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Abstract. We study a new notion of critical point for the area of surfaces under the Legendrian
constraint, first introduced in [29] and called parametrized Hamiltonian stationary Legendrian var-
ifolds (PHSLVs). We establish several fundamental properties of these objects, including their
sequential compactness and an optimal regularity result, showing that they are smooth immersions
away from a locally finite set of branch points and Schoen–Wolfson conical singularities. This gen-
eralizes in particular the regularity theory of Schoen–Wolfson for minimizers [31] to general critical
points.

This theory can be used to show two new variational results: every min-max operation with
the area of (closed, immersed) Legendrian surfaces in a closed Sasakian 5-dimensional manifold is
achieved by a Hamiltonian stationary map with this regularity; also, the minimal area in any given
exact isotopy class of Legendrian immersions of S2 is realized by such a map.

Along the way, we prove an effective monotonicity formula for general two-dimensional stationary
varifolds in the Legendrian setting, as well as the closure of integral stationary varifolds among
rectifiable ones, in spite of the lack of compactness of the latter.
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I. Introduction

In the early 90’s, Oh in [20] introduced the problem of studying critical points of the area among
Lagrangian surfaces in an arbitrary symplectic Riemannian manifold. Such surfaces are called Hamil-
tonian stationary or H-minimal surfaces. This variational problem is motivated by natural questions
such as the study of the Plateau problem in Lagrangian homology classes or the construction of
calibrated minimal surfaces within given Hamiltonian isotopy classes in Calabi–Yau geometries
(Thomas–Yau conjecture); more recently, the second-named author stressed the importance of the
study of area variations among Lagrangian surfaces for the min-max construction of minimal sur-
faces in the sphere Sn, in relation to the Willmore conjecture, or other special ambients [27].

I.1. The parametric approach. While considering variational problems for Lagrangian surfaces,
it is natural at first to adopt the classical parametric approach of Douglas and Radó, who gave at the
time a successful framework for the resolution of the Plateau problem in a Euclidean space or more
generally in a Riemannian manifold (after the work of Sacks and Uhlenbeck). The central objects in
this parametric approach would be, in the Lagrangian-constrained case, weakly conformalW 1,2 maps
v from a Riemann surface into the symplectic manifold (Mm, g, ω) canceling the symplectic form:
v∗ω = 0. In their pioneering analytical work on the area variation under the pointwise Lagrangian
constraint, Schoen andWolfson [31] adopted this framework to prove the existence of area minimizers
in any Lagrangian homology class, enjoying also some partial regularity that we are going to make
more precise below.

While the existence part can be obtained by using relatively mild arguments, the regularity of a
minimizer poses serious difficulties which eventually have been overcome by Schoen and Wolfson.
One of the new challenges posed by the Lagrangian constraint, compared to the classical “isotropic
case” (i.e., the unconstrained case of Douglas, Radó, and Sacks–Uhlenbeck), comes from the Euler–
Lagrange equation. Even while considering the simplest possible framework of maps v from a closed
Riemann surface Σ into C2, equipped with the standard symplectic form ω := dz1 ∧ dz2+ dz3 ∧ dz4,
the constraint v∗ω = 0 is generating a Lagrange multiplier which happens to be a map, the so-called
Lagrangian angle g : Σ → S1, on which absolutely nothing is known from a function theoretic
perspective. For any Lagrangian immersion v : Σ → C2, the Lagrangian angle is given by

v∗(dw1 ∧ dw2) = g d volv,
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where w1 = z1 + iz2, w2 = z3 + iz4, and d volv is the volume form induced by the immersion v.
A classical result, due to Dazord (which extends to general Kähler–Einstein manifolds [7]; see also
[5]), gives the expression of the mean curvature of the immersion into C2 in terms of the Lagrangian
angle:

H⃗v = 2−1g−1∇⃗g,

where ∇⃗g is the intrinsic gradient of the complex-valued function g on the immersed surface (recall

that, in a conformal chart (x1, x2) for the immersion v, one has g−1∇⃗g = e−2λg−1∇g · ∇v, where
eλ is the conformal factor). Coming back to the variations of the area under Lagrangian constraint,
the corresponding Euler–Lagrange equation formally reads in isothermal coordinates as follows:

(I.1)

{
div(g−1∇v) = 0

div(g−1∇g) = 0.

If v is a smooth conformal immersion, this equation is characterizing the Hamiltonian stationary
Lagrangian surfaces. From a purely variational perspective, however, in absence of any information
on g and assuming only v ∈ W 1,2(Σ,C2), one cannot even give a meaning to the Euler–Lagrange

equation (for instance, we would need at least g ∈ H1/2(D2, S1) in order to give a distributional
meaning to the second equation in (I.1)). In order to overcome this major obstacle and perform a
PDE analysis for a minimizer in a Lagrangian homology class, Schoen and Wolfson restricted atten-
tion to area variations given by infinitesimal deformations in the target preserving the Lagrangian
constraint v∗ω = 0. Such compactly supported variations, called Hamiltonian variations, are of the
form

VF := J∇C2
F,

where F is an arbitrary compactly supported function in C2, called a Hamiltonian potential, and
the criticality of a conformal map u can be formulated as follows:

(I.2)

�
Σ
∇(J(∇C2

F ) ◦ v) ·C2 ∇v dx2 = 0 for all F ∈ C∞
c (C2).

Obviously this condition by itself is not strong enough to help developing a regularity theory:
even in the isotropic case (i.e., in absence of the Lagrangian constraint) a condition of the form�
Σ∇(X ◦ v) · ∇v dx2 = 0 for any compactly supported vector field X does not imply that v is
harmonic and smooth.

I.2. Lagrangian versus Legendrian. As a first step, while performing a compactness and regu-
larity theory for a variational problem on the area allowing exclusively variations in the ambient,
we look for a monotonicity property. However, it has been discovered by Minicozzi [19, Section
3] and Schoen–Wolfson [31] that Hamiltonian stationary Lagrangian surfaces, even in the simplest
framework of C2 equipped with the standard symplectic form, do not enjoy a monotonicity property
of the area.

Nevertheless, Schoen and Wolfson also discovered that an monotonicity property exists for the
Legendrian lifts (when they exist) of these surfaces, called Hamiltonian stationary Legendrian sur-
faces. A Lagrangian map v from a surface Σ into C2 is said to admit a Legendrian lift (or to be
exact) if there exists a global function φ : Σ → R such that

dφv = v1 dv2 − v2 dv1 + v3 dv4 − v4 dv3.

In other words, denoting
H2 := C2 × R,

which has a natural group structure called the Heisenberg group, the map u := (v, φv) : Σ → H2 is
canceling the canonical contact form α on H2, i.e.,

u∗α = 0, α := −dφ+ z1 dz2 − z2 dz1 + z3 dz4 − z4 dz3,
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where we use coordinates (z, φ) on C2 × R. Observe moreover that the tangent map π∗ to the
canonical projection π : H2 → C2 realizes an isometry from the horizontal planes H := ker(α) onto
C2 for the metric

gH2 = π∗gC2 + α⊗ α.

Hence, the area of any Legendrian lift coincides with the area of the Lagrangian map, and locally
the study of area variations for the former under Legendrian constraints corresponds to the study
of area variations for the latter under Lagrangian constraints.

At the Legendrian level, the vector fields preserving infinitesimally the Legendrian constraint are
called Hamiltonian vector fields and have the form

2WF := JH∇HF − 2F∂φ,

where F is an arbitrary smooth, compactly supported function on H2 called a Hamiltonian potential,
∇H is the orthogonal projection of ∇F onto H, and JH is the pullback by π (on H) of the canonical
complex structure J on C2. Hence, the stationarity condition at the Legendrian level reads

(I.3)

�
C
∇(WF ◦ u) ·H2 ∇u dx2 = 0 for all F ∈ C∞

c (H2).

In [31] it is proved that every C1 Lagrangian map admits locally a Legendrian lift, and that this
property extends to W 1,2 area-minimizing Lagrangian maps [31, Corollary 2.9]. The Hamilton-
ian vector fields WF at the Legendrian level are obviously more numerous than the ones at the
Lagrangian level; in particular, one of the key insights of Schoen–Wolfson is that the infinitesimal
action of dilations at the Lagrangian level (which is known to be the action generating monotonicity
properties) is Hamiltonian at the Legendrian level but not at the Lagrangian one: we have

−2Wφ =

4∑
j=1

zj∇Hzj + 2φ∂φ,

while
∑4

j=1 zj∂zj is not equal to J∇F for any F : C2 → R. This explains why a monotonicity
property should hold “upstairs” for the Legendrian lifts while it does not hold “downstairs” at the
Lagrangian level.

I.3. Area minimization in Legendrian homology classes. Due to the existence of a mono-
tonicity formula for Legendrian stationary maps it is then natural to pose the regularity question at
the level of Legendrian maps into H2. Thanks to a result by Godlinski, Kopczynski, and Nurowski
[13], the Heisenberg group H2 is the infinitesimal model for any Sasakian manifold; recall that a
Riemannian manifold (M5, g, α), where α is a contact form, is called a Sasakian manifold if the
cone (R+ ×M5, k := dt2 + t2g) with the non-degenerate symplectic form 2−1d(t2α) is Kähler (a
standard example is S5). Letting J be the compatible complex structure, the tangent vector field
along M5 given by R := J(t∂t) has unit norm and is orthogonal to the horizontal hyperplanes given
by H = ker(α); such a vector field is called a Reeb vector field for the distribution H.

Moreover, this distribution of planes is invariant under the action of J in the cone R+ ×M5.
Thus, Sasakian manifolds are the “odd-dimensional counterparts” of Kähler manifolds (see a more
detailed discussion in [29, Section 6]). The main result of Schoen and Wolfson, formulated at the
Legendrian level, is the following.

Theorem I.1. [31] Let (M5, g, α) be a Sasakian manifold. Any Legendrian homology class in M
is realized by an area-minimizing Hamiltonian stationary Legendrian map from a closed Riemann
surface to M . Moreover, this map is weakly conformal and is a smooth immersions away from
finitely many branch points and isolated conical singularities. □

The possible existence of these conical singularities, called “Schoen–Wolfson cones,” is one of the
main discoveries in [31]. It has been proved moreover in [18] that for some particular homology
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classes (in certain ambients) any minimizer must have such singularities. These have been classified
in [31] and their blow-up is of the form

up,q : C → C2, (r, θ) 7→ r
√
pq

√
p+ q

( √
qeipθ

i
√
pe−iqθ

)
,

where p, q ∈ N∗. The intersections with S3 are the (p, q) torus knots. These singularities are of
topological nature. The space of oriented Lagrangian planes in C2 is Λ(2) ∼= U(2)/SO(2). The
determinant operation gives a well-defined map from Λ(2) to S1. The restriction of this map to
the tangent bundle of the immersion up,q on any positively oriented circle surrounding the conical
singularity gives a map S1 → S1 of topological degree p− q, called the Maslov class at the point.

Understanding the possible locations of the Schoen–Wolfson cones is still an open problem in
general. Some progress in answering this challenging question has been made in [12] and [11].

The proof of the regularity part of Theorem I.1 is based on a monotonicity formula (established
for regular enough Hamiltonian stationary immersions), a small tilt-excess regularity theorem, a
classification of the tangent cones, and the property satisfied by minimizers in homology classes
that weakly converging sequences of such maps are in fact strongly converging in W 1,2. This last
property is reminiscent of the one discovered in [30] by Schoen and Uhlenbeck and is established in
[31] using a comparison argument, which is not viable for general critical points.

I.4. The notion of parametrized Hamiltonian stationary Legendrian varifolds (PHSLV).
As announced in the abstract, one of the main goals of the present paper is to extend the Schoen–
Wolfson existence and regularity theory to non-minimizing Hamiltonian stationary Legendrian sur-
faces. This ambition faces numerous new difficulties, among which we are listing the following two
major ones:

(i) find a suitable class of Legendrian “weak surfaces” for which a min-max theory can be devel-
oped;

(ii) bypass the problem that the Euler–Lagrange equation (I.1) is not well-posed while studying the
regularity of non-minimizing Hamiltonian stationary Legendrian “weak surfaces,” thus avoiding
comparison arguments.

A more comprehensive discussion of new phenomena and new difficulties arising in this Legendrian
setting is provided later in the introduction.

