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Abstract. Given any admissible k-dimensional family of immersions of a given closed

oriented surface into an arbitrary closed Riemannian manifold, we prove that the

corresponding min-max width for the area is achieved by a smooth (possibly branched)

immersed minimal surface with multiplicity one and Morse index bounded by k.

1. Introduction

Recently, a new theory for the construction of branched immersed minimal surfaces

of arbitrary topology, in an assigned closed Riemannian manifold Mm, was proposed in

[12]. This method is based on a penalization of the area functional by means of the second

fundamental form A of the immersion.

Namely, for a fixed parameter σ > 0, one first finds an immersion Φ : Σ→M which is

critical for the perturbed area functional

Aσ(Φ) :=

∫
Σ
dvolgΦ + σ2

∫
Σ

(1 + |A|2gΦ
)2 dvolgΦ ,(11)

where Σ is a fixed closed oriented surface and gΦ is the metric induced by Φ, with

volume form volgΦ . This functional Aσ enjoys a sort of Palais–Smale condition up to

diffeomorphisms.

We should mention that the idea of considering perturbed functionals goes back to the

paper [16] by Sacks–Uhlenbeck, where a perturbation of the Dirichlet energy is used to

build minimal immersed spheres. However, in order to find minimal immersed surfaces

with higher genus, one should give up working with the Dirichlet energy and use a more

tensorial functional like (11): among closed orientable surfaces, only the sphere has a

unique conformal structure (up to diffeomorphisms) and, as a consequence, a harmonic map

(i.e. a critical point for the Dirichlet energy) Φ : Σ→Mm could fail to be conformal and

minimal if Σ has positive genus. In principle, one can overcome this issue by introducing the

conformal structure as an additional parameter in the variational problem: this program

was carried over by Zhou in [19].
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2 A. PIGATI AND T. RIVIÈRE

Considering any sequence σj ↓ 0, one gets a sequence Φj : Σj → M of conformal

immersions (with area bounded above and below), where Σj denotes Σ endowed with the

induced conformal structure. Assuming for simplicity that we are dealing with a constant

conformal structure (in general one gets a limiting Riemann surface in the Deligne–Mumford

compactification), the sequence Φj is then bounded in W 1,2 and we can consider its weak

limit Φ∞, up to subsequences. A priori it is not clear whether the strong W 1,2-convergence

holds, even away from a finite bubbling set. However, in [12] the second author shows that,

if the sequence σj is carefully chosen so as to satisfy a certain entropy condition, then the

surfaces Φj(Σj) converge to a parametrized stationary varifold (a notion introduced in

[12, 11] and recalled in Section 3 below) which we call (Σ∞,Θ∞, N∞) in the present paper.

The limiting multiplicity N∞ a priori could be bigger than one.

A consequence of the main regularity result contained in [11] is that the multiplicity N∞

is locally constant.

This result, which is optimal for the class of parametrized stationary varifolds, leaves

nonetheless open the question whether one can have N∞ > 1 on some connected component

of Σ∞.

This question should be compared with the multiplicity one conjecture by Marques and

Neves. In [9], the following upper bound for the Morse index of a minimal hypersurface

with locally constant multiplicity is established: if

Σ =
∑̀
j=1

njΣj

is a minimal hypersurface with locally constant multiplicity, given by a min-max with k

parameters in the context of Almgren–Pitts theory, then

index(supp (Σ)) ≤ k, supp (Σ) :=
⊔̀
j=1

Σj .

In other words, this is a bound for the Morse index of the hypersurface obtained by

replacing all the multiplicities nj with 1. In order for this estimate to give more information

about Σ, or at least its unstable part, the authors make the following conjecture.

Conjecture 1.1 (Multiplicity one conjecture). For generic metrics on Mn+1, with

3 ≤ n+ 1 ≤ 7, two-sided unstable components of closed minimal hypersurfaces obtained by

min-max methods must have multiplicity one.

It is natural to demand for extra information for one-sided stable components with

unstable double cover, as well, even if this situation is expected not to show up generically.

Marques and Neves were able to prove this conjecture for one-parameter sweepouts, but

the general case remains open. For metrics with positive Ricci curvature, the one-parameter

case was already discussed by Marques and Neves in [8] and later by Zhou in [18].
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Further results, such as the two-sidedness of Σ when the metric has positive Ricci

curvature, were obtained by Ketover, Marques and Neves in [6], using the catenoid estimate.

We also mention that Ketover, Liokumovich and Song in [5, 17] started to settle the

generic, one-parameter case for the simpler and more effective Simon–Smith variant of

Almgren–Pitts theory, specially designed for 3-manifolds.

Very recently, in [1], the conjecture was established for bumpy metrics in 3-manifolds, i.e.

when n = 2, in the setting of Allen–Cahn level set approach.

The importance of this conjecture in relation to the Morse index of Σ is twofold. First

of all, there is no satisfactory definition for the Morse index of an embedded minimal

hypersurface with multiplicity bigger than one: such Σ could be thought as the limiting

object of many qualitatively different sequences, e.g. the elements of the sequence could

realize different covering spaces of the limit, or more pathologically they could have many

catenoidal necks (hence Σ would be the limit of a sequence of highly unstable hypersurfaces).

Also, if one is able to establish a lower bound on the Morse index such as

k ≤ index(supp (Σ)) + nullity(supp (Σ)),

then the multiplicity one conjecture gives infinitely many geometrically distinct minimal

hypersurfaces, provided there exists at least one for every value of k. This was precisely

the strategy used in [1] to prove Yau’s conjecture for generic metrics: in [1] the authors

obtained the multiplicity one result and the equality index(Σ) = k (the nullity vanishing

automatically for bumpy metrics).

In this work we establish the natural counterpart of this conjecture in our setting, namely

for minimal surfaces produced by the viscous relaxation method.

Theorem 1.2. We have N∞ ≡ 1.

We stress that this result holds in arbitrary codimension and without any genericity

assumption.

We remark that, in view of earlier work in [13], this statement would imply by itself the

main result of [11], for parametrized stationary varifolds arising as a limit of stationary

points for the relaxed functionals. However, the proof of Theorem 1.2 relies substantially

on the regularity result obtained in [11], needed in several compactness arguments.

The main idea is to define a sort of macroscopic multiplicity, on balls Bq
` (p), before

passing to the limit (i.e. looking at the immersed surfaces Φj rather than their limit). Then

we will use a continuity argument to show that this number stays constant as we pass

from scale 1 to scale
√
σj . At the latter scale we have a very clear understanding of the

behaviour of Φj and in particular we are able to say that here the macroscopic multiplicity

equals 1. Thus the same holds at the original scale and this is sufficient to get N∞ ≡ 1.

Corollary 1.3. If there is no bubbling or degeneration of the underlying conformal structure,

we have strong W 1,2-convergence Φk → Φ∞. In general we have a bubble tree convergence.
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Theorem 1.2 and Corollary 1.3 pave the way to obtain meaningful Morse index bounds.

Indeed, although Theorem 1.2 does not rule out the possibility of having a surface covered

multiple times by Φ∞, a crucial advantage of having a parametrization at our disposal is

that we have a reasonable definition of Morse index and nullity: they are defined for the

area functional, with respect to variations in C∞c (Σ∞ \ {z1, . . . , zs}), the points z1, . . . , zs

being the branch points of the immersion Φ∞. 1

The natural expected inequalities would be

index(Φ∞) ≤ k ≤ index(Φ∞) + nullity(Φ∞).

An abstract framework to show upper bounds for the Morse index, dealing with general

penalized functionals on Banach manifolds, is developed in [10]. Combining Corollary 1.3

with the general result obtained in [10] and with [14], we reach the following conclusion (we

refer the reader to [10] for the notion of admissible family).

Corollary 1.4. Given an admissible family A ⊆ P(Imm(Σ,Mm)) of dimension k and

calling

WA := inf
A∈A

sup
Φ∈A

area(Φ)

the width of A, there exists a (possibly branched) minimal immersion Φ of a closed surface

S into Mm such that

(i) genus(S) ≤ genus(Σ),

(ii) WA = area(Φ),

(iii) index(Φ) ≤ k.

However, proving the second inequality, namely k ≤ index(Φ) + nullity(Φ), seems to

require a finer understanding of the convergence Φk → Φ∞. We hope to be able to deal

with this question elsewhere.

Also, it would be interesting to adapt the well-known approach based on Gromov–Guth

p-width ωp(M) (or higher codimension generalizations), used to produce infinitely many

minimal hypersurfaces in many settings, to the present situation. To this aim, a natural

topological question concerns how much genus is needed to realize a nontrivial p-sweepout

(in the sense of Gromov–Guth), and how to realize the sweepout within the space of

immersions.

1Although we are dealing with a weakly conformal map Φ∞, for which area and energy are the same, it

is important to remark that the Morse indexes for area and energy, denoted indexA and indexE respectively,

should not be expected to agree. The relationship between the two is a subtle problem: in this direction, we

mention the inequality indexE(Ψ) ≤ indexA(Ψ) ≤ indexE(Ψ) + r established in [2], for a branched minimal

immersion Ψ, where r = r(g, b) depends on the genus and the number of branch points of Ψ.
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2. Notation

• We will assume, without loss of generality, that Mm is isometrically embedded in some

Euclidean space Rq. Given p ∈Mm and ` > 0, we set Mm
p,` := `−1(Mm − p).

• In what follows, Π will always denote a 2-plane through the origin, which we identify

with the corresponding orthogonal projection Π : Rq → Π. We call Π⊥ the orthogonal

(q − 2)-subspace, identified with the corresponding orthogonal projection. Given 2-planes

Π,Π′, their distance dist(Π,Π′) is the one induced by the Plücker’s embedding of the

Grassmannian Gr2(Rq) into the projectivization of Λ2Rq.
The adjoint maps, which are just the inclusions Π ↪→ Rq and Π⊥ ↪→ Rq, are denoted

Π∗ and (Π⊥)∗, so that

idRq = Π∗Π + (Π⊥)∗Π⊥.(21)

Also, Π0 is the canonical 2-plane, so that Π0 : Rq → R2 is the projection onto the first

two coordinates, while Π⊥0 : Rq → Rq−2 is the projection onto the remaining q − 2.

