ) and λ > 0. Indeed, let γ : [0, 1]→ V be a horizontal curve

γ(t) = γ(0) +

∫ t

0

r∑
i=1

hi(s)Yi(γ(s)) ds, t ∈ [0, 1], (3.24)

and define the curve γλ : [0, λ]→ δλ(V )

γλ(t) := δλγ(t/λ), t ∈ [0, λ]. (3.25)

Then we have

γλ(t) = γλ(0) +

∫ t

0

r∑
i=1

hi(s/λ)Y λ
i (γλ(s)) ds, t ∈ [0, λ], (3.26)

and therefore the length of γλ is

Lλ(γλ) =

∫ λ

0

∣∣h(s/λ)
∣∣ ds = λ

∫ 1

0

|h(s)| ds = λL(γ). (3.27)



14 R. MONTI, A. PIGATI, AND D. VITTONE

If γ is length minimizing, then the curves in Tan(γ; t) are also locally length mini-

mizing. This is the content of the next theorem.

Theorem 3.6. Let γ : [−T, T ] → M be a length-minimizing curve in (M,X ),

parametrized by arclength, and let γ∞ ∈ Tan(γ; t0) for some t0 ∈ (−T, T ). Then γ∞

is horizontal, parametrized by arclength and, when restricted to any compact interval,

it is length minimizing in the tangent Carnot–Carathéodory structure (M∞,X ∞).

Proof. We can assume t0 = 0. We use exponential coordinates of the first kind

centered at γ(0). Given any T > 0, for some sequence λj →∞ we have

γλj(t) := δλjγ(t/λj)→ γ∞(t) in L∞([−T , T ]). (3.28)

With abuse of notation, we write λ = λj and we replace j → ∞ with λ → ∞.

Up to a subsequence, we can assume that the functions h(t/λ) weakly converge in

L2([−T , T ];Rr) to some h∞ ∈ L2([−T , T ];Rr) such that |h∞| ≤ 1 almost everywhere.

Then, using (3.26), we have

γ∞(t) = lim
λ→∞

∫ t

0

r∑
i=1

hi(s/λ)Y λ
i (γλ(s)) ds =

∫ t

0

r∑
i=1

h∞i Y
∞
i (γ∞(s)) ds,

so γ∞ is (M∞,X ∞)-horizontal and, denoting by d∞ the Carnot–Carathéodory dis-

tance on M∞ induced by the family X ∞, its length satisfies

d∞(γ∞(−T ), γ∞(T )) ≤ L∞
(
γ∞
∣∣
[−T ,T ]

)
=

∫ T

−T
|h∞| dt ≤ 2T . (3.29)

We will see that, in fact, the converse inequality d∞(γ∞(−T ), γ∞(T )) ≥ 2T holds

as well, thus proving that γ∞ is length minimizing on [−T , T ] and parametrized by

arclength (with control h∞).

Let κ∞ : [−T , T ] → Rn be an (M∞,X ∞)-horizontal curve such that κ∞(±T ) =

γ∞(±T ), with control k∞ ∈ L∞([−T , T ];Rn). For all λ large enough, the ordinary

differential equation

κ̇λ(t) =
r∑
i=1

k∞i (t)Y λ
i (κλ(t)) (3.30)

with initial condition κλ(−T ) = κ∞(−T ) has a (unique) solution defined on [−T , T ].

Indeed, let K be a compact neighborhood of κ∞([−T , T ]). For any ε > 0 we have

‖Y λ
i − Y ∞i ‖L∞(K) ≤ ε eventually. If −T ∈ I ⊆ [−T , T ] is the maximal (compact)

subinterval such that κλ is defined on I and κλ(I) ⊆ K, we have

|κ̇λ − κ̇∞| ≤ Cε+ C

r∑
i=1

|Y ∞i (κλ)− Y ∞i (κ∞)| ≤ Cε+ C|κλ − κ∞|
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on I, for some C depending on ‖k∞‖L∞ and ‖∇Y ∞i ‖L∞(K). Hence, by Gronwall’s

inequality, |κλ − κ∞| ≤ Cε on I. If ε is small enough, we deduce that κλ(max I)

belongs to the interior of K, so I = [−T , T ]. Since ε was arbitrary, we also get

lim
λ→∞

κλ(±T ) = κ∞(±T ) = γ∞(±T ) = lim
λ→∞

γλ(±T ). (3.31)

From the length minimality of γλ in (δλ(V ),X λ) it follows that

2T = Lλ
(
γλ
∣∣
[−T ,T ]

)
≤ Lλ(κλ) + dλ

(
κλ(−T ), γλ(−T )

)
+ dλ

(
κλ(T ), γλ(T )

)
=

∫ T

−T
|k∞(t)| dt+ λd

(
δ1/λκ

λ(−T ), δ1/λγ
λ(−T )

)
+ λd

(
δ1/λκ

λ(T ), δ1/λγ
λ(T )

)
.