As a chief example, we would like to stress that, in contrast with the now well-understood
unconstrained case, also called isotropic case in this paper (i.e., critical points of the area without
the Legendrian constraint: minimal surfaces), the possible existence of conical singularities, whose
number is a priori totally uncontrolled, and the possible formation of a “continuum” of those
along a weakly converging sequence, is creating a completely new technical challenge, which in the
minimizing case in [31] was solved by the property that

(P) W 1,2 weak convergence ⇐⇒ W 1,2 strong convergence.

This last property is a priori not available anymore in the general case and one of the main achieve-
ments of the present work is to obtain the same optimal Schoen–Wolfson regularity result without
property (P).

In [29] the second-named author proved that every nontrivial min-max operation on the area
among Legendrian surfaces in a closed Sasakian five-dimensional manifold (M5, g, α) is always
achieved by a parametrized Hamiltonian stationary Legendrian varifold (PHSLV). A PHSLV is a
triple (Σ, u,N) where:

(i) Σ is a possibly open Riemann surface without boundary;

(ii) u ∈W 1,2
loc (Σ,M

5) satisfies

u∗α = 0 and ∂u⊗̇∂u = 0,
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that is, u is Legendrian and weakly conformal;
(iii) N ∈ L∞

loc(Σ,N∗);
(iv) for any f ∈ C∞

c (Σ,R+) and for a.e. t > 0, given a compactly supported Hamiltonian vector
field WF on M5 such that

spt(F ) ⊂⊂M \ u(f−1(t)),

there holds �
f>t

N∇(WF ◦ u) · ∇u dx2 = 0.

Observe that, compared to the parametric approach of Schoen and Wolfson, this class of objects
differs by two main properties:

(i) the definition of PHSLV allows for general integer multiplicity N , which is needed to guarantee
general compactness properties of this class, while in the minimizing case from [31] one can
restrict to N ≡ 1, since in compactness and blow-up arguments property (P) ensures that
N ≡ 1 still holds at the limit, while this is a priori not true for general critical points;

(ii) the stationarity condition is much more general than (I.3): it permits to “localize” the station-
arity property of the varifold associated with (Σ, u,N) in terms of the domain of u (in [31] the
localization property is sometimes implicitly used, often in conjunction with the minimizing
hypothesis, whereas it is systematically introduced and then exploited at several crucial points
in the present work).

The simpler notion of parametrized stationary varifold (PSV) has been introduced in [26], where the
main result of [29] was established for the area in the isotropic case inside any closed Riemannian
manifold. The existence of a parametrization, together with the corresponding localization property,
was compensating for the absence of a PDE while considering the resulting stationary varifold, and
opened the door to the optimal regularity result proved by the authors in [23], as well as a better
understanding of parametrized varifolds arising variationally [24, 22]. It has been proved by the two
authors in [23] that the space of PSVs in a closed Riemannian manifold is sequentially compact in
a suitable sense. One of the purposes of the first part of the present work is to extend these facts
to the Legendrian framework.

Our ultimate motivation is to study the regularity of a PHSLV in an arbitrary Sasakian five-
dimensional manifold, and in particular the realization by Hamiltonian stationary surfaces of an
arbitrary nontrivial min-max value for the area among Legendrian surfaces in such a manifold. The
present work is the second step after [29] in this program. Since we are interested in local properties
of PHSLV, we will mostly work in the Heisenberg Group H2, which is the universal blow-up of
such manifolds, but throughout the paper we will point out the correct analogue of each important
statement in a general ambient (which does not enjoy the dilation symmetry).

I.5. Main results of the present work. In the first part of this work, we begin with a general
theory of Hamiltonian stationary Legendrian varifolds (HSLVs), which was missing in the litera-
ture, providing a geometric measure theory toolbox which is going to be used heavily later on. In
particular, we show an effective monotonicity formula, generalizing [28] (which required having a
smooth immersion) to an arbitrary HSLV. For simplicity, we state it in H2 ∼= C2 ×R, where we use
coordinates (z, φ) and let r4 := |z|4 +4φ2 and σ := 2φ/|z|2 (whose arctangent is a smooth function
on H2 \ {0}).
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Theorem I.2. Given a HSLV v on H2 and a suitable cut-off function χ : R+ → R+, letting

Θχ(q, a) := −
�
G

|∇Prq|2

rq
a−1χ′(rq/a) dv(P, p)

−
�
G

[
2φq
r3q

a−1χ′(rq/a) arctanσq

]
dv(P, p)

+
1

4

�
G
r4q∇P arctanσq · ∇P [r−3

q a−1χ′(rq/a)arctanσq] dv(P, p),

we have
0 ≤ Θχ(q, a) ≤ Θχ(q, b) for all 0 < a < b,

as well as

θχ(q) +

�
0<rq<b

|∇P arctanσq|2 dv(P, p) ≤ Cb−2|v|(Br
2b(q) \B

r
b(q)),

where θχ(q) := limε→0Θ
χ(q, ε) ∈ R+ exists and is called the density at q. □

Here rq, φq, σq are defined by left translation, shifting the origin to q. Compared to similar state-
ments in [31] and [28], this is a true monotonicity at all scales and works for general (Hamiltonian
stationary) varifolds. In turn, this is used to show the following. Note that monotonicity does not
hold for higher dimensional objects, as shown in [21, Appendix B].

Theorem I.3. The class of rectifiable HSLVs v with θχ

2π ∈ N∗ a.e. on spt |v| is closed among
rectifiable varifolds. □

We observe that compactness of such integral HSLVs fails, even in a closed ambient. The following
counterexample is inspired by a similar one in H2 by Orriols [21]; the varifolds vk are in fact smooth
Hamiltonian stationary Legendrian embeddings.

Theorem I.4. In (S5, g, α), with g the round metric and α the canonical contact form, there exists

a sequence of rectifiable HSLVs vk with θχ(vk,q)
2π ∈ N∗ for all q ∈ spt |vk|, such that vk ⇀ v∞ for a

non-rectifiable limit v∞ supported on a Hopf fiber. □

We should also mention that the previous results, namely monotonicity and closure of integral
varifolds among rectifiable ones, require some completely new ideas, as discussed more in detail
later in the introduction.

After developing this general theory, we turn to the structure of parametrized varifolds and their
sequential compactness. The following theorem is one of the main achievements.

Theorem I.5. In a closed Sasakian ambient M5, given k ∈ N, the set of varifolds induced by
PHSLV∗s (Σ, u,N) with closed domain Σ and genus(Σ) ≤ k is sequentially closed under varifold
convergence. □

In this statement, Σ is possibly disconnected and genus(Σ) :=
∑

S genus(S) as S varies among
the connected components of Σ. This result holds assuming the slightly stronger notion of PHSLV∗,
given in Definition V.1; for a smooth immersion in a Kähler–Einstein M5, the latter is equivalent
to the fact that the closed one-form ∗g−1 dg is exact. We also have the following.

Theorem I.6. In a closed Sasakian ambient M5, the set of varifolds induced by PHSLVs (Σ, u,N)
with a fixed closed domain Σ and controlled conformal class is sequentially closed under varifold
convergence. □

However, we stress that, differently from the isotropic case, the statement fails in the class of
PHSLVs, as shown by the previous counterexample.

The question whether or not the weak sequential closure holds in the class of PHSLVs while
assuming a control of the Legendrian Morse index is under investigation by the two authors (the
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latter is the dimension of the largest subspace of Hamiltonian variations where the second variation
of area is negative definite).

In situations where degeneration of the conformal class do not occur, this weak sequential closure
holds in the class of PHSLVs. In the regularity theory we mostly deal with domains such as D or
C (and we need to consider sequences of maps with energy lower than possible bubbles, such as
blow-ups). This explains why our regularity theory assumes just the notion of PHSLV. In particular,
we can classify blow-ups of an arbitrary PHSLV.

Theorem I.7. Given a PHSLV (Σ, u,N) in a closed Sasakian ambient M5 and x0 ∈ Σ, there exists
a notion of parametrized blow-up at x0. The image of any such parametrized blow-up (C, ux0 , Nx0)
is either a plane or a Schoen–Wolfson cone in C2 ⊂ H2. □

The sequential compactness of PHSLVs (in low energy regime, or equivalently whenM5 is rescaled
to resemble H2) is then exploited in successive steps to reach the following optimal regularity result,
which is the first main outcome of this work.

Theorem I.8. Every PHSLV (Σ, u,N) in a closed Sasakian manifold M5 is a smooth immersion
away from isolated branch points and isolated conical singularities (whose blow-ups are Schoen–
Wolfson cones), with N constant on each connected component of Σ. □

In the previous statements, we tacitly assume that u is not constant on any connected component
of Σ. The classification of blow-ups is obtained in tandem with the regularity theorem, proceeding
by induction on supΣN (roughly speaking). Again, there are several new difficulties compared to
the isotropic case [23], whose discussion is postponed.

Let us now come to variational applications. Given (M5, g, α) a Sasakian manifold, and Σ a closed
oriented surface, we introduce the set M of Legendrian W 2,4(Σ,M) immersions from Σ to M . It
is proved in [29] that M has the structure of Banach manifold and possesses a compatible Finsler
structure for which the associated Palais distance is complete.

A collection A of compact subsets of M is said to be an admissible family if it is invariant under
the action of homeomorphisms of M isotopic to the identity (in fact, one can also require this just
for deformations that agree with the identity except near the energy level W defined below). The
min-max value, also called the width associated with A, is

W (A) := inf
A∈A

max
u∈A

area(u).

Our second main result, which is obtained by combining Theorem I.8 with the main result of [29],
is then the following.

Theorem I.9. Let (M5, g, α) be a closed Sasakian five-dimensional manifold. Let A be an admissible
family in the Banach Manifold M whose width

W (A) > 0.

Then W (A) is the area of a smooth Hamiltonian stationary Legendrian immersion u : Σ′ → M ,
possibly with isolated branch points and Schoen–Wolfson conical singularities, whose domain Σ′ is
a possibly disconnected closed oriented surface with genus(Σ′) ≤ genus(Σ). □

In order to state another application, we recall a classical notion from Legendrian co-bordism
theory originally introduced by Arnol’d. A regular isotopy ut : Σ → (M5, g, α) of Legendrian
immersions is called exact if there exists a family of Hamiltonian functions ft : Σ → R such that
the variation of ut is the Hamiltonian vector field generated by ft. In conformal coordinates for ut,
calling eλ the conformal factor, this reads

du

dt
= e−2λJH∇ft · ∇ut − 2ft∂φ.

If ut is an embedding for every t, this notion of exact regular isotopy coincides with the classical
notion of Hamiltonian isotopy.
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Theorem I.10. Let M5 be a closed Sasakian manifold and let C be an exact regular isotopy class
of Legendrian immersions of a closed surface S2 into M5 such that

A := inf
u∈C

area(u) > 0.

Then A equals the area of a smooth Hamiltonian stationary Legendrian immersion u : Σ′ → M ,
possibly with isolated branch points and Schoen–Wolfson conical singularities, whose domain Σ′ is
a union of spheres. □

Observe that, even though it is dealing with a minimization problem, this result cannot be
deduced from the main result in [31]. Indeed, the regularity results proved in [31] are based on
comparison arguments replacing u with maps within the same homology class, but a priori not in
the same isotopy class. Theorem I.10 is particularly interesting since Hamiltonian isotopy classes
are known to be immensely more numerous than Lagrangian homology classes.

I.6. New phenomena compared to the isotropic setting. We now highlight some of the chief
novelties of the Legendrian setting creating some of the new difficulties that we face, compared to
the simpler isotropic situation. Besides these, there are several additional technical difficulties: just
to mention another one, it is sometimes hard to come up with efficient proofs which in the isotropic
case just come from an intuitive choice of a vector field, since in the definition of stationarity we
are restricted to Hamiltonian vector fields WF , which involve two differentiations of F intertwined
with the rotation JH .

Broadly speaking, there are three major phenomena, appearing at increasing levels of weakness
of the notion of Hamiltonian stationary Legendrian surface that we consider. We discuss them in
H2, for simplicity.

(i) Assuming that we have a smooth conformal immersion u, for the projection v := π ◦u we have
a PDE of the form

∆v + i∇β · ∇v = 0.

This differs from the usual Laplace equation (that one would have in the isotropic case) by a
term involving a harmonic one-form h := dβ. In spite of its qualitative smoothness, we do not
have any quantitative bound on h a priori. Indeed, it appears as a sort of Lagrange multiplier
associated to the pointwise Legendrian constraint. This makes it difficult to derive useful elliptic
estimates from the PDE.