• We call B2
r (x) the ball of center x and radius r in the plane C = R2, while Bq

s(p)

will denote the ball of center p and radius s in Rq. Given p ∈ Π, we call BΠ
s (p) the

two-dimensional ball with center p and radius s in Π, i.e. BΠ
s (p) := Bq

s(p)∩Π. When the

center is not specified, it is always meant to be the origin.

• Given a function Ψ ∈W 1,2(B2
r (x)) and 0 < s ≤ r, the notation Ψ

∣∣
∂B2

s (x)
always refers to

the trace of Ψ on the circle ∂B2
s (x).

• Given K ≥ 1, we define the following set of Beltrami coefficients:

EK :=

{
µ ∈ L∞(C,C), ‖µ‖L∞ ≤

K − 1

K + 1

}
.(22)

We let DK denote the set of K-quasiconformal homeomorphisms ϕ : C→ C such that

ϕ(0) = 0, min
x∈∂B2

1

|ϕ(x)| = 1.(23)

We have ϕ ∈W 1,2
loc (C) and ∂zϕ = µ∂zϕ for some µ ∈ EK , in the weak sense; we refer the

reader to [4, Chapter 4] for the basic theory of K-quasiconformal homeomorphisms in

the plane. Moreover, ϕ is a linear map in DK if and only if ϕ(e1) = e′1 and ϕ(e′2) = λe′2,

for suitable orthonormal bases (e1, e2), (e′1, e
′
2) inducing the canonical orientation and a

suitable 1 ≤ λ ≤ K.

• We define

D(K) := sup
{
|ϕ(x)| ;x ∈ B2

1, ϕ ∈ DK
}
, s(K) := inf

{∣∣ϕ−1(y)
∣∣ ; |y| ≥ 1

2
, ϕ ∈ DK

}
,

so that ϕ(B
2
1) ⊆ B2

D(K) and ϕ(B
2
s(K)) ⊆ B

2
1/2 for all ϕ ∈ DK . The fact that D(K) <∞

and s(K) > 0 is guaranteed by Lemma A.4. We also set

η(K) :=
1

4
inf
{
|ϕ(x)| ;x ∈ ∂B2

s(K)2 , ϕ ∈ DK
}
> 0.
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• We let DΠ
K denote the set of maps having the form Π∗ ◦ R ◦ ϕ, where ϕ ∈ DK and

R : R2 → Π is a linear isometry. Given 0 < δ < 1, we call RΠ
K,δ the set of maps in

W 1,2(B2
1 ,Rq) which are close to some ψ ∈ DΠ

K on the circles of radii 1, s(K), s(K)2,

namely we set

RΠ
K,δ :=

{
Ψ ∈W 1,2(B2

1 ,Rq) : min
ψ∈DΠ

K

max
r∈{1,s(K),s(K)2}

∥∥∥Ψ
∣∣
∂B2

r
(r·)− ψ(r·)

∥∥∥
L∞(∂B2

1)
≤ δ

}
.

(24)

• Given Ψ ∈ C1(Ω,Rq), a ball B2
r (z) ⊂⊂ Ω and a 2-plane Π, we define the projected

multiplicity

NΠ
Ψ,z,r : Π→ N ∪ {∞} , NΠ

Ψ,z,r(p) := #(Π ◦Ψ)−1(p) ∩B2
r (z)(25)

and, given p ∈ Rq, we also define the macroscopic multiplicity

nΠ,p,t
Ψ,z,r :=

⌊
−
∫
BΠ
t (Π(p))

NΠ
Ψ,z,r

⌋
∈ N.(26)

The mean appearing in (26) is finite by the area formula and b·c denotes the integer part.

3. Background on parametrized stationary varifolds

Assume we have a smooth conformal map Φ : B2
1 →Mm, critical for the functional

Φ 7→
∫
B2

1

dvolgΦ + σ2

∫
B2

1

(1 + |AgΦ |
2
gΦ

)2 dvolgΦ ,(31)

and assume that the following entropy condition

σ2 log(σ−1)

∫
B2

1

(1 + |A|2)2 dvolgΦ ≤ ε
∫
B2

1

dvolgΦ(32)

holds for some ε > 0. Notice that the second integral equals 1
2

∫
B2

1
|∇Φ|2.

Given any 0 < ` < 1 and p ∈Mm, the rescaled map

Ψ : B2
1 →Mm

p,`, Ψ := `−1(Φ− p)

is critical for the functional∫
B2

1

dvolgΨ + τ2

∫
B2

1

(`2 + |A|2)2 dvolgΨ , τ := σ`−2(33)

and, being τ2 log(τ−1) ≤ `−4σ2 log(σ−1), it satisfies

τ2 log(τ−1)

∫
B2

1

(`2 + |A|2)2 dvolgΨ ≤ ε
∫
B2

1

dvolgΨ ,(34)

where now A denotes the second fundamental form of Ψ in Mm
p,` and its norm is meant

with respect to the induced metric gΨ.

In the sequel, we will establish many intermediate results on maps Ψ arising in this way,

by means of compactness arguments. The starting point in these arguments is that, if

we have sequences Ψk, pk, `k → 0, τk → 0 and εk → 0, then by (33) and (34) Ψk should

have a limit point Ψ∞ (in some weak sense) which is critical for the area functional in the
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tangent space Tp∞Mm (where p∞ is a limit point of the sequence pk), i.e. Ψ∞ should be a

minimal parametrization.

Indeed, invoking previous work from [12] and [11], we get that up to subsequences we

have convergence to a (local) parametrized stationary varifold, whose definition is recalled

below, restricting for simplicity to the case (sufficient for the purposes of this paper) where

the ambient manifold equals Rq. A rigorous explanation of the kind of convergence taking

place is given in Remark 5.3 below.

Definition 3.1. A triple (Σ,Φ, N), with Σ a closed connected Riemann surface, Φ ∈
W 1,2(Σ,Rq) nonconstant, weakly conformal and N ∈ L∞(Σ,N \ {0}), is a parametrized

stationary varifold if for almost every ω ⊆ Σ the 2-rectifiable varifold

vω := (Φ(G ∩ ω), θω), θω(p) :=
∑

x∈G∩ω∩Φ−1(p)

N(x)

is stationary in the open set Rq \ Φ(∂ω), where G denotes the set of Lebesgue points for

both Φ and dΦ.

We refer the reader to [11, Definition 2.1] for the notion of almost every domain, as well

as to [11, Definition 2.2] for another definition, whose equivalence with Definition 3.1 is

detailed in [11, Remark 2.3]. The latter formulation will not be used here.

Also, there is a corresponding local notion where we have an open set Ω ⊆ C in place of

Σ and where we require the stationarity condition for a.e. ω ⊂⊂ Ω: see [11, Definition 2.9].

This is the notion mostly used in this paper.

As already mentioned in the introduction, the main result of [11] is that Φ is harmonic

(i.e. coincides a.e. with a harmonic map) and N is (a.e.) constant; in the local version, this

holds on the connected components of Ω where Φ is not (a.e.) constant.

4. Two lemmas on harmonic maps

Lemma 4.1. Let γk ∈ C0(∂B2
1 ,R2) be a sequence of Jordan curves converging (in C0) to a

Jordan curve γ∞ and let fk ∈ C0(∂B2
1) be a sequence converging uniformly to a function

f∞. Let Dk be the domain bounded by γk, let uk ∈ C0(Dk) be the harmonic extension of

fk ◦ γ−1
k , and similarly define D∞ and u∞. Then uk → u∞ in C0

loc(D∞). Moreover, if

yk → y∞ with yk ∈ Dk and y∞ ∈ D∞, then uk(yk)→ u∞(y∞).

Notice that such harmonic extensions exist and are unique since there exist homeomor-

phisms B
2
1 → Dk restricting to biholomorphisms B2

1 → Dk (and similarly for D∞).

Proof. Since the functions fk are equibounded, from the maximum principle and interior

estimates it follows that the functions uk are equibounded in C2(ω), for any ω ⊂⊂ D∞,

and hence by Ascoli–Arzelà theorem the convergence uk → u∞ in C0
loc(D∞) follows from

the second claim.
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It suffices to show that the second claim holds for a subsequence: once this is done,

it can be obtained for the full sequence by a standard contradiction argument (given a

sequence yk → y∞, if uk(yk) did not converge to u∞(y∞), we could find a subsequence

such that it converges to a different value; then we would reach a contradiction along a

further subsequence where the second claim holds).

Up to removing a finite set of indices, we can suppose that there is a point p such that

p ∈ Dk for all k ∈ N ∪ {∞}. By Carathéodory’s theorem, we can find homeomorphisms

υk : B2
1 → Dk restricting to biholomorphisms from B2

1 to Dk, so that υk
∣∣
∂B2

1
= γk ◦ βk, for

suitable homeomorphisms βk : ∂B2
1 → ∂B2

1 (for all k ∈ N).

Since the maps υk and υ−1
k are equibounded and harmonic, we can assume that

υk → υ∞, ζk := υ−1
k → ζ∞(41)

in C∞loc(B
2
1) and C∞loc(D∞), respectively. Notice that υ∞ is a holomorphic map taking values

into D∞, while υ̃∞ is holomorphic and takes values into B2
1 (by the maximum principle, since

υ̃∞(p) = 0 and |υ∞| ≤ 1). So for any w ∈ D∞ the set
{
υ−1
k (w) | k ∈ N

}
∪ {υ̃∞(w)} ⊂ B2

1

is compact and we infer

υ∞ ◦ ζ∞(w) = lim
k→∞

υk ◦ ζk(w) = w.(42)

Hence υ∞ is surjective and thus an open map. So υ∞(B2
1) = D∞ and, by [15, Theorem 10.43]

(applied with f := υ∞ − w, g := υk − w, for a fixed w ∈ D∞ and an arbitrary circle

∂B2
r ⊆ B2

1 avoiding f−1(w), with k large enough), it is also injective. By Carathéodory’s

theorem, it extends continuously to a homeomorphism (still denoted υ∞) from B2
1 to D∞

and we have υ∞
∣∣
∂B2

1
= γ∞ ◦ β∞ for a suitable homeomorphism β∞ : ∂B2

1 → ∂B2
1 .