By Lemma 2.4 and (3.31), we have

lim
λ→∞

λd(δ1/λκ
λ(±T ), δ1/λγ

λ(±T )) = 0.

Hence, 2T ≤
∫ T
−T |k

∞(t)| dt = L∞(κ∞). Since κ∞ was arbitrary, we conclude that

d∞(γ∞(−T ), γ∞(T )) ≥ 2T . �

The following fact is a special case of the general principle according to which the

tangent to the tangent is (contained in the) tangent.

Proposition 3.7. Let γ : [−T, T ] → M be a horizontal curve and t ∈ (−T, T ). If

κ ∈ Tan(γ; t) and κ̂ ∈ Tan(κ; 0), then κ̂ ∈ Tan(γ; t).

Proof. We can assume without loss of generality that t = 0. We use exponential

coordinates of the first kind centered at γ(0). Let N > 0 be fixed. Since κ̂ ∈ Tan(κ; 0),

there exists an infinitesimal sequence ξk ↓ 0 such that, for all t ∈ [−N,N ] and k ∈ N,

we have

‖κ̂(t)− δ1/ξkκ(ξkt)‖ ≤
1

2k
.

Since κ ∈ Tan(γ; 0), there exists an infinitesimal sequence ηk ↓ 0 such that, for all

t ∈ [−N,N ] and k ∈ N, we have

‖κ(ξkt)− δ1/ηkγ(ηkξkt)‖ ≤
ξk
2k
.

It follows that for the infinitesimal sequence σk := ξkηk we have, for all t ∈ [−N,N ],

‖κ̂(t)− δ1/σkκ(σkt)‖ ≤ ‖κ̂(t)− δ1/ξkκ(ξkt)‖+ ‖δ1/ξkκ(ξkt)− δ1/σkγ(σkt)‖ ≤
1

2k−1
.

The thesis now follows by a diagonal argument. �

When γ : [0, T ]→ M , there are analogous versions of Propositions 3.6 and 3.7 for

Tan+(γ; 0) and Tan−(γ;T ).
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Proposition 3.8. Let κ : R → M∞ be a horizontal curve in (M∞,X ∞). The

following statements are equivalent:

(i) there exist c1, . . . , cr ∈ R such that κ̇ =
∑r

i=1 ciY
∞
i (κ) and κ(0) = 0;

(ii) there exists x0 ∈ M∞ such that κ(t) = δt(x0) (here δt is defined by (2.4) also

for t ≤ 0).

Proof. We prove (i)⇒(ii). Since (δλ)∗Y
∞
i = λY ∞i for λ 6= 0, the curve δλ ◦ κ(·/λ)

satisfies the same differential equation, so δλ ◦ κ(t/λ) = κ(t); choosing λ = t we get

κ(t) = δt(κ(1)).

We check (ii)⇒(i). Up to rescaling time, we can assume that κ̇(1) exists and is

a linear combination of Y ∞1 (κ(1)), . . . , Y ∞r (κ(1)), so κ̇(1) =
∑

i hiY
∞
i (κ(1)) for some

h ∈ Rr. If h is the control of κ, for a.e. s we have
r∑
i=1

hiY
∞
i (κ(1)) = κ̇(1) = s

d

dt
κ(t/s)

∣∣∣
t=s

= s
d

dt
(δ1/s ◦ κ(t))

∣∣∣
t=s

=
r∑
i=1

hi(s)Y
∞
i (κ(1)),

again because s(δ1/s)∗Y
∞
i = Y ∞i . Since Y ∞1 , . . . , Y ∞r are pointwise linearly indepen-

dent (see Proposition 2.5), we get h = h a.e. �

Definition 3.9. We say that a horizontal curve κ in (M∞,X ∞) is a horizontal line

(through 0) if one of the conditions (i)–(ii) of Proposition 3.8 holds.

The definition of positive and negative half-line is similar, the formulas above being

required to hold for t ≥ 0 and t ≤ 0, respectively.

Remark 3.10. One of the referees pointed out to us the following example, for which

we thank him once again. In R3 consider the vector fields X = ∂x and Y = ∂y + x∂z.