(ii) Removing smoothness assumptions on u, we face the presence of Schoen–Wolfson conical sin-
gularities, which naturally appear even for minimizers. Since JH is parallel to the cross-section
for such cones [31, Section 7], assuming that these singularities xk are isolated we see that,
across them,

dh =
∑
k

ckδxk

is a sum of Dirac masses. Further, the number and location of such singularities is uncontrolled
as well, and these could even be not isolated a priori, rendering the PDE practically useless.

(iii) Finally, at the varifold level (i.e., for a HSLV), sequences of integer rectifiable HSLVs can con-
verge to a non-rectifiable limit, differently from the isotropic case where Allard’s compactness
holds. This reflects the highly anisotropic nature of the Carnot–Carathéodory metric, or the
Korányi metric on H2, for which curves such as Reeb integral curves have Hausdorff dimension
equal to 2 instead of 1.

Let us now discuss very briefly how each difficulty in the previous list is overcome in our work.
The first two appear in particular while showing the crucial fact that a parametrized blow-up arises
as a strong W 1,2 limit (thus, we manage to show property (P) at least for blow-ups).

(i) Sequential compactness of PHSLVs (Σ, u,N), which does not use the PDE, allows to derive
local doubling bounds for the Dirichlet energy measure |∇u|2 dx2, just in terms of Σ and the
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total mass. Assuming smoothness (which can be done inductively on lower multiplicity regions
in the regularity proof), we can use these doubling bounds together with a Liouville-type
argument to obtain local bounds on h = dβ.

(ii) After showing that such Schoen–Wolfson singularities are isolated (in suitable pinched-density
sets) by a standard dimension reduction technique, we face the issue that they could become
denser and denser along a sequence of rescalings uk giving a blow-up. However, failure of a
strong W 1,2 convergence is detected by a jump in the multiplicity in the limit, which is ruled
out by a careful continuity argument (at small scales, Schoen–Wolfson singularities are well
separated, and thus here we are close to a picture with no multiplicity jump).

(iii) The last issue is circumvented by assuming a stronger definition of stationarity compared
to the initial PHSLV definition. In turn, this yields a point removability result for limits of
such varifolds, which rules out this phenomenon in applications. Moreover, in the context of
bubbling, we show that no energy dissipates in neck regions just assuming the PHSLV definition
(while for collars, appearing when the conformal structure degenerates, this fails: see Theorem
A.1).

Note that the third point is related to the second derivative of F appearing in WF , due to
which points are not always removable singularities for a two-dimensional HSLV (while they are for
two-dimensional stationary varifolds in the isotropic setting).

Remark I.11. The third point also leads to the speculation that failure of compactness of integer
rectifiable HSLVs is solely due to the possible appearance of stationary Reeb integral curves in the
limit v, such as Hopf fibers in S5; indeed, the proof of Allard’s rectifiability theorem in this setting
shows that, for |v|-a.e. p, the blow-up at p is either a Legendrian plane or a varifold supported on
the Reeb axis of H2. □

I.7. Comparison with existing regularity results. Let us now briefly compare our optimal reg-
ularity result (see Theorem VIII.1 for a precise statement) with other ones which already appeared
in the literature. The comparison with the work of Schoen–Wolfson [31] is quite straightforward, in
that both [31] and the present paper deal with arbitrary W 1,2-parametrized surfaces with the only
a priori bound of having finite area, and while [31] considers minimizers we are able to deal with
general critical points equipped with L∞ integer multiplicities.

Roughly speaking, one of the core difficulties in the regularity theory (and also in the variational
construction) of Hamiltonian stationary Legendrian parametrizations is that the Dirichlet energy
involves the same order of differentiation as the Legendrian constraint. One of the first works dealing
with a similar situation is the one by Evans–Gariepy [9], who studied area-preserving maps on the
plane. Here the authors manage to obtain a partial regularity result (by transforming the situation to
a scalar problem by a clever change of variables), although at the expense of considering minimizers
and assuming artificially that the map is Lipschitz.

In other works, such as [2] by Bhattacharya–Chen–Warren, the full regularity is obtained for
Hamiltonian stationary Lagrangian submanifolds, but with the a priori assumption that they are
C1. While this leads to a full regularity, as showed also by Schoen–Wolfson in [31, Theorem 4.1] by
linearizing the PDE to the biharmonic equation, this assumption automatically rules out Schoen–
Wolfson singularities (which could appear among minimizers), and thus is again quite artificial in
a geometric variational setting.

In the work [3] by Bhattacharya–Skorobogatova, Hamiltonian stationary Lagrangian graphs are
considered, with the a priori assumption that they are Lipschitz. In this interesting work, viewing
these as graphs of gradient maps (thus generated by a W 2,∞ function), the authors study the
resulting fourth order nonlinear scalar equation, reaching a conditional regularity result. However,
again the graphicality assumption rules out Schoen–Wolfson singularities (which are never graphs).

Given that our work assumes only finite area (the weakest possible assumption required by the
study of variations of the area, i.e., having a W 1,2 weakly conformal parametrization), it makes a
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significant leap in the regularity theory, at least for two-dimensional objects. We expect that our
techniques will shed new light in similar problems, where so far the understanding is restricted to
Lipschitz graphs.

Finally, let us mention that, in higher dimension, using the intrinsic approach of currents (thus
avoiding parametrizations), Orriols recently developed an existence and partial regularity theory of
area minimizers under the Legendrian constraint [21]. From a technical perspective the use of the
monotonicity formula, which is proven to fail in higher dimension for general Hamiltonian stationary
Legendrian varifolds, is replaced by the combination of comparison arguments with an isoperimetric
inequality for Legendrian currents.

I.8. Strategy of proof and organization of the paper. The paper is structured as follows. In
Section II, after some preliminaries on the Heisenberg group and the Legendrian constraint, we give
the precise definition of PHSLV (see Definition II.5).

In Section III we define and study general Hamiltonian stationary Legendrian varifolds (HSLV). In
particular, we prove a monotonicity formula (see Theorem III.6 and Corollary III.12), by carefully
refining and generalizing the one originally introduced for immersions in [28] to a much weaker
framework, exploiting the Hamiltonian arctanσ (which happens to be smooth and 0-homogeneous
on H2 \{0}) suitably cut-off with the Folland–Korányi gauge r, and we derive a number of standard
consequences, such as upper semi-continuity of the density, in space and under varifold limits.

In Section IV we prove the best possible analogue of Allard’s compactness of integral stationary
varifolds [1], namely we show their closure among rectifiable ones (see Theorem IV.1). Although the
scheme of proof is standard, one particular step turns out to be very subtle in this Legendrian setting:
namely, to show the fact that a HSLV with zero tilt-excess is a union of parallel planes (Lemma
IV.4), we have to perform an iterated blow-up, obtaining more and more algebraic constraints until
we are able to close the loop.

Section V is dedicated to a point removability result for PHSLVs (Proposition V.5), itself deduced
from an analogous result for general HSLVs (Proposition V.7), assuming in both cases a slightly
stronger notion of stationarity; note that, since the second derivatives of the Hamiltonian F appear
in the associated vector field WF , this does not simply follow by a capacity argument.

The goal of Section VI is to prove a number of structural properties of PHSLVs, such as a
universal lower bound for the density (Proposition VI.6), a quantitative continuity of the underlying
map (Proposition VI.2), the rectifiability of the support (Proposition VI.7), and the upper semi-

continuity of a better representative Ñ of the multiplicity function N (Proposition VI.13).
The proof of Theorem I.5 is the main purpose of Section VII, where a more complete formulation of

the result is also given (Theorem VII.1); its proof is based on an important energy quantization result
(Lemma VII.4). Since this is the only part of the paper where there are significant simplifications
in H2 compared to a closed Sasakian ambient M5 (due to the symmetry by dilations, reflected in
the absence of bubbling in H2 and in the fact that here most statements are effective at all scales),
we will often comment on what are the relevant changes in a general closed M5. We also discuss
how to deal with bubbling and degenerating conformal class (see Remark VII.10, Remark VII.11,
Lemma VII.12, and Remark VII.13).

In Section VIII we start developing the regularity theory (see Theorem VIII.1 for the precise
statement) and we explain the induction process governing the proof. We also prove a rigidity result
for blow-ups (Proposition VIII.7); in the classification of tangent cones, it allows to assume that

the multiplicity Ñ has a strict maximum at the origin, thus triggering the inductive assumption
on the complement. Inspired by [23], we also define admissible and strongly admissible points (see
Definition VIII.3), and we complete the base case of the induction, by showing that all points are
admissible in this case and appealing to a small tilt-excess regularity theorem of Schoen–Wolfson
(see Proposition VIII.8).



12 ALESSANDRO PIGATI AND TRISTAN RIVIÈRE

In Section IX we start attacking the inductive step, classifying tangent cones at admissible points
by exploiting the inductive assumption (see Proposition IX.6 and Corollary IX.7). Moreover, we
exploit this understanding of blow-ups, and in particular the fact that there the Dirichlet energy is
a doubling measure, to deduce again that in fact all points are admissible (see Proposition IX.9). We
also show that Schoen–Wolfson singularities cannot accumulate among points of similar multiplicity
Ñ (see Proposition IX.15).

We finish the inductive step of the proof of regularity in Section X, by looking at a point x of high
multiplicity, at the boundary of a region consisting of lower multiplicity points (an idea borrowed
from [23]). Roughly speaking, we can reach the conclusion that such high multiplicity points are
isolated if we can prove that any blow-up at x satisfies property (P), i.e., if we can upgrade the a
priori weak W 1,2 convergence of the rescalings of u to a strong one (see Proposition X.1). This is
carried out first assuming that there are no Schoen–Wolfson conical singularities, and then including
this possibility, by two different arguments, as explained before in the introduction.

Finally, in the appendix, we give an explicit example (Theorem A.1) showing that integer rectifi-
able HSLVs, and even PHSLVs, can converge to a non-rectifiable limit in a closed Sasakian manifold
such as S5, a phenomenon ruled out in applications by requiring a stronger notion of stationarity
(see Definition V.1).

Acknowledgements. The authors are grateful to Filippo Gaia and Gerard Orriols for many useful
conversations. They also wish to thank Mario Micallef and Richard Schoen for their interest in this
work.

II. Preliminaries

II.1. Geometry of the Heisenberg group. We give here some fundamental notions from the
Heisenberg group geometry that we will use in this work. A thorough and way more complete
presentation can be found in [4]. We denote by H2 the Heisenberg group over C2. The coordinates
in H2 will be denoted (z1, . . . , z4, φ), where the last coordinate φ is called the Legendrian coordinate.
The canonical projection from H2 onto C2 which consists in “forgetting” the Legendrian coordinate
φ will be denoted π.

π(z1, . . . , z4, φ) = (z1, . . . , z4).

The so-called horizontal hyperplanes H are spanned at every point by the following four vectors:

Xj :=
∂

∂z2j−1
− z2j

∂

∂φ
, Yj :=

∂

∂z2j
+ z2j−1

∂

∂φ
, for j = 1, 2.

We define a Riemannian metric on H2 by requiring that (X1, Y1, X2, Y2, ∂φ) realizes an orthonormal
basis at every point. Thus, the tangent map π∗ : TH2 → TC2 to the canonical projection π : H2 →
C2 given by

π∗Xj =
∂

∂z2j−1
, π∗Yj =

∂

∂z2j
, π∗

∂

∂φ
= 0

realizes at every point an isometry between H and TC2. In particular we observe that

(II.1) gH2 = π∗gC2 + α⊗ α, α := −dφ+
2∑
j=1

(z2j−1 dz2j − z2j dz2j−1).

Observe at this stage that the metric on H2 is equivalent to the Euclidean metric of R5 on any
compact set. Also, for an H2-valued map, requiring it to be in L∞

loc for this metric on H2 is equivalent
to the same requirement for the Euclidean one, a fact that will be tacitly used later on.

On H we define the following complex structure:

JHXj := Yj .
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The Riemannian manifold (H2, gH2) becomes a Lie group with the operation

(z, φ) ∗ (z′, φ′) :=

z + z′, φ+ φ′ +
2∑
j=1

(z2j−1z
′
2j − z2jz

′
2j−1)

 ,

where the neutral element is (0, 0) and the inverse to any element (z, φ) is obviously given by

(z, φ)−1 = (−z,−φ).