Up to subsequences, applying Helly’s selection principle (to the lifts βk : R → R),

we can assume that βk → β̃∞ everywhere, for some order-preserving β̃∞. On the other

hand, since supk
∫
B2

1
|υ′k|

2 = supk L2(Dk) is finite, we have weak convergence υk ⇀ υ∞ in

W 1,2(B2
1) and thus weak convergence γk ◦ βk ⇀ γ∞ ◦ β∞ in L2(∂B2

1). The everywhere

convergence γk ◦ βk → γ∞ ◦ β̃∞ implies γ∞ ◦ β∞ = γ∞ ◦ β̃∞ a.e. and thus β∞ = β̃∞ a.e.

Since β∞ is continuous and both maps are order-preserving, we conclude that β∞ = β̃∞

everywhere. Using again the continuity of β∞, as well as the everywhere convergence of the

order-preserving maps βk → β∞, we also get that βk → β∞ uniformly.

Being υk the harmonic extension of γk ◦βk (for k ∈ N∪{∞}), we conclude that υk → υ∞

in C0(B
2
1). Let Uk ∈ C0(B

2
1) be the harmonic extension of fk ◦βk and notice that Uk → U∞

in C0(B
2
1). By conformal invariance, uk := Uk ◦ υ−1

k is the harmonic extension of fk ◦ γ−1
k

on Dk (for k ∈ N ∪ {∞}).

Finally, we claim that in the situation of the second claim we have υ−1
k (yk)→ υ−1

∞ (y∞).

This easily follows from the injectivity of υ∞: if we had
∣∣υ−1
k (yk)− υ−1

∞ (y∞)
∣∣ ≥ ε along some

subsequence (for some ε > 0), we would have a limit point x∞ ∈ B
2
1 with

∣∣x∞ − υ−1
∞ (y∞)

∣∣ ≥
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ε and υ∞(x∞) = limk→∞ yk = y∞, which is a contradiction. Hence,

uk(yk) = Uk(υ
−1
k (yk))→ U∞(υ−1

∞ (y∞)) = u∞(y∞),(43)

as desired. �

Lemma 4.2. Given K ≥ 1 and s, ε > 0, there exists a constant 0 < δ0 < ε, depending only

on q,K, s, ε, with the following property: whenever

• Ψ ∈W 1,2 ∩ C0(B
2
1,Rq) has

∥∥∥Ψ
∣∣
∂B2

1
− ψ(s·)

∣∣
∂B2

1

∥∥∥
L∞(∂B2

1)
≤ δ0 for some ψ ∈ DΠ

K ,

• Ψ ◦ ϕ−1 is harmonic and weakly conformal on ϕ(B2
1), where ϕ : R2 → R2 is the normal

solution to a Beltrami differential equation with a coefficient µ ∈ EK (in the sense of [4,

Theorem 4.24]),

then Π ◦Ψ ◦ ϕ−1 is a diffeomorphism from ϕ(B
2
1/2) onto its image, with

dist(Π,Π(x)) < ε, Π(x) := 2-plane spanned by ∇(Ψ ◦ ϕ−1),(44)

and so Π ◦Ψ is injective on B
2
1/2.

Proof. Assume by contradiction that, for a sequence δk ↓ 0, there exist maps Ψk : B2
1 → Rq,

planes Πk, homeomorphisms ϕk : R2 → R2 and coefficients µk such that the claim fails

with δ0 = δk. By Lemma A.4, up to subsequences we have Πk → Π∞ and Ψk

∣∣
∂B2

1
→ γ,

where γ : ∂B2
1 → Rq is the restriction of a map in DΠ∞

K .

Also, using the same proof as Lemma A.4, we can assume that ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞
in C0

loc(R2), for some homeomorphism R2 → R2.

By harmonicity, up to subsequences we get Ψk ◦ ϕ−1
k → Θ∞ in C2

loc(ϕ∞(B2
1)), for some

Θ∞ : ϕ∞(B2
1)→ Rq, so that Θ∞ is conformal and harmonic.

On the other hand, by Lemma 4.1 Θ∞ is the harmonic extension of γ ◦ ϕ−1
∞ and

Ψk → Θ∞ ◦ ϕ∞ =: Ψ∞ in C0(B
2
1). By the maximum principle we have Π⊥∞ ◦Θ∞ = 0 and

thus Π∞ ◦Θ∞ is either holomorphic or antiholomorphic on ϕ∞(B2
1) (once Π∞ is identified

with C). Being Π∞ ◦Θ∞
∣∣
∂ϕ∞(B2

1)
= Π∞ ◦ γ ◦ ϕ−1

∞ a Jordan curve, Π∞ ◦Θ∞ must be a

diffeomorphism from ϕ∞(B2
1) onto its image.

Fix now a compact neighborhood F of ϕ∞(B
2
1/2) in ϕ∞(B2

1), with smooth boundary.

Since Ψk ◦ ϕ−1
k → Θ∞ in C1

loc(ϕ∞(B2
1)), we obtain that eventually Πk ◦ Ψk ◦ ϕ−1

k is a

diffeomorphism of F onto its image, with

dist(Πk,Πk(x)) < ε, x ∈ F.

The fact that eventually ϕk(B
2
1/2) ⊆ F yields the desired contradiction. �
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5. Technical iteration lemmas

Definition 5.1. Given V > 0 with V = bV c + 1
2 , we define K ′(V ) := (64V )2 and

E′(V ) := 2πK ′(V )2D(K ′(V )).

Lemma 5.2. There exists 0 < ε0 < η(K), depending on E, V > 0, K ≥ 1 and Mm, such

that whenever Ψ ∈ C2(B
2
r(z),Mm

p,`) is a conformal immersion, critical for the functional

(33) on B2
r (z), and Π,Π′ are 2-planes satisfying

• Ψ(z + r·) ∈ RΠ
K,ε0

,

• 1
2

∫
B2
r (z) |∇Ψ|2 ≤ E,

•
∫

Ψ−1(Bq1) dvolgΨ ≤ V π,

• τ2 log(τ−1)
∫
B2
r (z) |A|

4 dvolgΨ ≤ ε0 for some τ ≤ ε0,

• dist(Π,Π′) ≤ ε0 and ` ≤ ε0,

then the projected multiplicity NΠ
Ψ,z,r satisfies

dist
(
−
∫
BΠ
η(K)

NΠ
Ψ,z,s(K)2 , Z+

)
<

1

8
,(51)

∣∣∣∣∣ −
∫
BΠ
η(K)

NΠ
Ψ,z,s(K)2 − −

∫
BΠ′
η(K)

NΠ′

Ψ,z,s(K)2

∣∣∣∣∣ < 1

8
,(52)

where Z+ is the set of positive integers.

We remark in passing that volgΨ , i.e. the volume measure induced by Ψ, equals
1
2 |∇Ψ|2 L2.

Proof. We can assume z = 0 and r = 1. Suppose by contradiction that there exists a

sequence εk ↓ 0 and planes Πk,Π
′
k making the claim false for ε0 = εk. Up to subsequences,

we can assume that Πk,Π
′
k → Π∞, that Ψk has a weak limit Ψ∞ in W 1,2(B2

1 ,Rq), with

traces Ψ∞
∣∣
∂B2

s
(s·) = ψ(s·) for some ψ ∈ DΠ∞

K and all s ∈
{

1, s(K), s(K)2
}

, and that the

varifolds vk induced by Ψk converge to a varifold v∞ in Rq.

The arguments used in [12, Section III] and in [11, Section 2] show that Ψ∞ has a

continuous representative on the interior B2
1 , satisfying the convex hull property, namely

Ψ∞(ω) ⊆ co (Ψ∞(∂ω)) for all ω ⊂⊂ B2
1 (giving in particular dist(Ψ∞(x),Ψ∞(∂B2

1)) ≥ 1
2 ≥

1
4 and B2

1/4(Ψ∞(x)) ⊆ Bq
1 for x ∈ B2

s(K)), and that v∞ is stationary in

U := Bq
1 \Ψ∞(∂B2

1) ⊇ Ψ∞(B
2
s(K)).(53)

Let us fix any domain ω such that

B2
s(K) ⊂⊂ ω ⊂⊂ Ψ−1

∞ (U), dist(Ψ∞(x), ∂U) ≥ 1

8
on ω.(54)

Since ‖v∞‖ (U) ≤ V π, by monotonicity we get that the density θ of v∞ has

θ(Ψ∞(x)) ≤

(
π

(
1

8

)2
)−1

‖v∞‖ (Bq
1/8(Ψ∞(x))) ≤ 64V(55)



MULTIPLICITY ONE FOR MIN-MAX MINIMAL SURFACES IN ARBITRARY CODIMENSION 11

for all x ∈ ω. Hence, setting K ′(V ) := (64V )2, the aforementioned arguments also give

a local parametrized stationary varifold (ϕ∞(ω),Θ∞, N∞ ◦ ϕ−1
∞ ), where Θ∞ = Ψ∞ ◦ ϕ−1

∞
for a suitable K ′(V )-quasiconformal homeomorphism ϕ∞ : R2 → R2 and a suitable N∞ ∈
L∞(ω,Z+) bounded by 64V , guaranteeing the Radon measure convergence 1

2 |Ψk|2 L2 ∗⇀

N∞ |∂1Ψ∞ ∧ ∂2Ψ∞|.