The coordinates (x, y, z) are privileged and the curve γ(t) = (t, t, t2/2), t ∈ R, has

constant control h(t) = (1, 1) and satisfies (i) and (ii) of Proposition 3.8. So it is

a horizontal line in the sense of Definition 3.9, but it does not satisfy property (ii)

of Theorem 3.5, nor (3.19): the reason is that the vector fields X and Y are not in

exponential coordinates of the first kind.

Remark 3.11. In general systems of privileged coordinates, the fact that vj = 0 for

j > r (whenever γ has a right tangent vector v) always holds, since |γj(t)| ≤ Ct2

by definition of privileged coordinates. Moreover, in view of Remark 3.13 below,

the conclusions of Theorem 3.5 hold once they are replaced with the following more

robust statements:

(i’) |w| ≤ 1, for the constant control w ∈ Rr specified in (ii’);

(ii’) Tan+(γ; 0) = {κ}, where the curve κ has constant control w ∈ Rr, i.e., γ

is a horizontal line in the sense of Definition 3.9 (observe that the proof of

Proposition 3.8 works in general privileged coordinates);

(iii’) |w| = 1 if γ is also length minimizing.
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Also, w = (v1, . . . , vr) if the privileged coordinates satisfy Yi(x) = ∂
∂xi

+ o(1) for

i = 1, . . . , r, as is readily seen from (3.18) and the fact that
∫ t
0
hi(s) ds = wit+ o(t).

On the other hand, in exponential coordinates of the first kind (i) and (ii) of

Proposition 3.8 are equivalent to the fact that κ is a straight horizontal line, i.e., that

κ(t) = tv for some v ∈ Rn such that vr+1 = · · · = vn = 0.

Remark 3.12. Let us observe the following fact. Let γ : [−T, T ] → M be a length

minimizer parametrized by arclength with control h = (h1, . . . , hr) and let t ∈ (−T, T )

be fixed. Then, the tangent cone Tan(γ; t) contains a horizontal line κ in M∞ if and

only if there exist an infinitesimal sequence ηi ↓ 0 and a constant unit vector c ∈ Sr−1

such that

h(t+ ηi ·)→ c in L2
loc(R,Rr).

As usual, an analogous version holds for Tan+(γ; 0) and Tan−(γ;T ) in case γ is a

length minimizer parametrized by arclength on the interval [0, T ].

Let us prove our claim; we can set t = 0. Assume that there exists a sequence

ηi ↓ 0 such that the curves γi(τ) := δ1/ηiϕ(γ(ηiτ)) converge locally uniformly to a

horizontal line κ in the tangent CC structure (M∞,X ∞); we have

γi(τ) =

∫ τ

0

r∑
j=1

hj(ηis)Y
1/ηi
j (γi(s)) ds.

Up to subsequences we have h(ηi ·) ⇀ h∞ in L2
loc(R,Rr), with ‖h∞‖L∞ ≤ 1. Since

Y
1/ηi
j → Y ∞j locally uniformly, writing h∞ = (h1∞, . . . , h

r
∞) we obtain

κ(τ) =

∫ τ

0

r∑
j=1

hj∞(s)Y ∞j (κ(s)) ds.

By Proposition 3.6, κ is parametrized by arclength. So |h∞| = 1 a.e. and, since κ is a

horizontal line, h∞ is constant. Finally, for any compact set K ⊂ R, we trivially have

‖h(ηi ·)‖L2(K,Rr) → ‖h∞‖L2(K,Rr), which gives h(ηi ·)→ h∞ in L2(K,Rr). The reverse

implication (if h(t+ ηi ·)→ c in L2
loc(R,Rr), then Tan(γ; t) contains a horizontal line)

follows a similar argument, detailed more generally below.

Remark 3.13. From the point of view of the controls, a coordinate-free version of

the tangent cone can be defined as follows. Fix a horizontal curve γ : [−T, T ] → M

parametrized by arclength, with control h ∈ L∞([−T, T ],Rr), and a t ∈ (−T, T ). We

let cTan(γ; t) ⊆ L∞(R;Rr) be the set of functions k which can be obtained as the

limit, in the weak L2
loc(R,Rr)-topology, of a sequence h(t+ ηi·) with ηi ↓ 0.

Arguing as in Remark 3.12 we get that, whenever κ ∈ Tan(γ; t), its control k (which

uniquely determines κ) lies in cTan(γ; t). Conversely, assume that k ∈ cTan(γ; t), i.e.,

k = limi→∞ h(t+ ηi·) for some sequence ηi ↓ 0; up to subsequences we have

δ1/ηiϕ(γ(t+ ηi·))→ κ
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for some curve κ : R→M∞, uniformly on compact subsets of R (with the same proof

as Proposition 3.2), so κ ∈ Tan(γ; t) and κ has control k.