Remark II.1. The vector fields Xj , Yj and the metric gH2 , as well as α, the hyperplane distribution,
and JH , are preserved by left multiplication, i.e., by the diffeomorphism ℓp(x) := p∗x, for any given
p ∈ H2. □

We denote (as in [28])

ρ2 :=

4∑
j=1

z2j , σ :=
2φ

ρ2
, r4 := ρ4 + 4φ2.

The function σ will be called the phase, while r is the Folland–Korányi gauge.
For t ∈ R, the dilation map δt : H2 → H2 given by

(II.2) δt(z, φ) := (tz, t2φ)

is obviously a group homomorphism. Moreover, given A ∈ U(2), we introduce the rotation RA :
H2 → H2 given by

(II.3) RA(z, φ) := (Az, φ),

which is again a homomorphism since

(II.4)
2∑
j=1

((Uz)2j−1(Uz
′)2j − (Uz)2j(Uz

′)2j−1) = ⟨iUz, Uz′⟩ = ⟨U(iz), Uz′⟩ = ⟨z, z′⟩.

We introduce the map on H2 ×H2 given by

(II.5) dK((z, φ), (z′, φ′)) := r((z, φ)−1 ∗ (z′, φ′))

and, viewing z, z′ ∈ C2, we compute for any choice of pair of points p := (v, ϕ) and q := (w,ψ) that

r4(p ∗ q) = |v + w|4 + 4|ϕ+ ψ + v1w2 − v2w1 + v3w4 − v4w3|2

= ||v + w|2 + 2i (ϕ+ ψ + ⟨iv, w⟩) |2

= ||v|2 + 2iϕ+ |w|2 + 2iψ + 2⟨v, w⟩+ 2i⟨iv, w⟩|2

≤ [||v|2 + 2iϕ|+ ||w|2 + 2iψ|+ 2|⟨v, w⟩+ i⟨iv, w⟩|]2.

Observe that the first two terms inside the square are r2(p) + r2(q), while

|⟨v, w⟩+ i⟨iv, w⟩|2 = ⟨v, w⟩2 + ⟨iv, w⟩2 ≤ |v|2|w|2,
as v ⊥ iv. Since |v| ≤ r(p) and |w| ≤ r(q), we then have

r4(p ∗ q) ≤ |r2(p) + r2(q) + 2r(p)r(q)|2 ≤ |r(p) + r(q)|4.
This inequality, together with the definition of dK , imply immediately the following classical lemma
(see for instance [4]).

Lemma II.2. The map dK : H2 ×H2 → [0,∞) defines a distance, called Korányi distance. □



14 ALESSANDRO PIGATI AND TRISTAN RIVIÈRE

Remark II.3. Clearly, dK is left-invariant, in the sense that

dK(a ∗ p, a ∗ q) = dK(p, q).

Moreover, a straightforward computation gives a−1∗p∗a = p∗(0, 0, 0, 0, 2
∑2

j=1(p2j−1a2j−p2ja2j−1));

plugging p−1 ∗ q in place of p, we obtain the bound

dK(p ∗ a, q ∗ a) = r(a−1 ∗ (p−1 ∗ q) ∗ a) ≤ r(p−1 ∗ q) + 2
√
ρ(p−1 ∗ q)ρ(a),

and hence
dK(p ∗ a, q ∗ a) ≤ dK(p, q) + 2

√
ρ(a)

√
dK(p, q)

for all p, q, a ∈ H2. □

We will denote by Hs
K the s-dimensional Hausdorff measure constructed out of this distance.

Remark II.4. The maps δt and RA satisfy δ∗tα = t2α and R∗
Aα = α, thanks to (II.4). In particular,

they are isomorphisms preserving H (for t ̸= 0). They also preserve JH , since this holds at the origin
and JH is left-invariant (note that, for an isomorphism ψ, we have ψ ◦ ℓp = ℓψ(p) ◦ψ). Moreover, we
have

dK(δt(p), δt(q)) = |t| · dK(p, q),

while RA is an isometry. □

II.2. Hamiltonian deformations. Observe that

dα = 2dz1 ∧ dz2 + 2dz3 ∧ dz4 = 2π∗ω,

where ω = dz1 ∧ dz2 + dz3 ∧ dz4 is the standard symplectic form on C2. We now consider vector
fields W on H2 such that the associated flow Ψt preserves the kernel of α. This is equivalent to the
existence of a function ft on H2 × R such that

Ψ∗
tα = ftα.

Taking the derivative with respect to t at t = 0 and using Cartan’s formula, we obtain

∂ft
∂t

∣∣∣
t=0

α(Z) = LWα(Z) = d(α(W ))(Z) + dα(W,Z).

We denote by W =WH +W V the orthogonal decomposition of W along H and ∂φ. Let F (z, φ) :=
α(W ) = α(W V ), so that W V = −F∂φ. Plugging ZH in place of Z gives

0 = dF (ZH) + 2π∗ω(W,ZH)

= ⟨∇HF,ZH⟩+ 2ω(π∗W
H , π∗Z

H)

= ⟨∇HF,ZH⟩+ 2⟨iπ∗WH , π∗Z
H⟩

= ⟨∇HF + 2JHW
H , ZH⟩,

where ∇HF := (∇F )H is the orthogonal projection of ∇F onto H. Since this holds for any choice
of Z, we obtain 2WH = JH∇HF . Hence we conclude that

(II.6) 2W = JH∇HF − 2F∂φ.

Starting from an arbitrary function F , we can also reverse the argument and conclude thatW =:WF

given by (II.6) generates a flow preserving the kernel of α. Since

∇HF =

2∑
j=1

[⟨dF,Xj⟩Xj + ⟨dF, Yj⟩Yj ] =
2∑
j=1

[(∂z2j−1F − z2j∂φF )Xj + (∂z2jF + z2j−1∂φF )Yj ],
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we have the expansion

2WF =

2∑
j=1

[(∂z2j−1F − z2j∂φF )Yj − (∂z2jF + z2j−1∂φF )Xj ]− 2F∂φ

=
2∑
j=1

[(∂z2j−1F )∂z2j − (∂z2jF )∂z2j−1 ]− ∂φF
4∑

k=1

zk∂zk +

[
4∑

k=1

zk∂zkF − 2F

]
∂φ.

(II.7)

Before defining the main object studied in this work, we need a few more basic definitions. A
(locally bounded) smooth or Sobolev map u of a surface Σ into H2 is called Legendrian if it is
tangent to H at every point. This is equivalent to the contact condition u∗α = 0. Composing a
Legendrian map u with π gives a Lagrangian map v := π ◦ u into C2, namely a map satisfying
v∗ω = 0.

Let u = (u1, u2, u3, u4, uφ) ∈ W 1,2(Σ,H2). Assume u is weakly conformal: namely, in any local
conformal chart (x1, x2) for Σ, a.e. we have

(II.8)

{
|∂x1u|2H2 = |∂x2u|2H2

∂x1u ·H2 ∂x2u = 0.

We also assume that u is Legendrian. Observe that, since the canonical projection π∗ realizes an
isometry between H and C2, we have

|∇u|2H2 = |∇v|2C2 ,

where v := π ◦ u. We have also

(II.9) |∇u|R5 = |∇v|2 +

∣∣∣∣∣∣
2∑
j=1

[u2j−1∇u2j − u2j∇u2j−1]

∣∣∣∣∣∣
2

≤ [1 + |v|2]|∇v|2C2 .

Hence, if a Lagrangian map is assumed to be in L∞ ∩W 1,2(Σ,H2), it is automatically in L∞ ∩
W 1,2(Σ,R5) and there holds

(II.10)

�
Σ
|∇u|H2 dx2 ≤

�
Σ
|∇u|R5 dx2 ≤ [1 + ∥v∥2∞]

�
Σ
|∇u|H2 dx2.

We now introduce the main variational object studied here, which is a parametrized version of a
constrained critical point for the area (the constraint being the Legendrian condition).

Definition II.5. Let Σ be a Riemann surface and let u ∈ L∞
loc ∩ W 1,2

loc (Σ,H
2), as well as N ∈

L∞(Σ,N∗), where N∗ := N \ {0}. Assume that u is Legendrian and weakly conformal. The triple

(Σ, u,N)

is a parametrized Hamiltonian stationary Legendrian varifold (PHSLV) if given f ∈ C∞
c (Σ,R+), for

almost every t > 0 and for any function F ∈ C∞
c (H2 \ u(f−1(t))), it holds for the associated vector

field WF given by (II.7) that

(II.11) 0 =

�
f>t

N∇(WF ◦ u) ·H2 ∇u dx2,

where we use local conformal coordinates on Σ. □

Remark II.6. In this definition, we implicitly restrict to those t > 0 such that the level set
{f = t} is a disjoint union of embedded smooth loops and the restriction u|{f=t} has a continuous

representative (which holds for a.e. t > 0), so that u(f−1(t)) ⊂ H2 is a compact set. In the sequel,
when we say that a property holds for a.e. domain ω ⊂⊂ Σ we mean that it holds for ω := {f > t},
for any choice of f ∈ C∞

c (Σ,R+) and a.e. t > 0. □
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Remark II.7. More generally, we say that a triple (Σ, u,N) is a PHSLV on an open set U ⊆ H2

if the previous requirement holds for all F ∈ C∞
c (U \ u(∂ω)), for a.e. ω ⊂⊂ Σ. □

Remark II.8. WhenN = 1 and u is a Legendrian lift of a smooth Lagrangian immersion v : Σ → C2

(namely, we have π ◦ u = v), then this notion is equivalent to the H-minimality introduced by Oh

[20], since π∗(2WF ) =
∑2

j=1[(∂z2j−1F )∂2j − (∂z2jF )∂2j−1] whenever F depends only on z. □

Since π∗ is an isometry, writing Xℓ and Yℓ in place of Xℓ ◦ u and Yℓ ◦ u for simplicity, there holds

(II.12) 0 =

�
f>t

N

2∑
ℓ=1

[(∇(WF ◦ u) ·H2 Xℓ) · ∇u2ℓ−1 + (∇(WF ◦ u) ·H2 Yℓ) · ∇u2ℓ] dx2.

Recalling (II.6), we have for ℓ = 1, 2 that

2∇(WF ◦ u) ·H2 Xℓ

= ∇(JH∇HF ◦ u) ·H2 Xℓ

=

2∑
j=1

∇[
(
∂z2j−1F ◦ u− u2j∂φF ◦ u

)
Yj −

(
∂z2jF ◦ u+ u2j−1∂φF ◦ u

)
Xj ] ·H2 Xℓ

= −∇ (∂z2ℓF ◦ u+ u2ℓ−1∂φF ◦ u) ,

(II.13)

where we used the fact that the differentials ∇Xj and ∇Yj have image in the span of ∂φ, and thus
orthogonal to H. Similarly, we have

2∇(WF ◦ u) ·H2 Yℓ = ∇
(
∂z2ℓ−1

F ◦ u− u2ℓ∂φF ◦ u
)
.

Hence, combining these identities, the stationarity condition becomes

0 =

�
f>t

N
2∑
j=1

[
∇u2j · ∇

[
∂F

∂z2j−1
◦ u
]
−∇u2j−1 · ∇

[
∂F

∂z2j
◦ u
]]

dx2

−
�
f>t

N

4∑
k=1

∇uk · ∇
[
uk
∂F

∂φ
◦ u
]
dx2.

(II.14)

III. General monotonicity formula

In this section we consider a more general class of varifolds, defined as follows.

Definition III.1. Let Π : G→ H2 denote the Grassmannian bundle of Legendrian two-dimensional
planes in H2; we denote elements of G as P, or as pairs (P, p) when we want to emphasize the
underlying p ∈ H2. Given an open set U ⊆ H2, a Hamiltonian stationary Legendrian varifold
(HSLV) v on U is a Radon measure on Π−1(U) such that�

Π−1(U)
divP WF dv(P, p) = 0

for all Hamiltonian vector fields WF as above. □

With a little abuse of notation, we will often write a domain of integration in H2 to mean its
preimage under Π.