Notice that there are no bubbling points in ω, since they would provide (nontrivial)

compact minimal immersed surfaces without boundary in Rq, which do not exist. Hence, we

also get the varifold convergence v′k
∗
⇀ v′∞ and v′′k

∗
⇀ v′′∞ as k →∞, as well as the tightness

of the sequences ‖v′k‖ and ‖v′′k‖, where v′k and v′′k are the varifolds issued by Ψk

∣∣
B2
s(K)

and

Ψk

∣∣
B2
s(K)2

respectively, while v′∞ and v′′∞ are the ones issued by (ϕ∞(B2
s(K)),Θ∞, N∞ ◦ϕ

−1
∞ )

and (ϕ∞(B2
s(K)2),Θ∞, N∞ ◦ ϕ−1

∞ ). The support of v′′∞ is contained in the plane Π∞, by

the convex hull property enjoyed by Ψ∞ and the fact that Ψ∞ maps ∂B2
s(K)2 to Π∞. Since

Ψ∞(∂B2
s(K)2) does not intersect Π−1

∞ (∂BΠ∞
η(K)), the varifold v∞ is stationary here and thus,

by the constancy theorem, it has a constant density ν ∈ N. The area formula then gives

−
∫
B

Πk
η(K)

NΠk
Ψk,0,s(K)2 =

‖(Πk)∗v
′′
k‖ (BΠk

η(K))

πη(K)2
→
‖(Π∞)∗v

′′
∞‖ (BΠ∞

η(K))

πη(K)2
= ν.

Similarly, −
∫
B

Π′
k

η(K)

N
Π′k
Ψk,0,s(K)2 → ν as k →∞. Hence the claim is eventually true, yielding

the desired contradiction. �

Remark 5.3. The proof of Lemma 5.2 gives also the following result: whenever Ψk ∈
C2(B

2
1,Mm

pk,`k
) is a sequence of conformal immersions such that Ψk is critical for the

functional (33) (with τk, `k in place of τ, `) and

• Ψk ∈ RΠk
K,η(V ),

• 1
2

∫
B2

1
|∇Ψk|2 ≤ E,

•
∫

Ψ−1
k (Bq1) dvolgΨk

≤ V π,

• τ2
k log(τ−1

k )
∫
B2

1
|A|4 dvolgΨk

≤ εk for some τk, εk → 0,

• `k → 0,

then up to subsequences Ψk ⇀ Ψ∞ in W 1,2(B2
1 ,Rq), with Ψ∞ continuous and satisfying

the convex hull property. Moreover, there exists a K ′(V )-quasiconformal homeomorphism

ϕ∞ of R2 and a multiplicity N∞ ∈ L∞(B2
s(K),Z

+) bounded by 64V such that the varifolds

induced by Ψk

∣∣
B2
s(K)

converge in the varifold sense to the local parametrized stationary

varifold

(ϕ∞(B2
s(K)),Ψ∞ ◦ ϕ

−1
∞ , N∞ ◦ ϕ−1

∞ )

and such that the associated mass measures form a tight sequence. This holds more

generally if B2
s(K) is replaced with an open subset ω with L2(∂ω) = 0. Finally, we have the

convergence of Radon measures 1
2 |∇Ψk|2 L2 ∗⇀ N∞ |∂1Ψ∞ ∧ ∂2Ψ∞| L2.
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We now specify δ0 so that Lemma 4.2 applies, with ε := ε0 and s := s(K). Notice that

ε0 and δ0 still depend on V , K and E.

Lemma 5.4. Given E > 0 and K ≥ 1 there exists a constant 0 < ε′0 < ε0 (depending on

E, V,K,Mm) with the following property: if a conformal immersion Ψ ∈ C2(B
2
r(z),Mm

p,`)

is critical for the functional (33) and satisfies

• Ψ(z + r·) ∈ RΠ
K,δ0

,

• 1
2

∫
B2
r (z) |∇Ψ|2 ≤ E,

• 1
π

∫
Ψ−1(Bq1) dvolgΨ ,

1
πη(K)2

∫
Ψ−1(Bq

η(K)
) dvolgΨ ≤ V ,

• τ2 log(τ−1)
∫
B2
r (z) |A|

4 dvolgΨ ≤ ε′0 for some 0 < τ ≤ ε′0,

• 0 < ` ≤ ε′0,

then there exist a new point p′ ∈Mm, new scales r′, `′ and a new 2-plane Π′ with

• ε′0r < r′ < s(K)r,

• ε′0 < `′ < 1
2 ,

• dist(Π,Π′) < ε0,

• Ψ′ := (`′)−1(Ψ(z + r′·)− p′) ∈ RΠ′

K′(V ),δ0
,

• 1
2

∫
B2
r′ (z)
|∇Ψ′|2 < E′(V ),

• 1
π

∫
Ψ̃−1(Bq1)

dvolg
Ψ̃
, 1
πη(K)2

∫
Ψ̃−1(Bq

η(K)
)
dvolg

Ψ̃
<
⌊(

η(K)
η(K)−ε0

)2
V
⌋

+ 1
2 .

Proof. We can assume z = 0 and r = 1. By contradiction, suppose that there is a sequence

εk ↓ 0 such that the claim fails (with ε′0 = εk) for all radii εk < r′ < s(K), for some Ψk and

Πk satisfying all the hypotheses. Up to subsequences, by Remark 5.3, we get a limiting

local parametrized stationary varifold (Ω∞,Θ∞, N∞ ◦ ϕ−1
∞ ) in Rq, where Θ∞ = Ψ∞ ◦ ϕ−1

∞
and Ω∞ = ϕ∞(B2

s(K)) for a suitable K ′(V )-quasiconformal homeomorphism ϕ∞ of the

plane. Moreover, assuming also that Πk → Π∞ and pk → p∞, by weak convergence of

traces and Lemma A.4 we still have Ψ∞ ∈ RΠ∞
K,δ0

. By the regularity result of [11], Θ∞ is

harmonic. Also, it takes values in the tangent space T at p∞ (translated to the origin).

Also, by definition of δ0 and Lemma 4.2, Θ∞ is a diffeomorphism from B
2
1/2 onto its

image and the differential ∇Θ∞(0) is a conformal linear map of full rank, spanning a plane

Π′ with dist(Π∞,Π
′) < ε0.

The varifolds vk induced by Ψk

∣∣
B2
s(K)

converge to v∞, induced by (ϕ∞(B2
s(K)),Θ∞, N∞ ◦

ϕ−1
∞ ). By the convex hull property enjoyed by Ψ∞, there exists y ∈ B2

s(K)2 such that

|Ψ∞(y)| ≤ δ0. Since ‖v∞‖ (Bq
η(K)) ≤ V πη(K)2, the stationarity of v∞ near Θ∞(0) implies

that its density at Ψ∞(y) is at most
(

η(K)
η(K)−ε0

)2
V . Being v∞ stationary in the embedded

surface Θ∞(ϕ∞(B2
s(K))), the constancy theorem gives that its density θ is a constant integer

here.

Thus we have

‖v∞‖ (B
q
t (p
′
∞)) <

(⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2

)
πt2, p′∞ := Θ∞(0) ∈ T,
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for all t > 0 small enough. Fix now any r′ < s(K) such that we have the strong convergence

Ψk(r
′·) → Ψ∞(r′·) in C0(∂B2

1 ∪ ∂B2
s(K) ∪ ∂B

2
s(K)2) along a subsequence. Notice that

λ−1ϕ∞(r′·) ∈ DK′(V ), where λ := min|x|=r′ |ϕ∞(x)|. Also, the fact that Ψ∞ = Θ∞ ◦ ϕ∞
and the smoothness of Θ∞ give∣∣Ψ∞(r′x)−Ψ∞(0)−

〈
∇Θ∞(0), ϕ∞(r′x)

〉∣∣ < δ0 |∇Θ∞(0)|√
2D(K ′(V ))

|ϕ∞(x)| ≤ δ0`
′(56)

if r is chosen small enough, where `′ := |∇Θ∞(0)|√
2

λ and x ∈ B2
1. We can also ensure that

1

2

∫
B2
r′

|∇Ψ∞|2 ≤ K ′(V )

∫
B2
D(K′(V ))

|∇Θ∞|2 < 2K ′(V )(λD(K ′(V )))2π |∇Θ∞(0)|2 ,

as well as, calling v′∞ the varifold induced by (ϕ∞(B2
r′), (`

′)−1(Θ∞ − p′∞), N∞ ◦ ϕ−1
∞ ),

‖v′∞‖ (B
q
1)

π
,
‖v′∞‖ (B

2
η(K))

πη(K)2
<
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

Thanks to (56) and λ−1ϕ∞(r·) ∈ DK′(V ), eventually (`′)−1(Ψk(r·) − p′k) ∈ DΠ′

K′(V ),δ0
.

Moreover, we have

1

2

∫
B2
r′ (z)
|∇Ψk|2 →

∫
B2
r′ (z)

N∞ |∂1Ψ∞ ∧ ∂2Ψ∞| < (`′)2E′(V ).

Also, calling p′k the closest point to p′∞ inMm
pk,`k

(eventually defined and converging to p′∞,

sinceMm
pk,`k

→ T ), from the convergence of the varifolds induced by (`′)−1(Ψk − p′k)
∣∣
B2
r′

to

v′∞ we get

lim sup
k→∞

‖v′k‖ (Bq
1)

π
, lim sup
k→∞

‖v′k‖ (B2
η(K))

πη(K)2
<
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

So eventually (`′)−1(Ψk(r
′·) − p′k) satisfies all the conclusions. This yields the desired

contradiction. �

Definition 5.5. Given constants K ′′ ≥ 1 and E′′ > 0, we define K0 := max {K ′(V ),K ′′}
and E0 := max {E′(V ), E′′}. We also let s0 := s(K0) and η0 := η(K0).

We fix ε0 (and thus δ0) and ε′0 so that Lemmas 5.2 and 5.4 apply with K := K0, E := E0.