This establishes a bijective correspondence between Tan(γ; t) and cTan(γ; t). More-

over, if γ is a length minimizer, an equivalent definition of cTan(γ; t) is obtained using

the strong L2
loc(R,Rr)-convergence (with the same proof used in Remark 3.12) and,

in particular, |k| = 1 a.e. for all k ∈ cTan(γ; t).

In view of this correspondence, whenever Tan(γ; t) contains a horizontal line then

this holds independently of all the choices made to construct Tan(γ; t). A similar

remark holds for Tan+(γ; 0) and Tan−(γ;T ). Also, one can form the tangent cone

in any system of privileged coordinates and the correspondence with cTan(γ; t) still

holds, as the key inequality |aij(γ(t + ητ))| ≤ C(ητ)wj−1, established in Proposition

3.2 and needed for the precompactness of the dilated curves, is satisfied (see e.g. [10,

Proposition 2.2] and recall that d(γ(t+ ητ), γ(t)) ≤ Cητ).

4. Lifting the tangent structure to a free Carnot group

In this section we show how a tangent CC structure (M∞,X ∞) can be lifted to a

free Carnot group F , by means of a desingularization process. This is already present

in the literature, see e.g. [10, Section 2.4]; however, we include here a construction

also in order to show that length minimizers in M∞ lift to length minimizers in F .

Let (M∞,X ∞) be a tangent CC structure as in Section 2. The Lie algebra g

generated by X ∞ = (Y ∞1 , . . . , Y ∞r ) is nilpotent because, by Proposition 2.5, any

iterated commutator of length greater than s vanishes. The identity (δλ)∗Y
∞
i = λY ∞i

implies that (δλ)∗X → 0 pointwise as λ→ 0, for any X ∈ g. We deduce that the j-th

component of X is a polynomial function depending only on the previous variables. It

follows that the flow (x, t) 7→ exp(tX)(x) is a polynomial function in (x, t) ∈M∞×R
and X is therefore complete.

Let f be the free Lie algebra of rank r and step s, with generators W1, . . . ,Wr.

The connected, simply connected Lie group F with Lie algebra f can be constructed

explicitly as follows: we let F := f and we endow F with the group operation A ·B :=

P (A,B), where

P (A,B) =
s∑

p=1

(−1)p+1

p

∑
1≤ki+`i≤s

[Ak1 , B`1 , . . . , Akp , B`p ]

k1! · · · kp!`1! · · · `p!
∑

i(ki + `i)
. (4.32)

This is a finite truncation of the series in (2.8): the omitted terms vanish by the

nilpotency of f. One readily checks that P (A, 0) = P (0, A) = A and P (A,−A) =

P (−A,A) = 0, while the associativity identity P (P (A,B), C) = P (A,P (B,C)) is

shown in [8, Section X.2] for free Lie algebras and can be deduced for f by truncation.

For any A ∈ F , t 7→ tA is a one-parameter subgroup. From this, it is straightforward

to check that f identifies with the Lie algebra of F , with exp : f → F given by the
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identity map. In particular, exp : f→ F is a diffeomorphism and we have

exp(A) exp(B) = exp(P (A,B)), A,B ∈ f. (4.33)

The group F is a Carnot group, which means that it is a connected, simply con-

nected and nilpotent Lie group whose Lie algebra is stratified, i.e., it has an assigned

decomposition f = f1 ⊕ · · · ⊕ fs satisfying [f1, fi−1] = fi and [f, fs] = {0} (in this case

f1 is the linear span of W1, . . . ,Wr). The group F just constructed is called the free

Carnot group of rank r and step s.

Proposition 4.1. The group F is generated by exp(f1).

Proof. See [6, Lemma 1.40]. �

By the nilpotency of g, there exists a unique homomorphism ψ : f → g such that

ψ(Wi) = Y ∞i ∈ g for i = 1, . . . , r. The group F acts on M∞ on the right. The action

M∞ × F → M∞ is given by (x, f) 7→ x · f := exp(ψ(A))(x), where f = exp(A). In

fact, by (4.33), for any f ′ = exp(B) we have

x · (ff ′) = exp(P (ψ(A), ψ(B)))(x) = exp(ψ(B)) ◦ exp(ψ(A))(x) = (x · f) · f ′. (4.34)

The second equality is a consequence of the formula exp(P (tY, tX))(x) = exp(tX) ◦
exp(tY )(x) for X, Y ∈ g (with P given by (4.32)), which holds since both sides are

polynomial functions in t, with the same Taylor expansion (by (2.7)). We define the

map

π∞ : F →M∞, π∞(f) := 0 · f,
where the dot stands for the right action of F on M∞.