Remark III.2. Given a PHSLV (Σ, u,N) and a.e. domain ω = {f > t} ⊂⊂ Σ, we have an induced
varifold vω given by

vω(B) :=

�
ω∩u∗B

N
|∇u|2

2
dx2, for B ⊆ G,

where u∗B = {x : (img∇u(x), u(x)) ∈ B}. This varifold vω restricts to a HSLV on H2 \ u(f−1(t))
(open for a.e. t > 0). □
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III.1. A pointwise identity. Let P be a Legendrian two-dimensional plane in H2. Let (Z1, Z2) be
an orthonormal basis of P. Note that [Xj , Xj ] = [Xj , ∂φ] = 0, and similarly for Yj ; by the Koszul
formula, we then have

∇Xj∂φ ·H2 Xj = ∇Yj∂φ ·H2 Yj = 0.

Thus, we can discard the vertical partW V in the computation of divP W . We then have by definition

divP W =
2∑
j=1

∇ZjW
H ·H2 Zj =

2∑
j,ℓ=1

∇Zj [(W ·H2 Xℓ)Xℓ] ·H2 Zj +
2∑

j,ℓ=1

∇Zj [(W ·H2 Yℓ)Yℓ] ·H2 Zj .

Observe that, for any choice of {A,B,C} ⊂ {X1, Y1, X2, Y2}, the commutators [A,B], [B,C] and
[C,A] are orthogonal to H; hence, the Koszul formula implies that ∇AB ·H2 C = 0. This gives

divP W =
2∑

j,ℓ=1

Zj(W ·H2 Xℓ)(Xℓ ·H2 Zj) +
2∑

j,ℓ=1

Zj(W ·H2 Yℓ)(Yℓ ·H2 Zj)

=

2∑
ℓ=1

∇P(W ·H2 Xℓ) ·H2 Xℓ +

2∑
ℓ=1

∇P(W ·H2 Yℓ) ·H2 Yℓ.

(III.1)

For 2WF = JH∇HF − 2F∂φ as above, since ∇Hz2ℓ−1 = Xℓ and ∇Hz2ℓ = Yℓ, there holds

2 divP WF

= −
2∑
ℓ=1

∇P(∂z2ℓF + z2ℓ−1∂φF ) · ∇Pz2ℓ−1 +
2∑
ℓ=1

∇P(∂z2ℓ−1
F − z2ℓ∂φF ) · ∇Pz2ℓ

= −
2∑
ℓ=1

∇P(∂z2ℓF ) · ∇
Pz2ℓ−1 +

2∑
ℓ=1

∇P(∂z2ℓ−1
F ) · ∇Pz2ℓ

− |∇Pz|2∂φF − 2−1∇P(∂φF ) · ∇Pρ2.

(III.2)

Assuming now that F is a function of (ρ2, φ), there holds

dF =
∂F

∂ρ2
dρ2 +

∂F

∂φ
dφ = 2zk

∂F

∂ρ2
dzk +

∂F

∂φ
dφ,

and hence ∂F
∂zk

= 2zk
∂F
∂ρ2

. Inserting these identities in (III.2) and noting that

∇Hφ =
2∑
ℓ=1

(z2ℓ−1Yℓ − z2ℓXℓ) =

2∑
ℓ=1

(z2ℓ−1∇Hz2ℓ − z2ℓ∇Hz2ℓ−1),

we obtain

2 divP WF = −2

2∑
ℓ=1

∇P(z2ℓ∂ρ2F ) · ∇Pz2ℓ−1 + 2

2∑
ℓ=1

∇P(z2ℓ−1∂ρ2F ) · ∇Pz2ℓ

− |∇Pz|2∂φF − 2−1∇P(∂φF ) · ∇Pρ2

= 2∇P
[
∂F

∂ρ2

]
· ∇Pφ− |∇Pz|2∂F

∂φ
− 2−1∇P

[
∂F

∂φ

]
· ∇Pρ2.

(III.3)

It can be checked that |∇Pz|2 = 2, but for now we keep this factor so as to keep more homogeneity
in the computations below. Let v be a HSLV, so that for any smooth compactly supported function
F depending on (ρ2, φ) we have by definition

2−1

�
G
∇Pρ2 · ∇P

[
∂F

∂φ

]
dv(P, p) +

�
G
|∇Pz|2∂F

∂φ
dv(P, p)− 2

�
G
∇Pφ · ∇P

[
∂F

∂ρ2

]
dv(P, p) = 0.



18 ALESSANDRO PIGATI AND TRISTAN RIVIÈRE

We now consider a smooth cut-off function χ on R+ such that χ′ ≤ 0 and

χ(t) =

{
1 for t ≤ 1

0 for t ≥ 2.

Letting 0 < ε < 1, we consider

F (ρ2, φ) := (χ(r)− χ(r/ε)) arctanσ,

where arctanσ is extended by continuity to H2 \ {0} (so that it equals sgn(φ)π2 on the φ-axis
{ρ = 0}). We compute, away from {ρ = 0}, that

(III.4)
∂F

∂φ
=
∂r

∂φ
(χ′(r)− ε−1χ′(r/ε)) arctanσ + (χ(r)− χ(r/ε))

∂σ

∂φ

1

1 + σ2
.

Away from {ρ = 0} we have

r3∂φr = ∂φφ
2 = 2φ,

∂σ

∂φ

1

1 + σ2
=

2

ρ2
1

1 + σ2
=

2

ρ2 + 4ρ−2φ2
=

2ρ2

r4
.

We note in passing that the previous expression is smooth on the whole H2 \ {0}. Hence,

(III.5)
∂F

∂φ
= 2

φ

r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ + 2(χ(r)− χ(r/ε))

ρ2

r4
.

Similarly, we compute

r3∂ρ2r =
ρ2

2
,

∂σ

∂ρ2
1

1 + σ2
= −2

1

1 + σ2
φ

ρ4
= −2

φ

r4
,

and so away from {ρ = 0} we have

(III.6)
∂F

∂ρ2
=

ρ2

2r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ − 2(χ(r)− χ(r/ε))

φ

r4
.

Remark III.3. This computation shows that arctanσ is of class C∞ outside of the origin, and
hence F is of class C∞ on the whole H2. □

Proposition III.4. On the open set H2 \ {ρ = 0} we have the identity

2−1∇Pρ2 · ∇P
[
∂F

∂φ

]
+ |∇Pz|2∂F

∂φ
− 2∇Pφ · ∇P

[
∂F

∂ρ2

]
= 2

|∇Pr|2

r
(χ′(r)− ε−1χ′(r/ε)) + |∇Pz|2

[
2φ

r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ

]
− r4

2
∇P arctanσ · ∇P [r−3(χ′(r)− ε−1χ′(r/ε))arctanσ]

+ 2|∇P arctanσ|2(χ(r)− χ(r/ε)),

for the function F introduced above. □
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Proof. Away from {ρ = 0} we have

2−1∇Pρ2 · ∇P
[
∂F

∂φ

]
= 2−1∇Pρ2 · ∇P

[
ρ2 σ

r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ

]
+∇Pρ2 · ∇P

[
(χ(r)− χ(r/ε))

ρ2

r4

]
= 2−1|∇Pρ2|2

[ σ
r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ

]
+ 2−1∇Pρ2 · ∇Pσ

[
ρ2

r3
(χ′(r)− ε−1χ′(r/ε))

(
arctanσ +

σ

1 + σ2

)]
+ 2−1∇Pρ2 · ∇Pr

[
−3

ρ2

r4
(χ′(r)− ε−1χ′(r/ε))σ arctanσ

]
+ 2−1∇Pρ2 · ∇Pr

[
ρ2

r3
(χ′′(r)− ε−2χ′′(r/ε))σ arctanσ

]
+
ρ2

r4
∇Pρ2 · ∇Pr(χ′(r)− ε−1χ′(r/ε)) +∇Pρ2 · ∇P

[
ρ2

r4

]
(χ(r)− χ(r/ε)).

We also have

|∇Pz|2∂F
∂φ

= 2|∇Pz|2
[
φ

r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ + (χ(r)− χ(r/ε))

ρ2

r4

]
,

and finally, using the fact that ρ4 = r4

1+σ2 , we compute that

2∇Pφ · ∇P
[
∂F

∂ρ2

]
= ∇P(σρ2) · ∇P

[
ρ2

2r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ

]
− 4∇Pφ · ∇P

[
(χ(r)− χ(r/ε))

φ

r4

]
= |∇Pρ2|2

[
1

2r3
(χ′(r)− ε−1χ′(r/ε))σ arctanσ

]
+

|∇Pσ|2

(1 + σ2)2

[ r
2
(χ′(r)− ε−1χ′(r/ε))

]
+∇Pσ · ∇Pρ2

[
ρ2

2r3
(χ′(r)− ε−1χ′(r/ε))

(
arctanσ +

σ

1 + σ2

)]
+∇Pρ2 · ∇Pr

[
−3ρ2

2r4
(χ′(r)− ε−1χ′(r/ε))σ arctanσ

]
+∇Pσ · ∇Pr

[
−3

2
(χ′(r)− ε−1χ′(r/ε))

arctanσ

1 + σ2

]
+∇Pρ2 · ∇Pr

[
ρ2

2r3
(χ′′(r)− ε−2χ′′(r/ε))σ arctanσ

]
+∇Pσ · ∇Pr

[
r

2
(χ′′(r)− ε−2χ′′(r/ε))

arctanσ

1 + σ2

]
− 4

φ

r4
∇Pφ · ∇Pr(χ′(r)− ε−1χ′(r/ε))− 4∇Pφ · ∇P

[φ
r4

]
(χ(r)− χ(r/ε)).

We now claim that

(III.7) 2−1ρ2|∇Pz|2 = ρ2|∇Pρ|2 + |∇Pφ|2.
Indeed, as above, given a Legendrian plane P ∈ G, let (Z1, Z2) be an orthonormal basis, and let
Z ′
ℓ := π∗Zℓ ∈ C2. Since π∗ is an isometry, (Z ′

1, Z
′
2) is still an orthonormal pair of vectors in C2,
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spanning a Lagrangian plane P ′. Hence, (Z ′
1, Z

′
2, iZ

′
1, iZ

′
2) is an orthonormal basis of C2, giving

ρ2 = |z|2 = |z · Z1|2 + |z · Z2|2 + |z · iZ1|2 + |z · iZ2|2.
We also have

|∇Pz|2 =
4∑

k=1

2∑
ℓ=1

|Zℓ · ∇Hzk|2 =
4∑

k=1

2∑
ℓ=1

|Zℓ · ek|2 = 2,

where (e1, e2, e3, e4) is the canonical basis of C2, while the identity

2z · Z ′
ℓ =

4∑
k=1

2zk(Zℓ · ∇Hzk) = Zℓ · ∇Hρ2

gives
2∑
ℓ=1

|z · Z ′
ℓ|2 =

|∇Pρ2|2

4
= ρ2|∇Pρ|2.

Similarly, since iZ ′
ℓ =

∑4
k=1(Z

′
ℓ · ek)iek and ∇Hφ = z1∇Hz2− z2∇Hz1+ z3∇Hz4− z4∇Hz3, we have

z · iZ ′
ℓ = (Z ′

ℓ · e1)z2 − (Z ′
ℓ · e2)z1 + (Z ′

ℓ · e3)z4 − (Z ′
ℓ · e4)z3 = −Zℓ · ∇Hφ,

and hence
2∑
ℓ=1

|z · iZ ′
ℓ|2 = |∇Pφ|2;

the claim follows by combining the previous identities.
We apply the previous claim to the following sum:

∇Pρ2 · ∇P
(
ρ2

r4

)
+ 2|∇Pz|2 ρ

2

r4
+ 4∇Pφ · ∇P

(φ
r4

)
=

|∇Pρ2|2

r4
− ρ2∇Pρ2 · ∇

Pr4

r8
+ 4ρ2

|∇Pρ|2

r4
+ 8

|∇Pφ|2

r4
− 4φ∇Pφ · ∇

Pr4

r8

=
1

r4

[
2|∇Pρ2|2 + 8|∇Pφ|2 − ρ2∇Pρ2 · ∇

P [ρ4 + 4φ2]

r4
− 32φ2 |∇Pφ|2

r4
− 2∇Pφ2 · ∇

Pρ4

r4

]
=

1

r4

[
2

(
1− ρ4

r4

)
|∇Pρ2|2 + 8

(
1− 4

φ2

r4

)
|∇Pφ|2 − 8

ρ2

r4
∇Pρ2 · ∇Pφ2

]
.