Since ε0 depends on V , we can assume that it is chosen so small that⌊( η0

η0 − ε0

)2

V
⌋

+
1

2
= bV c+

1

2
= V.(57)

This makes the last conclusion of Lemma 5.4 match one of the hypotheses, making it

possible to iterate that result. On the other hand, the constants V , K ′′, E′′ (upon which

all the aforementioned constants depend) will be fixed only in Section 6.

Lemma 5.6. There exists a constant 0 < ε′′0 < ε′0 with the following property: if a conformal

immersion Ψ ∈ C2(B
2
r(z),Mm

p,`) satisfies the hypotheses of the previous lemma (with ε′′0
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and K0 in place of ε′0 and K), then the new point p′ and the new radius r′ provided by

Lemma 5.4 satisfy

nΠ,0,η0

Ψ,z,s20r
= nΠ,p′,η0`′

Ψ,z,s20r
′ = nΠ′,p′,η0`′

Ψ,z,s20r
′ .(58)

Proof. Assume again z = 0, r = 1 and, by contradiction, that the first equality in (58)

fails, so that we have again two sequences εk ↓ 0 and Ψk. We can assume that Πk → Π∞,

p′k → p′∞, `′k → `′∞ and r′k → r′∞, with p′∞ ∈ Mm, ε′0 ≤ `′∞ ≤ 1
2 and ε′0 ≤ r′∞ ≤ s0.

Moreover, up to further subsequences we get a limiting local parametrized stationary

varifold (Ω∞,Θ∞, N∞ ◦ ϕ−1
∞ ) in Rq. From [11] we know that Θ∞ is harmonic and N∞ is

constant, so Lemma 4.2 gives that Π∞ ◦Θ∞ is a diffeomorphism from ϕ∞(B
2
s0/2) onto its

image.

Calling vk the varifold issued by Ψk

∣∣
B2
s20

and v∞ the one issued by (ϕ∞(B2
s20

),Θ∞, N∞ ◦

ϕ−1
∞ ), we have the varifold convergence vk

∗
⇀ v∞ as k →∞. The area formula gives

−
∫
B

Πk
η0

NΠk
Ψ,0,s20

=
‖(Πk)∗vk‖ (BΠk

η0
)

πη2
0

→
‖(Π∞)∗v∞‖ (BΠ∞

η0
)

πη2
0

= N∞,

since (Π∞)∗v∞ equals an open superset of BΠ∞
η0

in Π∞ (by Lemma A.1), equipped with

the constant integer multiplicity N∞. Hence, nΠk,0,η0

Ψk,0,s
2
0

= N∞ eventually.

Similarly, calling vk the varifold induced by Ψk

∣∣
B2
s20r
′
k

and v∞ the varifold induced

by (ϕ∞(B2
s20r
′
∞

),Θ∞, N∞ ◦ ϕ−1
∞ ), we have v′k

∗
⇀ v′∞ as k → ∞, as is readily seen by

approximating with domains which do not vary along the sequence. Since (`′∞)−1(Ψ∞(r′∞·)−
p′∞) ∈ RΠ∞

K0,δ0
, again (Π∞)∗v

′
∞ equals a superset of BΠ∞

η0`′∞
in Π∞, with constant density

N∞. This gives again

−
∫
B

Πk
η0`
′
k

(qk)
NΠk

Ψ,0,s20r
′
k

=
‖(Πk)∗v

′
k‖ (BΠk

η0`′k
(qk))

πη2
0(`′k)

2
→
‖(Π∞)∗v

′
∞‖ (BΠ∞

η0`′∞
(q∞))

πη2
0(`′∞)2(q∞)

= N∞,

where qk := Πk(p
′
k) for k ∈ N ∪ {∞}. Hence, n

Πk,p
′
k,η0`′k

Ψk,0,s
2
0r
′
k

= N∞ eventually. So the first

equality in (58) holds eventually, giving the desired contradiction.

The second equality in (58) follows immediately from Lemma 5.2, which gives nΠ,p′,η0`′

Ψ,z,s20r
′ =

nΠ′,p′,η0`
Ψ,z,s20r

′ since dist(Π′,Π) < ε0. �

Lemma 5.7. Assume that Ψ ∈ C∞(B
2
r(z),Mm

p,`) is a conformal immersion and Π is a

2-plane with Ψ(z + r·) ∈ DΠ
K0,δ0

and 1
2

∫
B2
r (z) |∇Ψ|2 ≤ E. If

∫
B2

1
|A|4 dvolgΨ and ` are

sufficiently small, then Π ◦Ψ is a diffeomorphism from B
2
s20

onto its image.

Proof. We can suppose z = 0, r = 1. Assume by contradiction that the claim does not

hold, for a sequence of 2-planes Πk → Π∞ and immersions Ψk : B
2
1 →Mm

pk,`k
with `k → 0

and second fundamental form Ak satisfying∫
B2

2

|Ak|4 dvolgΨk
→ 0.(59)
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Let λk ∈ C∞(B
2
1) be defined by |∂1Ψk| = |∂2Ψk| =: eλk and let Ap,` and Ãk denote the

second fundamental form of Mm
p,` ⊆ Rq and of the immersion Ψk in Rq respectively, so that

Ãk = Apk,`k +Ak. Notice that

‖Apk,`k‖L∞ ≤ C(Mm)`k → 0,(510)

so that ∫
B2

1

∣∣∣Ãk∣∣∣4 dvolgΨk
→ 0.(511)

With a slight abuse of notation, let us drop the dependence on k in the subsequent

computations. We define the orthonormal frame

ẽ1 := e−λ∂1Ψ, ẽ2 := e−λ∂2Ψ2(512)

for the tangent space of the immersed surface Ψ. It is straightforward to check that the

map e1 ∧ e2 : B
2
1 → Λ2Rq has |∇(e1 ∧ e2)| = eλ

∣∣∣Ã∣∣∣, so∫
B2

1

|∇(e1 ∧ e2)|2 dL2 =

∫
B2

1

e2λ
∣∣∣Ã∣∣∣2 dL2 =

∫
B2

1

∣∣∣Ã∣∣∣2 dvolgΨ → 0(513)

by Hölder’s inequality, since
∫
B2

1
dvolgΨ ≤ cπ. We identify the Grassmannian Gr2(Rq) of

2-planes in Rq with a submanifold of the projectivization of Λ2Rq, by means of Plücker’s

embedding. For k large enough [3, Lemma 5.1.4] applies and provides a rotated frame

(e1, e2), given by

E := e1 + ie2 = eiθẼ, Ẽ := ẽ1 + iẽ2,(514)

for a suitable real function θ ∈W 1,2(B2
1) minimizing

∫
B2

1
|∇θ + ẽ1 · ∇ẽ2|2 (in particular, θ

and E are smooth functions on B
2
1) and with ‖∇E‖2L2 becoming arbitrarily small as k →∞.

We will assume in the sequel that ‖∇E‖2L2 ≤ 1. Observe that, whenever α, β ∈ C1(B
2
1),

∂1α∂2β − ∂2α∂1β =
1

4
(∂1α+ ∂2β)2 +

1

4
(∂2α− ∂1β)2 − 1

4
(∂1α− ∂2β)2 − 1

4
(∂2α+ ∂1β)2

= |∂z(α+ iβ)|2 − |∂z(α+ iβ)|2 .

Hence, being ẽ1 + iẽ2 = 2e−λ∂zΨ and ∂zΨ · ∂zΨ = ∂zΨ · ∂zΨ = 0 by conformality, we get

−(∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2) = 4
∣∣∣∂z(e−λ∂zΨ)

∣∣∣2 − 4
∣∣∣∂z(e−λ∂zΨ)

∣∣∣2
= 4∂z(e

−λ∂zΨ) · ∂z(e−λ∂zΨ)− 4∂z(e
−λ∂zΨ) · ∂z(e−λ∂zΨ)

= 4e−2λ(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ− ∂zλ∂zΨ · ∂zzΨ− ∂zλ∂zΨ · ∂zzΨ)

+ 2e−2λ∂zλ∂z(∂zΨ · ∂zΨ) + 2e−λ∂zλ∂z(∂zΨ · ∂zΨ)

= 4e−2λ(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ− ∂zλ∂zΨ · ∂zzΨ− ∂zλ∂zΨ · ∂zzΨ).

On the other hand we have

2e2λ∂zλ = ∂z(e
2λ) = ∂z(2∂zΨ · ∂zΨ) = ∂z(∂zΨ · ∂zΨ) + 2∂zΨ · ∂2

zzΨ = 2∂zΨ · ∂zzΨ,
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∆(e2λ) = 4∂2
zz(2∂zΨ · ∂zΨ) = 8∂z(∂zΨ · ∂2

zzΨ) + 4∂zz(∂zΨ · ∂zΨ)

= 8(∂zzΨ · ∂zzΨ− ∂zzΨ · ∂zzΨ) + 4∂zz(∂zΨ · ∂zΨ)

= 8(∂zzΨ · ∂zzΨ− ∂zzΨ · ∂zzΨ),

so we arrive at

∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2 = −∆(e2λ)

2e2λ
+ 8∂zλ∂zλ = −∆λ.(515)

Alternatively, since the projections of ∂j ẽ1 and ∂kẽ2 onto the tangent space of the immersion

Ψ are orthogonal (being the projection of ∂j ẽ1 a multiple of ẽ2 and the projection of ∂kẽ2 a

multiple of ẽ1),

∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2 = e2λ(Ã(ẽ1, ẽ1) · Ã(ẽ2, ẽ2)− Ã(ẽ1, ẽ2) · Ã(ẽ1, ẽ2)) = e2λK,

by Gauss’ formula, K denoting the Gaussian curvature of the immersed surface. But, by

the well-known formula for the curvature of a conformal metric, we have K = −e−2λ∆λ,

which gives again (515). Moreover,

∂1e1 · ∂2e2 − ∂2e1 · ∂1e2 = =
〈
∇E;∇E

〉
= =

〈
∇Ẽ − iẼ ⊗∇θ;∇Ẽ + iẼ ⊗∇θ

〉
= =

〈
∇Ẽ;∇Ẽ

〉
= ∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2,

since
〈
Ẽ ⊗∇θ; Ẽ ⊗∇θ

〉
is real and

〈
−iẼ ⊗∇θ;∇Ẽ

〉
=
〈
∇Ẽ; iẼ ⊗∇θ

〉
. Thus, calling

µ ∈ C∞(B
2
1) the solution to−∆µ = ∂1e1 · ∂2e2 − ∂2e1 · ∂1e2 on B2

1

µ = 0 on ∂B2
1 ,

we obtain that λ− µ is harmonic and, by Wente’s inequality,

‖µ‖L∞ ≤ C(q)
(
‖∇e1‖2L2 + ‖∇e2‖2L2

)
≤ C(q).(516)

Since λ < e2λ, for all x ∈ B2
3/4 we get

(λ− µ)(x) = −
∫
B2

1/4
(x)

(λ− µ) ≤ −
∫
B2

1/4
(x)
e2λ + ‖µ‖L∞ ≤

E

L2(B2
1/4)

+ C(q).(517)

Together with (516), this gives an upper bound for λ on B2
3/4, depending only on V, q.