Let W := {W1, . . . ,Wr} and extend W to a basis W1, . . . ,WN of f adapted to

the stratification. Via the exponential map exp : f → F , the one-parameter group

of automorphisms of f defined by Wk 7→ λiWk if and only if Wk ∈ fi induces a

one-parameter group of automorphisms (δ̂λ)λ>0 of F , called dilations.

If A ∈ f1, for any λ > 0 and x ∈M∞ we have the identity

exp(λψ(A))(δλ(x)) = δλ
(

exp(ψ(A))(x)
)
, (4.35)

which follows from (δλ)∗ψ(A) = λψ(A).

Definition 4.2. We call the CC structure (F,W ) the lifting of (M∞,X ∞) with

projection π∞ : F →M∞.

Proposition 4.3. The lifting (F,W ) of (M∞,X ∞) has the following properties:

(i) for any f ∈ F and i = 1, . . . , r we have π∞∗ (Wi(f)) = Y ∞i (π∞(f));

(ii) the dilations of F and M∞ commute with the projection: namely, for any

λ > 0 we have

π∞ ◦ δ̂λ = δλ ◦ π∞.
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Proof. (i) Using the action property (4.34), we find

π∞∗ (Wi(f)) =
d

dt
π∞
(
f exp(tWi)

)∣∣∣∣
t=0

=
d

dt
0 ·
(
f exp(tWi)

)∣∣∣∣
t=0

=
d

dt
π∞(f) · exp(tWi)

∣∣∣∣
t=0

= ψ(Wi)(π
∞(f)) = Y ∞i (π∞(f)).

(ii) Let λ > 0 and x ∈M∞. By (4.35), for any W ∈ f1 we have

δλ(x) · exp(λW ) = exp(λψ(W ))(δλ(x)) = δλ
(

exp(ψ(W ))(x)
)

= δλ(x · exp(W )).
(4.36)

We deduce that the claim holds for any f = exp(W ) with W ∈ f1, because

π∞(δ̂λ(f)) = π∞(exp(λW )) = δλ(0) · exp(λW ) = δλ(0 · exp(W )) = δλ(π
∞(f)).

By Proposition 4.1, any f ∈ F is of the form f = f1f2 . . . fk with each fi ∈ exp(f1).

Assume by induction that the claim holds for f̂ = f1f2 . . . fk−1. By (4.36), letting

fk = exp(W ) we have

π∞(δ̂λ(f)) = π∞(δ̂λ(f̂) exp(λW )) = π∞(δ̂λ(f̂)) · exp(λW )

= δλ(π
∞(f̂)) · exp(λW ) = δλ

(
π∞(f̂) · exp(W )

)
= δλ

(
π∞(f)

)
. �

Let κ : I →M∞ be a horizontal curve in (M∞,X ∞), with control h ∈ L∞(I,Rr).

A horizontal curve κ : I → F such that

κ = π∞ ◦ κ and κ̇(t) =
r∑
i=1

hi(t)Wi(κ(t)) for a.e. t ∈ I

is called a lift of κ to (F,W ).

Proposition 4.4. Let (F,W ) be the lifting of (M∞,X ∞) with projection π∞ : F →
M∞. Then the following facts hold:

(i) If κ is length minimizing in (M∞,X ∞), then any horizontal lift κ of κ is

length minimizing in (F,W ).

(ii) If κ is a horizontal (half-)line in F , then π∞ ◦ κ is a horizontal (half-)line in

(M∞,X ∞).

Proof. Claim (i) follows from L(κ) = L(κ) and from the inequality L(κ′) = L(κ′) ≥
L(κ), whenever κ′ is horizontal with the same endpoints as κ and κ′ = π∞ ◦ κ′. We

now turn to claim (ii). Let κ(t) = exp(tW ) for some W ∈ f1. The projection π∞ ◦ κ
is horizontal by part (i) of Proposition 4.3. The thesis follows from characterization

(i) for horizontal lines, contained in Proposition 3.8. �
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[13] J. Mitchell, On Carnot–Carathéodory metrics. J. Differ. Geom. 21 (1985), 35–45.

[14] R. Monti, A. Pigati & D. Vittone, Existence of tangent lines to Carnot–Carathéodory
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