Recalling that r4 = ρ4(1 + σ2), the previous expression equals

1

r4

[
2σ2

1 + σ2
|∇Pρ2|2 + 8ρ4

r4
|∇Pφ|2 − 8

1 + σ2
ρ−2∇Pρ2 · ∇Pφ2

]
=

8

r4(1 + σ2)

[
|φρ−2∇Pρ2|2 + |∇Pφ|2 − 2φρ−2∇Pρ2 · ∇Pφ

]
=

8

r4(1 + σ2)

∣∣∇Pφ− φρ−2∇Pρ2
∣∣2

=
8

(1 + σ2)2
∣∣ρ−2∇Pφ+ φ∇Pρ−2

∣∣2 .
Hence we have established the following identity:

(III.8) ∇Pρ2 · ∇P
(
ρ2

r4

)
+ 2|∇Pz|2 ρ

2

r4
+ 4∇Pφ · ∇P

(φ
r4

)
= 2|∇P arctanσ|2.

Combining the previous computations, we see that the terms multiplying χ and χ′′ match in the
two sides of the statement. As for χ′, the same holds once we use the simple identity

ρ2∇Pρ2 · ∇Pr+ 4φ∇Pφ · ∇Pr = 2|∇Pr|2r3,
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after a number of cancellations. ■

III.2. Monotonicity formula and its consequences. We start with a direct consequence of the
previous proposition.

Proposition III.5. Let v be a Hamiltonian stationary Legendrian varifold (HSLV). Then, under
the previous notation, the following identity holds:

0 = 2

�
G

|∇Pr|2

r
(χ′(r)− ε−1χ′(r/ε)) dv(P, p)

+

�
G
|∇Pz|2

[
2φ

r3
(χ′(r)− ε−1χ′(r/ε)) arctanσ

]
dv(P, p)

− 1

2

�
G
r4∇P arctanσ · ∇P [r−3(χ′(r)− ε−1χ′(r/ε))arctanσ] dv(P, p)

+ 2

�
G
|∇P arctanσ|2(χ(r)− χ(r/ε)) dv(P, p),

(III.9)

where G denotes the Grassmannian bundle of Legendrian two-planes over H2. □

Proof. We already observed that the function F considered above is smooth and compactly sup-
ported on H2. Hence, for the associated Hamiltonian vector field WF , we have�

G
divP WF dv(P, p) = 0.

Now the left-hand side of the identity stated in Proposition III.4 is equal to −2 divP WF . While this
identity was obtained only on H2 \ {ρ = 0}, it is valid everywhere (once we replace the left-hand
side with −divP WF ), since both divP WF and its right-hand side extend continuously to all of G:
indeed, recall that arctanσ is smooth outside of the origin. Hence, the claim follows directly from
Proposition III.4. ■

In the sequel, we slightly restrict the class of cut-off functions χ. Namely, besides the condition
that χ = 1 on [0, 1] and χ = 0 on [2,∞), we also require that

−χ′ = η2, for some η ∈ C∞
c ((1, 2)).

Given a HSLV v on an open set U ⊆ H2 and a ball Br
2a(q) ⊆ U , we now consider the quantity

Θχ(q, a) := −
�
G

|∇Prq|2

rq
a−1χ′(rq/a) dv(P, p)

−
�
G

[
2φq
r3q

a−1χ′(rq/a) arctanσq

]
dv(P, p)

+
1

4

�
G
r4q∇P arctanσq · ∇P [r−3

q a−1χ′(rq/a)arctanσq] dv(P, p),

(III.10)

where we let rq(x) := r(q−1 ∗ x), and similarly we define φq and arctanσq. We will often drop the
superscript χ in the sequel, writing Θχ in place of Θ.

The following statement is a monotonicity formula for the area in this Legendrian setting. It con-
stitutes one of the fundamental tools in the present work and it improves on a weaker monotonicity
statement obtained by Schoen–Wolfson [31], both in terms of effectiveness and simplicity of proof
(we just mention that in [31] the proof involved solving a certain wave-type equation and relied
on certain properties of special functions). A more similar version of it was obtained for smooth
immersions in [28].
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Theorem III.6. Assume that v is a HSLV on an open set U ⊆ H2. Then we have

0 ≤ Θχ(q, a) ≤ Θχ(q, b) for all 0 < a < b ≤ dK(q,H2 \ U)/2.

Moreover, the density

θχ(q) := lim
ε→0

−1

ε

�
G
χ′(rq/ε)

[
|∇Prq|2

rq
+

2φq
r3q

arctanσq

]
dv(P, p)

exists in R+ = [0,∞) and we have

θχ(q) = lim
ε→0

Θχ(q, ε),

as well as

θχ(q) +

�
0<rq<b

|∇P arctanσq|2 dv(P, p) ≤ Cb−2|v|(Br
2b(q) \B

r
b(q)),

for a constant C > 0 depending only on χ. □

Remark III.7. Up to harmless error terms, a similar monotonicity formula holds in arbitrary
closed Sasakian manifolds, whose infinitesimal model is H2 (see [29, Section VI] and the references
therein), with a similar proof. Of course, in this case monotonicity is only effective at small scales.
However, in all of the following arguments, we can always work at small enough scales; in particular,
blow-ups are again varifolds on H2. □

Remark III.8. Although the integrand defining Θχ is not guaranteed to be nonnegative, we observe
that the one in the definition of θχ is always nonnegative, since χ′ ≤ 0 and (away from {ρq = 0})
φq has the same sign as σq, so that φq arctanσq ≥ 0. □

Remark III.9. Any blow-up of v at q has ∇P arctanσ = 0 on its support (away from the origin):
indeed, the rescaled varifold vq,a := (δ1/a ◦ ℓq−1)∗v satisfies�

0<r<R
|∇P arctanσ|2 dvq,a(P, p) =

�
0<rq<Ra

|∇P arctanσq|2 dv(P, p)

for all a,R > 0 with 2Ra < dK(q,H2 \ U), so that the left-hand side converges to zero for fixed
R > 0. □

Proof. First, note that we have
|∇Pz|2 = 2

for any P ∈ G: indeed, letting (Z1, Z2) be an orthonormal basis of P, we have

|∇Pz|2 =
2∑

k=1

4∑
ℓ=1

|∇Hzℓ · Zk|2.

The claim now follows from the fact that ∇Hz2j−1 = Xj and ∇Hz2j = Yj .
In the sequel, we can assume that q = 0 and b = 1, up to a left translation and a dilation. Assume

momentarily that

(III.11) lim inf
ε→0

�
ε<r<2ε

|∇P arctanσ|2 dv(P, p) <∞.
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We rearrange (III.9) as

2

�
G
|∇P arctanσ|2(χ(r)− χ(r/ε)) dv(P, p)

− 2

�
G

|∇Pr|2

r
ε−1χ′(r/ε) dv(P, p)−

�
G

4φ

r3
ε−1χ′(r/ε) arctanσ dv(P, p)

+
1

2

�
G
r4∇P arctanσ · ∇P [r−3ε−1χ′(r/ε)arctanσ] dv(P, p)

= −2

�
G

|∇Pr|2

r
χ′(r) dv(P, p)−

�
G

4φ

r3
χ′(r) arctanσ dv(P, p)

+
1

2

�
G
r4∇P arctanσ · ∇P [r−3χ′(r)arctanσ] dv(P, p),

(III.12)

which proves that Θχ(q, ε) ≤ Θχ(q, 1) for 0 < ε < 1, and thus the inequality Θχ(q, a) ≤ Θχ(q, b) in
the statement.

Since χ′(r) vanishes outside the set {1 < r < 2}, the right-hand side above is bounded by

C

�
1<r<2

1 dv(P, p).

Moreover, the first three terms in the left-hand side are nonnegative. To conclude, we need to control
the last term in the left-hand side of (III.12). A simple expansion (using also the fact that r ∈ [ε, 2ε]
on the support of χ′(r/ε)) shows that it is bounded by the integral of

C|∇P arctanσ|2|χ′(r/ε)|+ Cε−1|∇P arctanσ||∇Pr|(|χ′(r/ε)|+ |χ′′(r/ε)|).
Since −χ′ = η2, we have |χ′′| = |(η2)′| = 2η|η′| ≤ Cη1(1,2), so that

Cε−1|∇P arctanσ||∇Pr||χ′′(r/ε)| ≤ −Cδ
ε2
χ′(r/ε)|∇Pr|2 + C

δ
1ε<r<2ε|∇P arctanσ|2

for an arbitrary δ > 0. Similarly, the term Cε−1|∇P arctanσ||∇Pr||χ′(r/ε)| obeys the same bound.
Thus, �

G
r4|∇P arctanσ| · |∇P [r−3ε−1χ′(r/ε)arctanσ]| dv(P, p)

≤ Cδ

�
G

|∇Pr|2

r
ε−1χ′(r/ε) dv(P, p) + C

δ

�
ε<r<2ε

|∇P arctanσ|2 dv(P, p).

Choosing δ > 0 small enough, we can absorb the integral of − |∇P r|2
r ε−1χ′(r/ε), which appeared in

the left-hand side of (III.12). Once we let ε→ 0, we deduce that

2

�
0<r<1

|∇P arctanσ|2 dv(P, p)

≤ C

�
1<r<2

1 dv(P, p) + C lim inf
ε→0

�
ε<r<2ε

ε−2|∇P arctanσ|2 dv(P, p),

which is finite by our assumption (III.11). In particular, the integral of |∇P arctanσ|2 on {0 < r < 1}
is finite, so we can upgrade (III.11) to

lim sup
ε→0

�
ε<r<2ε

|∇P arctanσ|2 dv(P, p) = 0.
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Reinserting this information in the previous computation, we deduce�
0<r<1

2|∇P arctanσ|2(χ(r)− χ(r/ε)) dv(P, p)

+ lim sup
ε→0

�
G

[
−2(1− Cδ)

|∇Pr|2

r
ε−1χ′(r/ε)− 4φ

r3
ε−1χ′(r/ε) arctanσ

]
dv(P, p)

≤ C

�
1<rp<2

1 dv(P, p)

for an arbitrarily small δ > 0. Thus, in (III.12) we see that the last term in the left-hand side goes
to zero as ε→ 0; it follows that the limit defining θχ exists, and moreover we have

θχ(q) = lim
ε→0

Θχ(q, ε),

since the third term in (III.10) goes to zero as ε→ 0, as we showed above.
We now remove the technical assumption (III.11). Note that, by homogeneity of arctanσ under

dilations, we have |∇P arctanσ|2 ≤ Cr−2. In particular, the statement holds at all points p ∈ U \ S
(for radii 0 < 2r < dK(p,H2 \ U)), where the exceptional set S is given by

S :=

{
p ∈ U : lim sup

ε→0
ε−2|v|(Br

ε(p)) = ∞
}
.

A simple application of Vitali’s covering lemma shows that H2
K(S) = 0. In particular, U \S is dense

in U . We can then take a sequence pj → 0, with pj ∈ U \S, and repeat the previous proof to obtain�
0<rpj<1/2

|∇P arctanσpj |2 dv(P, p) ≤ C

�
1/2<rpj<1

1 dv(P, p),

which is bounded by a constant independent of j. By Fatou’s lemma, we obtain�
0<r<1/2

|∇P arctanσ0|2 dv(P, p) <∞,

showing that (III.11) holds also at p = 0. ■

Corollary III.10. Assume that v is a HSLV on an open set U ⊆ H2. Then the density θχ of v is
upper semi-continuous on U . □

Proof. Fix q ∈ U and consider a sequence qk → q of points in U . Given any λ > 0, we need to show
that eventually

θχ(qk) ≤ θχ(q) + λ.

We let b > 0 such that Br
4b(qk) ⊆ U for all k. Clearly, we have

θχ(qk) = lim
a→0

Θχ(qk, a) ≤ Θχ(qk, b),

as well as Θχ(qk, b) → Θχ(q, b), since the integrand defining Θχ is cut-off near the center. Thus,
eventually we have

θχ(qk) ≤ Θχ(q, b) +
λ

2
.

Finally, since Θχ(q, b) → θχ(q) as b→ 0, we can choose b > 0 so small that

Θχ(q, b) ≤ θχ(q) +
λ

2
,

obtaining the claim. ■

The same argument shows the following more general fact.
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Corollary III.11. Assume that vk is a sequence of HSLVs on an open set U ⊆ H2 converging to
v. Then v is a HSLV and, given any sequence qk → q ∈ U (with qk ∈ U), we have

θχ(v, q) ≥ lim sup
k→∞

θχ(vk, qk).