Although this is sufficient for the present purposes, one can also get a lower bound for λ

on B2
s0 . Indeed, calling M the right-hand side of (517), we obtain that M − (λ− µ) is a

nonnegative harmonic function on B2
3/4. Moreover, the length of the curve Ψ

∣∣
∂B2

s0

is∫
∂B2

s0

eλ ≥ 2πη0(518)

by the area formula, since the composition of Ψ
∣∣
∂B2

s0

with the radial projection onto ∂B2
η0

(which does not increase the length) is surjective (being a generator of the fundamental
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group of ∂B2
η0

). Hence, there exists some x ∈ ∂B2
s0 such that λ(x) ≥ log

(
s−1

0 η0

)
. We

deduce that

inf
B2
s0

(M − (λ− µ)) ≤M + C(q)− log(s−1
0 η0)(519)

and so, by Harnack’s inequality, the supremum of M − (λ− µ) on B2
s0 is bounded by a

constant depending only on V, s0, η0, q. This, together with (517) and (516), gives

‖λ‖L∞(B2
s0

) ≤ C(V,E, η0, q).(520)

The mean curvature of the immersion Ψ is H̃ = 1
2e2λ

(Ã(∂1Ψ, ∂1Ψ) + Ã(∂2Ψ, ∂2Ψ)) = −∆Ψ
2eλ

(notice that ∆Ψ is already orthogonal to the tangent space of the immersion, since

∂zΨ ·∆Ψ = 4∂zΨ · ∂2
zzΨ = 2∂z(∂zΨ · ∂zΨ) = 0). So we get∫

B2
3/4

|∆Ψk|4 dL2 = 16

∫
B2

3/4

∣∣∣H̃k

∣∣∣4 e2λk dvolgΨk
≤ C(c, q)

∫
B2

3/4

∣∣∣Ãk∣∣∣4 dvolgΨk
→ 0.(521)

Since s0 ≤ 1
2 , this implies that (Ψk) is a bounded sequence in W 2,4(B2

s0) (see Lemma

A.2 applied to Ψk(
3
4 ·)), so by the compact embedding W 2,4(B2

s0) ↪→ C1(B
2
s0) we obtain a

strong limit Ψ∞ in C1(B
2
s0), up to subsequences. Thus Ψ∞ is weakly conformal and, by

(521), it is also harmonic. Lemma 4.2 applies (with Ψ = Ψ∞(s0·) and ϕ = idR2) and gives

that Π∞ ◦Ψ∞ is a diffeomorphism from B
2
s0/2 ⊇ B

2
s20

onto its image, hence the same is

eventually true for Πk ◦Ψk, giving the desired contradiction. �

6. Multiplicity one in the limit

Theorem 6.1. Assume Φ ∈ C∞(B
2
r(z),Mm) is a conformal immersion, critical for (31)

on B2
r (z) and satisfying

• σ2 log(σ−1)
∫
B2
s
|A|4 dvolgΦ ≤

ε′′0
E0

∫
B2
s
dvolgΦ for all 0 < s ≤ r,

• 1
2

∫
B2

1
|∇Φ|2 ≤ min {V π,E0},

• `−1(Φ(z + r·)−Ψ(z)) ∈ RΠ
K0,δ0

for some ` ≥
√
σ/ε′′0.

Then, if σ and ` are small enough (independently of each other), we have n
Π,Φ(z),η0`

Φ,z,s20r
= 1.

Proof. Let r0 := r, p0 := Φ(z), `0 := `, τ0 := σ`−2
0 and Π0 := Π. Notice that

Ψ0 := `−1(Φ− Φ(z)) = `−1
0 (Φ− p0)

is critical for (33), with τ := τ0 ≤ ε′′0. Thus Lemma 5.4 applies (if ` is small enough), giving

a new radius ε′0r0 < r1 < s0r0, a new point p′ ∈Mm, a new scale `′ and a new 2-plane Π′.

Setting r1 := r′, p1 := p0 + `0p
′, `1 := `′`0, τ1 := σ`−2

1 , Π1 := Π′ and recalling (57), the map

Ψ1 := (`′)−1(Ψ0 − p′) = `−1
1 (Ψ− p1)
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still satisfies the hypotheses of Lemma 5.4, except possibly for τ1 ≤ ε′0, with the parameters

r1, τ1, p1, `1: indeed, notice that (assuming τ1 < 1)

τ2
1 log(τ−1

1 )

∫
B2
r1

(z)
|A|4 dvolgΨ1

≤ τ2
1 log(σ−1)

∫
B2
r1

(z)
|A|4 dvolgΨ1

= `−2
1 σ2 log(σ−1)

∫
B2
r1

(z)
|A|4 dvolgΦ ≤

ε′′0`
−2
1

E0

∫
B2
r1

(z)
dvolgΦ =

ε′′0
2E0

∫
B2
r1

(z)
|∇Ψ1|2 ≤ ε′′0.

Hence, we can iterate and define rj , pj , `j , τj ,Πj , for j = 0, 1, . . . , up to a maximum index

k ≥ 1 for which the constraint τk ≤ ε′0 is no longer verified: such k exists since τj ≥ 2jτ0.

This implies ∫
B2
rk

(z)
|A|4 dvolgΨk

≤ ε′′0
τ2
k log(σ−1)

≤ ε′′0
(ε′0)2 log(σ−1)

.

If σ and ` are small enough, Lemma 5.7 applies and, together with Lemma A.1, gives

nΠk,pk,η0`k
Ψk,z,s

2
0rk

= 1. Also, Lemma 5.6 applies for all j = 0, . . . , k − 1, giving

n
Π,Φ(z),η0`

Φ,z,s20r
= nΠ0,p0,η0`0

Ψ0,z,s20r0
= nΠ1,p1,η0`1

Ψ1,z,s20r1
= · · · = nΠk,pk,η0`k

Ψk,z,s
2
0rk

= 1. �

As in Section 3, assume now that Φk : Σ→Mm is a sequence of critical points for∫
Σ
dvolgΦk

+ σ2
k

∫
Σ

(1 + |A|2)2 dvolgΦk
(61)

with controlled area, namely

λ ≤
∫

Σ
dvolgΦk

≤ Λ,

and with

σk → 0, σ2
k log(σ−1

k )

∫
Σ

(1 + |A|2)2 dvolgΦk
→ 0.

By the main result of [12], up to subsequences the varifolds vk induced by Φk converge

to a parametrized stationary varifold.

In the remainder of the paper, we will assume for simplicity that there is no bubbling

and no degeneration of the conformal structure, so that the limiting varifold v∞ is induced

by a weak limit Φ∞ ∈W 1,2(Σ,Mm) of Φk, with a multiplicity N∞. The arguments will

apply also to the general case, working on suitable domains different from Σ.

Assuming without loss of generality that the conformal classes induced by Φk converge, we

fix a metric on Σ inducing the limiting conformal class. The limiting parametrized stationary

varifold has the form (Σ∞,Θ∞, N∞), where Θ∞ : Σ∞ →Mm is a smooth branched minimal

immersion and ϕ∞ : Σ → Σ∞ is (locally) a quasiconformal homeomorphism such that

Ψ∞ = Θ∞ ◦ ϕ∞.

By the regularity result in [11], which was already exploited in Section 5, N∞ is locally

a.e. constant and thus a.e. constant (being Σ connected).
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Definition 6.2. We set µ := infkH2
∞(Φk(Σ)), where we recall that, for a set S ⊆ Rq,

H2
∞(S) := inf

{∑
j

π diam(Ej)
2 | S ⊆

⋃
j

Ej

}
.

Lemma 6.3. We have µ > 0.

Proof. Fix any Lebesgue point x0 for Φ∞ and dΦ∞, such that dΦ∞(x0) has full rank.

Working in a conformal chart centered at x0, there exists a radius such that Φ∞(r·)
∣∣
∂B2

1

has a W 1,2 representative, Φk(r·)→ Φ∞(r·) in C0(∂B2
1) (up to subsequences) and

‖Φ∞(r·)− Φ∞(0)− 〈∇Φ∞(0), r·〉‖L∞(∂B2
1) <

1

2
min
x∈∂B2

1

|〈∇Φ∞(0), ry〉| .(62)

By Lemma A.1, calling Π ⊆ Rq the 2-plane spanned by ∇Φ∞ and p∞ := Π ◦ Φ∞(0) ∈ Π,

eventually we have

BΠ
s (p∞) ⊆ Π ◦ Φk(B

2
r ), s :=

1

2
min
x∈B2

1

|〈∇Φ∞(0), ry〉| .(63)

But H2
∞(BΠ

s (p∞)) = πs2, since on 2-planes H2
∞ equals the standard 2-dimensional Lebesgue

measure. Thus

πs2 ≤ H2
∞(Π ◦ Φk(Σ)) ≤ H2

∞(Φk(Σ)).(64)

Since the argument can be repeated starting from an arbitrary subsequence, the claim is

established. �

Definition 6.4. We let TK′′ denote the set of bad points z which are not Lebesgue for

dΦ∞, or such that dΦ∞(z) does not have full rank, or such that

max
|x|=1

|〈∇Φ∞(0), x〉| > K ′′ min
|x|=1

|〈∇Φ∞(0), x〉|(65)

in conformal coordinates centered at z. By (66) we have ν∞(TK′′) → 0 as K ′′ → ∞:

we now specify the value of K ′′ ≥ 1 in such a way that ν∞(TK′′) ≤ µ
4 . We also set

E′′ := 4π ‖N∞‖L∞ ((K ′′)2 + 1). Notice that now also the constants K0, E0, s0, η0, as well

as ε0, δ0, ε′0 and ε′′0, are determined.

Lemma 6.5. There exists V > 0 such that, calling Sk the set of points z ∈ Σ satisfying

•
∫

Φ−1
k (Bq` (Φk(z))) dvolgΦk

< V π`2 for all 0 < ` < 1,

• σ2
k log(σ−1

k )
∫
B2
r (z) |A|

4 dvolgΦk
< ε′′0

∫
B2
r (z) dvolgΦk

for all 0 < r < 1,

we have
∫
Sk
dvolgΦk

≥ µ
2 for all k large enough (depending on ε) and V = bV c+ 1

2 .

Proof. Let Bk be the Borel set of points p ∈ Φk(Σ) such that ‖vk‖ (Bq
` (p)) > V π`2 for

some radius 0 < ` < 1. By Besicovitch’s covering lemma, we can find a finite or countable

collection of points pi ∈ Bk and radii `i such that

‖vk‖ (Bq
`i

(pi)) ≥ V π`2i , 1Bk ≤
∑
i

1Bq`i (pi)
≤ N
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for some universal N depending only on q. Thus,

H2
∞(Bk) ≤

∑
i

π`2i ≤ V −1
∑
i

‖vk‖ (Bq
`i

(pi)) ≤ V −1NΛ.

Choosing V :=
⌈

4NΛ
µ

⌉
+ 1

2 (i.e. V := min
{
n ∈ N : n ≥ 4NΛ

µ

}
+ 1

2), we get

‖vk‖ (Mm \ Bk) ≥ H2(Φk(Σ) \ Bk) ≥ H2
∞(Φk(Σ) \ Bk) ≥ µ−H2

∞(Bk) ≥
3

4
µ.

Similarly, calling B′k be the Borel set of points z such that the second condition fails for

some radius 0 < r < 1, we get a collection of points zi ∈ B′ and radii ri such that

σ2
k log(σ−1

k )

∫
B2
ri

(zi)
|A|4 dvolgΦk

≥ ε′′0
∫
B2
ri

(zi)
dvolgΦk

, 1B′k ≤
∑
i

1B2
ri

(zi) ≤ N.

Thus we get

volgΦk
(B′k) ≤

∑
i

volgΦk
(B2

ri(zi)) ≤ (ε′′0)−1σ2
k log(σ−1

k )
∑
i

∫
B2
ri

(zi)
|A|4 dvolgΦk

≤ (ε′′0)−1Nσ2
k log(σ−1

k )

∫
Σ
|A|4 dvolgΦk

→ 0.

Hence, for k so large that volgΦk
(B′k) ≤

µ
4 , we get

volgΦk
(B′k)(Σ \ (Φ−1

k (Bk) ∪ B′k)) ≥ volgΦk
(Φ−1

k (Mm \ Bk))− volgΦk
(B′k) ≥

3

4
µ− µ

4
≥ µ

2
,

as ‖vk‖ = (Φk)∗volgΦk
. The claim follows by taking Sk := Σ \ (Φ−1

k (Bk) ∪ B′k). �

Theorem 6.6. We have N∞ = 1.

Proof. Up to subsequences, we can assume that Sk converges in the Hausdorff topology

to some compact set S∞. Setting νk := volgΦk
, by [12] we know that (up to further

subsequences) Φk ⇀ Φ∞ in W 1,2(Σ) and νk
∗
⇀ ν∞, for suitable Φ∞ and ν∞ satisfying, in

local conformal coordinates for Σ,

ν∞ = N∞ |∂1Φ∞ ∧ ∂2Φ∞| .(66)

We remark that ν∞(S∞) ≥ µ
2 : indeed, for any compact neighborhood F of S∞, we have

Sk ⊆ F eventually and so

ν∞(F ) ≥ lim sup
k→∞

νk(F ) ≥ lim sup
k→∞

νk(Sk) ≥
µ

2
.(67)

We now show that N∞ = 1 on S∞ \ TK′′ : fix any z ∈ S∞ \ TK′′ and choose conformal

coordinates centered at z. We can find points zk ∈ Sk such that zk → 0 and conformal

reparametrizations Ψ̃k of Φk(zk + ·), by means of diffeomorphisms converging smoothly to

the identity. By weak convergence Φ̃k ⇀ Φ∞ in W 1,2, we can find an arbitrarily small

radius r such that

Φ̃k(r·)→ Φ∞(r·) in C0(∂B2
1 ∪ ∂B2

s0 ∪ ∂B
2
s20

)(68)
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up to further subsequences, as well as

|Φ∞(rx)− Φ∞(0)− 〈∇Φ∞(0), rx〉| < δ0` |x| for x ∈ ∂B2
1 ∪ ∂B2

s0 ∪ ∂B
2
s20
,(69)

1

2

∫
B2
r

|∇Φ∞|2 ≤ (2r)2π |∇Φ∞(0)|2 ≤ 4`2π((K ′′)2 + 1),(610)

with ` := rmin|x|=1 |〈∇Φ∞(0), x〉|. Thanks to the definition of E′′ and (66), eventually

Ψk := `−1(Φ̃k −Φ∞(0)) satisfies the hypotheses of Lemma 6.1, provided that r (and thus `)

is small enough. We infer that nΠ,0,η0

Ψk,0,s
2
0

= 1, where Π is the 2-plane spanned by ∇Φ∞(0).

Since r can be chosen arbitrarily small (possibly changing the subsequence guaranteeing

(68)), the argument used in the proof of [12, Lemma III.10] shows that N∞(z) = 1. Thus

N∞ = 1 on S∞ \TK′′ , which has positive Lebesgue measure (being ν∞(S∞ \TK′′) ≥ µ
4 > 0).

Since N∞ is a.e. constant, we have N∞ = 1 a.e. Alternatively, nΠ,0,η0

Ψk,0,s
2
0

= 1 gives∣∣∣∣∣‖Π∗v′k‖ (BΠ
η0

)

πη2
0

− 1

∣∣∣∣∣ < 1

8
,

where v′k is induced by Ψk

∣∣
B2
s20

. Assuming without loss of generality that ∇Θ∞(ϕ∞(0)) 6= 0,

the convergence of vk to the varifold v′∞ induced by (ϕ∞(B2
s20r

),Θ∞, N∞) and the injectivity

of Π ◦Θ∞ on B2
s20r

(which holds provided that r is small enough and that the chain rule

dΨ∞(0) = dΘ∞(ϕ∞(0)) ◦ dϕ∞(0) applies) give

‖Π∗v′k‖ (BΠ
η0

)

πη2
0

→
‖Π∗v′∞‖ (BΠ

η0
)

πη2
0

= N∞,

so again we conclude that N∞ = 1 a.e. �

Appendix.

Lemma A.1. Assume that F ∈ C0(B
2
1,R2) satisfies

|F (x)− ϕ(x)| ≤ δ for all x ∈ ∂B2
1(A1)

for some 0 < δ < 1 and some homeomorphism ϕ : R2 → R2, with ϕ(0) = 0 and

min|x|=1 |ϕ(x)| = 1. Then

F (B2
1) ⊇ B2

1−δ.(A2)

Proof. It suffices to show that, for a fixed y ∈ B2
1−δ, the closed curve Γ′ := F

∣∣
∂B2

1
is not

contractible in R2 \ {y}: if we had y 6∈ F (B2
1), i.e. y 6∈ F (B

2
1), then F would provide a

homotopy from Γ′ to the constant curve F (0) in R2 \ {y}, yielding a contradiction.

Let Γ := ϕ
∣∣
∂B2

1
and γ := Γ′ − Γ, we have |γ(x)| ≤ δ for all x ∈ ∂B2

1 . Hence, Γ is

homotopic to Γ′ in R2 \B2
1−δ ⊆ R2 \ {y} by means of the homotopy

Γ + tγ, 0 ≤ t ≤ 1.
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So we are left to show that Γ is not contractible in R2 \{y}, i.e. that Γ−y is not contractible

in R2 \ {0}. The curve Γ− y is homotopic to Γ in R2 \ {0}, by means of the homotopy

Γ− ty, 0 ≤ t ≤ 1,

which avoids the origin since |y| < 1. Finally, Γ is not contractible in R2 \ {0}, since ϕ

(once restricted to a homeomorphism of R2 \ {0}) induces an automorphism of π1(R2 \ {0})
sending the class of the generator id∂B2

1
to the class of Γ. Hence, Γ− y is not contractible

in R2 \ {0}, too, as desired. �

Lemma A.2. For a function Ψ ∈ C∞(B1) and a 0 < τ < 1 we have

‖Ψ‖W 2,4(B2
τ ) ≤ C(τ)(‖∆Ψ‖L4(B2

1) + ‖∇Ψ‖L2(B2
1) + ‖Ψ‖L2(B2

1)).