In particular, if θχ(vk, p) ≥ ν > 0 at |vk|-a.e. p then this actually holds for all p ∈ spt |vk| and
θχ(v, p) ≥ ν > 0 for all p ∈ spt |v|,

as well as
spt |vk| → spt |v|

in the local Hausdorff topology. □

The following statement gives upper density bounds on the support, at macroscopic scales. As a
consequence, a H2

K-negligible set is also |v|-negligible.

Corollary III.12. There exists a universal constant C > 0 such that the following holds. Assuming
that v is a HSLV on U ⊇ Br

2s(q), we have

|v|(Br
r(q))

r2
≤ C

|v|(Br
2s(q) \Br

s(q))

s2

for all 0 < r ≤ s/2, where |v| := Π∗v denotes the weight of v. □

Proof. By a left translation and dilation, we can assume that q = 0 and s = 1. By Theorem III.6
we have �

0<r<1
|∇P arctanσ|2 dv(P, p) ≤ C|v|(Br

2(0) \Br
1(0)).

Thus, employing the same absorption used in the proof of Theorem III.6, we see that

I(ε) := −2

�
G

|∇Pr|2

r
ε−1χ′(r/ε) dv(P, p)−

�
G

4φ

r3
ε−1χ′(r/ε) arctanσ dv(P, p)

is bounded by the same quantity (for a possibly different C > 0), for all 0 < ε ≤ 1/2.
Now we compute that

JH∇H ρ
2

2
= JH

4∑
j=1

zj∇Hzj = JH(z1X1+ z2Y1+ z3X2+ z4Y2) = z1Y1− z2X1+ z3Y2− z4X2 = ∇Hφ,

and hence

(III.13) r3JH(∇Hr) = JH∇H ρ
4

4
+ JH∇Hφ2 = ρ2∇Hφ− 2φ∇H ρ

2

2
=
ρ4

2
∇Hσ,

an identity that we will use later on. Since r3∇Hr = ρ2∇H ρ2

2 + 2φ∇Hφ and ∇H ρ2

2 ⊥ ∇Hφ are two
vectors with the same norm ρ, we have

(III.14) |∇Hr|2 = ρ4

r6

∣∣∣∣∇H ρ
2

2

∣∣∣∣2 + 4φ2

r6
|∇Hφ|2 = ρ4 + 4φ2

r6
· ρ2 = ρ2

r2
=

1√
1 + σ2

.

Moreover, we have 2φ
r2

= σ ρ
2

r2
= σ√

1+σ2
off the φ-axis {ρ = 0}, and actually (discarding the inter-

mediate equalities) this holds also on {ρ = 0} \ {0}, provided we interpret σ√
1+σ2

= sgn(φ) here;

indeed, recall that σ = sgn(φ) · (+∞) on this set. Thus, we obtain

I(ε) = −2

ε

�
G
χ′(r/ε)r−1

[
1 + σ arctanσ√

1 + σ2
− |∇P⊥

r|2
]
dv(P, p).

Now an elementary computation shows that

1 ≤ 1 + σ arctanσ√
1 + σ2

≤ π

2
,



26 ALESSANDRO PIGATI AND TRISTAN RIVIÈRE

while thanks to (III.13) we have

|∇P⊥
r|2 = ρ8

4r6
|∇Pσ|2 = r2

|∇Pσ|2

4(1 + σ2)2
=

r2

4
|∇P arctanσ|2,

again an identity which extends to all of H2 \ {0}. Hence,
2

ε

�
G
|χ′(r/ε)| · r−1|∇P⊥

r|2 dv(P, p) ≤ C(χ)

�
ε<r<2ε

|∇P arctanσ|2 dv(P, p).

Since this term obeys the desired bound, we obtain

−2

ε

�
G
χ′(r/ε)r−1 ≤ C|v|(Br

2(0) \Br
1(0))

for all ε ∈ (0, 1/2]. Taking χ such that χ′ < 0 on [4/3, 5/3], we deduce

|v|(Br
5ε/3(0) \B

r
4ε/3(0)) ≤ Cε2|v|(Br

2(0) \Br
1(0)),

from which the conclusion easily follows. ■

IV. Closure of integral varifolds among rectifiable ones

Using the monotonicity formula from the previous section, we now prove a suitable version of
Allard’s compactness of integral stationary varifolds in this setting, a statement which is perhaps
interesting on its own. The proof is essentially a very careful adaptation of the original argument
by Allard [1], although we follow more closely the presentation from [8, Section 6] and some steps
are much subtler in the present setting (see, e.g., Lemma IV.4 below).

Theorem IV.1. Assume that vk is a sequence of rectifiable HSLVs on an open set U ⊆ H2,
converging to a rectifiable varifold v∞ here. If θχ(vk, p) ∈ 2πN∗ for |vk|-a.e. p, then the same holds
for the limit varifold. □

Remark IV.2. Differently from the isotropic situation, the rectifiability of the limit has to be
assumed and does not come for free. A counterexample was found in [21, Appendix B]; we also refer
to Theorem A.1, where we give a counterexample in a closed ambient, namely in the sphere S5.
Rephrasing slightly the example from [21], we consider

Σ := C/2πZ(1− i) = R2/2πZ(1,−1)

and u : Σ → H2 given by

u(x) = u(x1, x2) := (cos(x1), sin(x1), cos(x2), sin(x2), x1 + x2),

which has
∂xju(x) = − sin(xj)Xj + cos(xj)Yj .

Thus, the differential is a linear isometry at each point and u is a Legendrian lift of the map π ◦ u,
which parametrizes the Clifford torus. It is easy to check that u is a proper embedding inducing a
HSLV on H2 (cf. [20, Theorem 2.7] and Remark II.8), whose blow-down is

v(P, p) = 2π · µ(P)⊗ (H1 L)(p),

where L := {z = 0} and µ is the uniform measure on the torus of Legendrian planes

(eia, eib) 7→ P(a,b) := span{cos(a)X1 + sin(a)Y1, cos(b)X2 + sin(b)Y2}.
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Moreover, observing that |∇Hr| = 0 (by (III.14)) and r =
√
2|φ| on spt |v|, we see that

θχ(v, 0) = lim
ε→0

−1

ε

�
G
χ′(
√

2|φ|/ε) π|φ|√
8|φ|3

d|v|

= lim
ε→0

−2

ε

� ∞

0
χ′(
√
2φ/ε)

π√
8φ

· 2π dφ

= −2π2
� ∞

0
χ′(t) dt

= 2π2,

so that v is not rectifiable and on spt |v| we have θχ

2π = π ̸∈ N. □

The following is a useful observation showing that two rectifiability conditions based on the
Euclidean and Heisenberg geometries agree.

Lemma IV.3. Given an open set U ⊆ H2 and a HSLV v on U with θχ(p) ≥ ν > 0 for |v|-a.e. p,
the varifold v is rectifiable if and only if, for |v|-a.e. p, any anisotropic blow-up of the form

lim
r→0

(δ1/r ◦ ℓp−1)∗v

along a sequence of radii r → 0 equals θχ(p)
2π times a Legendrian plane, depending only on p (recall

that ℓp−1(x) := p−1 ∗ x). If either holds, then at |v|-a.e. p the isotropic blow-up (in terms of gH2)
agrees with the anisotropic blow-up. □

Proof. Note that θχ ≥ ν on spt |v|, by Corollary III.10. We disintegrate v(P, p) = µp(P) ⊗ |v|(p),
where µp is a probability measure on Π−1(p). By left-invariance of G, we can identify µp with a
probability measure on G0 := Π−1(0). We now consider the set A of approximate continuity points
for p 7→ µp (with respect to the weak-∗ topology on probabilities), in terms of dK-balls: namely,
p ∈ spt |v| belongs to A if, for any continuous f : G0 → R (or equivalently for a countable dense
collection of such functions), we have�

Br
ε(p)

|f(µq)− f(µp)| d|v|(q) = o(|v|(Br
ε(p))) as ε→ 0,

or equivalently if this integral is o(ε2), in view of Corollary III.12. We have p ∈ A for |v|-a.e. p:
indeed, note that |v| is locally a doubling measure on the metric space (spt |v|, dK).

If v is rectifiable, then for |v|-a.e. p we have µp = δQ(p) for some Legendrian plane Q(p) ∈ G0.
Assuming also p ∈ A, any blow-up w satisfies the assumptions of Lemma IV.4 below (up to a
rotation), which tells us that w is a constant multiple of Q(p). Since θχ(w, 0) = θχ(v, p), this
proves one implication.

To see the reverse implication, we consider a point p ∈ A where any blow-up is θχ(v,p)
2π times a

plane Q(p). In particular, we have µp = δQ(p). Up to a translation and a rotation, we can assume
that p = 0 and Q(0) = span{X1(0), X2(0)}. By a straightforward compactness argument (using
Corollary III.11), we see that φ(q) = o(ρ2(q)) as q → 0 in spt |v|. Hence, we easily deduce that

lim
ε→0

|v|(Bε(0))
ε2

= lim
ε→0

|v|(Br
ε(0))

ε2
= θχ(v, 0),

as well as

lim
ε→0

ε−2(δ̃1/ε)∗|v| = lim
ε→0

ε−2(δ1/ε)∗|v| =
θχ(v, 0)

2π
H2 Q(0),

where δ̃1/ε(q) := ε−1q is the Euclidean dilation. Thus, |v| is a rectifiable measure and v(P, p) =
δQ(p)(P)⊗ |v|(p). ■
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The proof of Theorem IV.1 is based on the following lemma, whose analogue in the Euclidean
space is a simple exercise but which turns out to be quite subtle for HSLVs in the Heisenberg group.

Lemma IV.4. Given a HSLV v on an open set U ⊆ H2, assume that its density θχ(p) ≥ ν > 0 for
all p ∈ spt |v| and that

(IV.1) v(P, p) = δPp(P)⊗ |v|(p),
where we set Pp := span{X1(p), X2(p)}. Then v is locally a finite union of left translates of the
plane P0 ⊂ H2, with constant multiplicity. Moreover, if v is an (anisotropic) blow-up then it is a
constant multiple of P0. □

Note that we can equivalently require that θχ(p) ≥ ν > 0 for |v|-a.e. p, by Corollary III.10.
We will implicitly use the fact that this density assumption is stable under varifold limits, and in
particular under blow-ups, by Corollary III.11. We also observe that, under the assumption (IV.1),
stationarity can be conveniently rewritten as

(IV.2)

�
U
[X1(Y1(F )) +X2(Y2(F ))] d|v| = 0 for all F ∈ C∞

c (U).

Proof. First we show the statement for blow-ups, namely we assume that U = H2 and ∇Pσ vanishes
on Π−1(H2 \ {z = 0}) ∩ spt(v), as seen in Remark III.9. In particular, by (IV.1), for p ∈ spt |v| we
have

∇Hσ(p) ·Xj(p) = 0 for j = 1, 2.

Computing ∇Hσ = 2ρ−2(∇Hφ− σ∇H ρ2

2 ) and recalling that

∇Hφ = z1Y1 − z2X1 + z3Y2 − z4X2, ∇H ρ
2

2
= z1X1 + z2Y1 + z3X2 + z4Y2,

we deduce that z2 = −σz1 and z4 = −σz3 on spt |v| \ {z = 0}.
We now claim that σ = 0 on spt |v| \ {z = 0}, so that

spt |v| ⊆ {φ = 0} ∪ {z = 0}.
Then, taking any Hamiltonian of the form F (z, φ) := z1z2ψ(φ), with ψ ∈ C∞

c (R \ {0}), and
recalling (IV.2), it is easy to deduce that actually spt |v| ⊆ {φ = 0}. Taking into account that
z2j = −σz2j−1 = 0 off the φ-axis, we obtain spt |v| ⊆ P0. Finally, taking

F (z, φ) := a(z1, z3)z2 + b(z1, z3)z4

for a, b ∈ C∞
c (R2), we deduce that v is a stationary varifold in the usual sense, and hence by the

constancy theorem it has constant multiplicity, as desired.
To check the previous claim, assume by contradiction that p ∈ spt |v|\(P0∪{z = 0}) and consider

a blow-up w at p, i.e., a limit of rescalings (δ1/r ◦ℓp−1)∗v along a sequence r → 0. Writing p = (z, φ)

and taking p′ = (z′, φ′) ∈ spt |v|, we get

z′2j − z2j = −(σ(p′)z′2j−1 − σ(p)z2j−1) = −σ(p)(z′2j−1 − z2j−1)− (σ(p′)− σ(p))z′2j−1,

and hence for any point p = (z, φ) ∈ spt |w| we have the linearized equation

z2j = −σ(p)z2j−1 − z2j−1[Y1(σ)(p)z2 + Y2(σ)(p)z4]

(recall that Xj(σ) vanishes at p). Abbreviating ρ := ρ(p) and σ := σ(p), we also have

Yℓ(σ)(p) =
2

ρ2
(z2ℓ−1 − σz2ℓ) =

2(1 + σ2)

ρ2
z2ℓ−1,

which gives

−σz1 =
(
1 +

2(1 + σ2)z21
ρ2

)
z2 +

2(1 + σ2)z1z3
ρ2

z4,
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and a similar equation interchanging the indices (1, 2) with (3, 4). Since σ = 2φ
ρ2

̸= 0, we obtain

(IV.3) z1 = −ρ
2 + 2z21 + 2z22

2φ
z2 −

z1z3 + z2z4
φ

z4,

and a similar equation expressing z3 as a constant linear combination of z2, z4, valid on spt |w|. We
now get a contradiction by using Lemma IV.7 below (applied to w).