Proof. Given two radii 0 < r < s ≤ 1, let us choose a cut-off function ρ ∈ C∞c (B2
s ) with

ρ = 1 on B2
r . Since ρΨ ∈ C∞c (R2), standard Calderón–Zygmund estimates give∥∥∇2Ψ

∥∥
Lp(B2

r )
≤
∥∥∇2(ρΨ)

∥∥
Lp(R2)

≤ C(p) ‖∆(ρΨ)‖Lp(R2)

≤ C(p, r, s)(‖∆Ψ‖Lp(B2
s ) + ‖∇Ψ‖Lp(B2

s ) + ‖Ψ‖Lp(B2
s )).

(A3)

Setting t := 1+τ
2 and applying (A3) with p := 2, r := t and s := 1 we get∥∥∇2Ψ

∥∥
L2(B2

t )
≤ C(τ)(‖∆Ψ‖L2(B2

1) + ‖∇Ψ‖L2(B2
1) + ‖Ψ‖L2(B2

1)),

hence ‖Ψ‖W 2,2(B2
t ) is bounded by the desired quantity. Using Sobolev’s embedding

W 2,2(B2
t ) ↪→W 1,4(B2

t ) and (A3) with p := 4, r := τ and s := t, we obtain

‖Ψ‖W 2,4(B2
τ ) ≤ C(‖∆Ψ‖L4(B2

t ) + ‖Ψ‖W 2,2(B2
t ))

≤ C(‖∆Ψ‖L4(B2
1) + ‖∇Ψ‖L2(B2

1) + ‖Ψ‖L2(B2
1)). �

.

Lemma A.3. Given a sequence ψk : C→ C of K-quasiconformal homeomorphisms with

the normalization conditions

ψk(0) = 0, ψk(1) = 1,

there exists a K-quasiconformal homeomorphism ψ∞ : C → C satisfying the same nor-

malization condition and such that, up to subsequences, ψk → ψ∞ and ψ−1
k → ψ−1

∞ in

C0
loc(C).

Proof. Let µk ∈ EK be defined by ∂zψk = µk∂zψk. Existence and uniqueness of a K-

quasiconformal homeomorphism satisfying this equation and the normalization conditions

is shown in [4, Theorem 4.30].

Given M > 0, we consider the set EMK :=
{
µ ∈ EK : µ = 0 a.e. on C \B2

M

}
. If Fµ de-

notes the normal solution to the equation ∂zF
µ = µ∂zF

µ (in the sense of [4, Theorem 4.24]),
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then Fµ satisfies estimates (4.21) and (4.24) in [4]. Applying them with z1 := 1, z2 := 0,

we infer that also the map fµ := Fµ(1)−1Fµ satisfies estimates of the form

|fµ(z1)− fµ(z2)| ≤ C |z1 − z2|α + C |z1 − z2| ,(A4)

|z1 − z2| ≤ C |fµ(z1)− fµ(z2)|α + C |fµ(z1)− fµ(z2)| ,(A5)

with C and α depending only on K and M . Given a sequence of homeomorphisms

fk : C→ C satisfying these estimates, Ascoli–Arzelà theorem applies to fk and f−1
k and so

we can extract a subsequence (not relabeled) such that

fk → f∞, f−1
k → f̃∞ in C0

loc(C).

From f−1
k ◦ fk = fk ◦ f−1

k = idC we get f̃∞ ◦ f∞ = f∞ ◦ f̃∞ = idC and thus f∞ : C→ C is

a homeomorphism, with f̃∞ = f−1
∞ . Also, since fk(z), f

−1
k (z)→∞ uniformly as z →∞,

we deduce that the canonical extensions f̂k : Ĉ→ Ĉ converge uniformly to f̂∞ and that the

same holds for f̂−1
k .

We now closely examine the proof of [4, Theorem 4.30]: let µ̃k ∈ E1
K be given by equation

(4.25) in [4], with µk1C\B2
1

in place of µ, and

gk : Ĉ→ Ĉ, gk(z) := f̂ µ̃k(z−1)−1.

This map corresponds to the map fµ1 in the aforementioned proof (with µk in place of

µ). The lower bound (A5), applied with f µ̃k and z1 := f µ̃k(z−1), z2 := 0, shows that

|fk(z)| is bounded above by some M , for all k and all z ∈ B2
1. Hence, defining µk,2 as in

equation (4.27) in [4] (with µk in place of µ), we get µk,2 ∈ EMK̃ for some K̃ ≥ 1. Calling

hk : Ĉ→ Ĉ the associated quasiconformal homeomorphism, normalized so that hk(0) = 0

and hk(1) = 1, by the above argument we obtain the uniform convergence

gk → g∞, g−1
k → g∞, hk → h∞, h−1

k → h∞

up to subsequences, for suitable homeomorphisms g∞ and h∞ of the Riemann sphere Ĉ.

Setting ψ∞ := h∞ ◦ g∞
∣∣
C and observing that ψk = hk ◦ gk

∣∣
C, we get the desired convergence

ψk → ψ∞ and ψ−1
k → ψ−1

∞ in C0
loc(C).

Finally, we show that ψ∞ is a K-quasiconformal homeomorphism. Given an open

rectangle R ⊂⊂ C, [4, Lemma 4.12] gives

L2(ψk(R)) =

∫
R

(|∂zψk|2 − |∂zψk|2) ≥
∫
R

(1− k2) |∂zψk|2 ≥ (1− k2)k2

∫
R
|∂zψk|2 ,

where k := K−1
K+1 . Since L2(ψk(R))→ L2(ψ∞(R)) we deduce that ψk is bounded in W 1,2(R),

thus ψ∞ is the limit of ψk in the weak W 1,2
loc (C)-topology. Given ρ, ψ1, ψ2 ∈ C∞c (C),

integration by parts shows that∫
ρ(∂1ψ

1∂2ψ
2 − ∂2ψ

1∂1ψ
2) = −

∫
(∂1ρψ

1∂2ψ
2 − ∂2ρψ

1∂1ψ
2).(A6)
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Writing ψk = ϕ1
k + iψ2

k, a standard density argument shows that (A6) still holds with

ψ1, ψ2 replaced by ψ1
k, ψ

2
k, for k ∈ N ∪ {∞}. Hence, observing that |∂zψk|2 − |∂zψk|2 =

(∂1ψ
1
k∂2ψ

2
k − ∂2ψ

1
k∂1ψ

2
k), we get∫
ρ(|∂zψk|2 − |∂zψk|2)→

∫
ρ(|∂zψk|2 − |∂zψk|2).(A7)

Defining the positive measures νk := (|∂zψk|2 − |∂zψk|2)L2, up to further subsequences we

can assume that νk
∗
⇀ ν∞ as Radon measures. For any rectangle R such that ν∞(∂R) = 0,

approximating 1R from above and below with smooth functions and applying A7 we get∫
R

(|∂zψk|2 − |∂zψk|2)→
∫
R

(|∂zψk|2 − |∂zψk|2).

By monotonicity of the left-hand side, this actually holds for every rectangle R. On the

other hand, by lower semicontinuity of the L2-norm,∫
R

(1− k2) |∂zψ∞|2 ≤ lim inf
k→∞

∫
R

(1− k2) |∂zψk|2 ≤ lim
k→∞

(|∂zψk|2 − |∂zψk|2)

=

∫
R

(|∂zψ∞|2 − |∂zψ∞|2).

Since R is arbitrary, we get |∂zψ∞| ≤ k |∂zψ∞| a.e., as desired. �

Lemma A.4. Given a sequence ϕk ∈ DK , there exists ϕ∞ ∈ DK such that, up to subse-

quences, ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞ in C0
loc(C).

Proof. Let µk ∈ EK be defined by ∂zϕk = µk∂zϕk for all k and let ψk : C → C be the

unique K-quasiconformal homeomorphism satisfying the same differential equation, as well

as ψk(0) = 0, ψk(1) = 1 (see [4, Theorem 4.30]).

By Lemma A.3, up to subsequences there exists a K-quasiconformal homeomorphism

ψ∞ such that ψk → ψ∞ and ψ−1
k → ψ−1

∞ in C0
loc(C).

The map ψk ◦ ϕ−1
k : C→ C is a biholomorphism and fixes the origin, so it equals the

multiplication by a nonzero complex number λk, i.e. ψk = λkϕk. On the other hand,

|λk| = min
x∈∂B2

1

|ψk(x)| → min
x∈∂B2

1

|ψ∞(x)| ∈ (0,∞).

Hence, up to further subsequences we can suppose that λk → λ∞ ∈ C \ {0}. The statement

follows with ϕ∞ := λ−1
∞ ψ∞. �

Remark A.5. In general, given ϕk ∈ DK (for k ∈ N∪{∞}) with ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞
locally uniformly, it is not true that the corresponding Beltrami coefficients satify µk

∗
⇀ µ∞

in L∞(C). For instance, let µ0(z) := 1
2 if <(z) ∈

⋃
n∈Z

[
n, n+ 1

2

)
and µ0(z) := −1

2 otherwise.

Then the bi-Lipschitz homeomorphism ψ0 : C→ C given by

ψ0(x+ iy) :=

n+ 9
5(x− n) + 3

5 iy = n+ 6
5(z − n) + 3

5(z − n) n ≤ x ≤ n+ 1
2

n+ 4
5 + x−n

5 + 3
5 iy = n+ 4

5 + 2
5(z − n)− 1

5(z − n) n+ 1
2 ≤ x ≤ n+ 1
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satisfies ∂zψ0 = µ0∂zψ0, with the normalization ψ0(0) and ψ0(1) = 1. So µk := µ0(2k·)
and ψk := 2−kψ0(2k·) satisfy ∂zψk = µk∂zψk with the same normalization. Moreover, they

converge uniformly to ψ∞(x+ iy) = x+ 3
5 iy = 4

5z + 1
5z, together with their inverses. The

homeomorphism ψ∞ satisfies ∂zψ∞ = µ∞∂zψ∞ with µ∞ := 1
4 , but µk

∗
⇀ 0. Dividing each

ψk by min|z|=1 |ψk(z)|, we obtain a counterexample in the class D1/2.
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