Let us turn to the general case. Up to shrinking and translating U , we can assume that U = Ca =
Va ∗Da (see the definition (IV.7) below). We claim that

spt |v| = S ∗Da

for some closed subset S ⊆ Va. Note that, once this is shown, then S is automatically a locally finite
set, since otherwise we could find a converging sequence pk → p in Va∩spt |v|, giving a contradiction
after a blow-up at p (using the previously established fact that blow-ups are multiples of P0 and
the consequential convergence δ1/r ◦ ℓp−1(spt |v|) → P0, by Corollary III.11). The conclusion then
follows by the previous constancy argument.

To prove the previous claim, we consider the map f : Ca → Va given by

f(z, φ) := (0, z2, 0, z4, φ+ z1z2 + z3z4),

which associates with every p ∈ Ca the unique point q ∈ Va such that p ∈ q ∗Da. We observe that
Xj(f) = 0, as expected. Given x ∈ Da, we let

Ax := spt |v| ∩ π−1
P0

(x)),

where πP0(z, φ) := (z1, 0, z3, 0, 0). Assume that for some q ∈ Va and x ∈ Da we have

q ∗ x ∈ Ax.

In order to show the claim, it suffices to show that, given another point x′ ∈ Da, we have q∗x′ ∈ Ax′ .
We now construct a Lipschitz function

h : [0, 1] → spt |v|
such that h(0) = q ∗ x and πP0 ◦ h(t) = (1− t)x+ tx′. Once this is done, we then see that

h′(t) ∈ Ph(t)
for all t ∈ [0, 1] where the derivative exists, by a straightforward blow-up analysis. Since Xj(f) = 0,
we deduce that f ◦ h is constant. Since f ◦ h(0) = q, we have f ◦ h(1) = q as well, and hence
h(1) ∈ (q ∗ Da) ∩ Ax′ (as πP0(h(1)) = x′). Since (q ∗ Da) ∩ π−1

P0
(x′) = {q ∗ x′}, we deduce that

h(1) = q ∗ x′, and thus q ∗ x′ ∈ Ax′ , as desired.
In order to construct h, we make the following observation, which is again a simple consequence

of the classification of blow-ups: given p ∈ U and ε ∈ (0, 1), there exists a radius r0(p) ∈ (0, 1) such
that for 0 < r < r0(p) we have

dK(q, spt |v| ∩Br
r(p)) < εr for all q ∈ (p ∗ P0) ∩Br

r(p).

In particular, given any v ∈ P0 with |v| < r, we can find p ∈ spt |v| ∩Br
r(p) such that

r(p ∗ v)−1 ∗ p) < εr,

which easily implies that
|p− (p ∗ v)| < Cεr

and in turn that

(IV.4) |z − (z + π(v))| < εr, |φ− φ| < Cr

for a possibly different C = C(p) > 0, locally uniform in p. With this in hand, for fixed ε > 0 and
C ′ > 0, we consider the maximum τ ∈ [0, 1] such that there exist times

t0 = 0 < t1 < · · · < tk = τ ≤ 1



30 ALESSANDRO PIGATI AND TRISTAN RIVIÈRE

and points p0 = q ∗ x, p1, . . . , pk ∈ spt |v| with
ti+1 − ti ≤ ε, |zi+1 − zi − (ti+1 − ti)(x

′ − x)| ≤ ε(ti+1 − ti)|x′ − x|, |φi+1 − φi| ≤ C ′(ti+1 − ti),

where we identify x, x′ ∈ Da with points in C2. We observe that (up to removing some intermediate
times) we can replace any such collection with another one in which ti+2−ti > ε, so that k ≤ 2ε−1+1
is bounded and, by compactness, the maximum τ does indeed exist. By applying (IV.4), we see that
we must have τ = 1, since otherwise starting with a collection with tk = τ we could add an
additional pair (tk+1, pk+1) with tk+1 > τ , provided that C ′ is taken large enough (depending only
on x, x′ ∈ Da and q ∈ Va).

Let us fix a collection Γε := {(ti, pi) | i = 0, . . . , k} as above, with tk = 1. As ε → 0, we can
extract a limit Γ = limε→0 Γε in the Hausdorff topology, up to a subsequence, and it is immediate
to check that Γ is the graph of a Lipschitz function h : [0, 1] → U such that

h(0) = q ∗ x, π ◦ h(t) = π(q) + x+ t(x′ − x).

In particular, we also have
πP0 ◦ h(t) = x+ t(x′ − x),

as desired. ■

In the following lemmas, we tacitly assume that the varifold v in the statement has density
θχ ≥ ν > 0 on its support and that (IV.1) holds (as already observed, both conditions are stable
under limits and thus under blow-ups).

Lemma IV.5. Assume that v is a blow-up such that, on H2 \ {z = 0}, we have σ = c for some
constant c ∈ R. Then c = 0 and v is a constant multiple of P0. □

Proof. We assume by contradiction that c ̸= 0, so that

spt |v| ⊆ {z = 0} ∪ {2φ = cρ2}.
Since {2φ ̸= cρ2} ∩ {z = 0} = {z = 0, φ ̸= 0} =: L, the restriction v Π−1(L) gives a HSLV on
H2 \ {0}. Taking a Hamiltonian of the form z1z2f(φ), with f ∈ C∞

c (R \ {0}), it is immediate to
conclude that this restriction vanishes, so that

spt |v| ⊆ {2φ = cρ2}.
We take any 0 < ε < 1 < R and consider a concave smooth function ψ : R+ → [0, 1] such that
ψ(t) = t for t ∈ [0, ε], ψ(t) = 1 for t ∈ [R,∞), and ψ′′(t) < 0 for t ∈ (ε,R). Then the support of
the Hamiltonian ψ(ρ2) − 1 intersects spt |v| in a compact set. As a consequence, we can use it in
(IV.2), obtaining �

H2

ψ′′(ρ2)(z1z2 + z3z4) d|v| = 0.

Recalling that z2 = −σz1 = −cz1 and similarly z4 = −cz3, we obtain

z1z2 + z3z4 = −c(z21 + z23) = − c

1 + c2
ρ2,

and hence �
H2

ψ′′(ρ2)ρ2 d|v| = 0.

Since ψ′′ < 0 on (ε,R) and ψ′′ = 0 elsewhere, we deduce that spt |v| ⊆ {z = 0}, and thus spt |v| =
{0}. However, using the previous Hamiltonian z1z2f(φ) with f ∈ C∞

c (R) and f(0) = 1, we reach a
contradiction. We then have c = 0 and hence z2j = −cz2j−1 = 0 on spt |v| \ {z = 0}. The conclusion
follows as at the beginning of the previous proof. ■

Lemma IV.6. For a blow-up v there cannot exist three constants α, β, γ ∈ R such that

z1 = αz4, z2 = βz4, z3 = γz4 on spt |v|.
Similarly, it cannot happen that each of z1, z2, z4 is a constant multiple of z3. □
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Proof. By assumption {z4 = 0}∩ spt |v| = {z = 0}∩ spt |v|. Moreover, as above we have z2 = −σz1
and z4 = −σz3 on spt |v| \ {z = 0}, and thus

βz4 = z2 = −σz1 = −ασz4.
If α ̸= 0, it follows that off the φ-axis {z = 0} we have σ = −β

α . Hence, by Lemma IV.5, v is a
multiple of P0. In particular, z4 = 0 on its support, and hence also z = 0, a contradiction. ■

Lemma IV.7. For a blow-up v we cannot have

(IV.5) z1 = az2 + bz4, z3 = cz2 + dz4 on spt |v|
for constant numbers a, b, c, d ∈ R. □

Proof. Assume moreover that z1 = ηz3 on spt |v| for some constant η. Then, since z2 = −σz1
and z4 = −σz3 off the φ-axis, we also have z2 = ηz4 (on the full support of |v|), and we reach a
contradiction by the previous lemma. Similarly, z3 cannot be a constant multiple of z1. Now let

U := H2 \ ({z = 0} ∪ {φ = 0}).
We claim that we must have

(IV.6) a = −ρ
2 + 2(z21 + z22)

2φ
, d = −ρ

2 + 2(z23 + z24)

2φ

on U ∩ spt |v|. Given p in this set, obviously any blow-up w at p keeps satisfying (IV.5). However,
if equations (IV.6) fail at p, then w also satisfies (IV.5) for a different set of coefficients (a′, b′, c′, d′)
(as seen while deriving (IV.3)). Assume for instance that (a, b) ̸= (a′, b′): since for (z̃, φ̃) ∈ spt |w|
we have

az̃2 + bz̃4 = z̃1 = a′z̃2 + b′z̃4,

we obtain that one between z̃2 and z̃4 is a constant multiple of the other, and we obtain a contra-
diction from the previous lemma. The case where (c, d) ̸= (c′, d′) is completely analogous.

Having established (IV.6), assume that U ∩ spt |v| ≠ ∅. Observing that necessarily a, d ̸= 0, we
obtain

ρ2 + 2(z21 + z22) =
a

d
[ρ2 + 2(z23 + z24)].

Dividing by 1 + σ2 and recalling that z21 + z22 = (1 + σ2)z21 , we arrive at

3z21 + z23 =
a

d
[z21 + 3z23 ].

Thus, either z21 is a constant multiple of z23 (on U ∩ spt |v|) or the reverse holds. In the first case,
we note that z3 ̸= 0 (everywhere on U ∩ spt |v|), since otherwise we find a point where z1 = z3 = 0
and thus z2j = −σz2j−1 = 0, impossible since z ̸= 0 on U . Hence, locally z1 is a constant multiple
of z3. However, any blow-up at a point p ∈ U ∩ spt |v| would give a contradiction, by the first part
of the proof. The second case is analogous.

We then conclude that U ∩ spt |v| = ∅, which as usual implies that v is a multiple of P0,
contradicting the assumptions. ■

In order to prove Theorem IV.1, we consider a point p0 ∈ spt |v∞| where a tangent plane exists,
as in Remark IV.3. We claim that θ0 := θχ(v∞, p0) ∈ 2πN. Without loss of generality, we can
assume that p0 = 0. Since (δ1/r)∗v∞ converges to a Legendrian plane P0 with constant multiplicity
θ0, by means of a simple diagonal argument we can find suitable rescalings (δ1/rk)∗vk converging to
this plane. Thus, we can assume that v∞ in fact coincides with the plane P0, with multiplicity θ0.
Up to a rotation, we can also assume that P0 = span{∂z1 , ∂z3}. By Corollary III.10, we have

θχ(vk, ·) ≥ 2π on spt |vk|,
and by Corollary III.11 we deduce that the same holds for v∞, as well as

spt |vk| → spt |v∞| = P0
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in the local Hausdorff topology on H2 (after our rescaling operation, the varifolds vk are defined
and HSLV on open sets Uk increasing to H2).

We have to show that θ0 ∈ N. Before starting the actual proof, we need to introduce some
notation. In the sequel, we will use the map

πP0 : H2 → P0, πP0(z, φ) := (z1, 0, z3, 0, 0)

and, given a radius a > 0, we will consider the sets

Da := Br
a(0) ∩ P0, Va := Br

a(0) ∩ V, V := {z1 = z3 = 0},
as well as the cylinders

(IV.7) Ca,b := Vb ∗Da = {p′′ ∗ p′ | p′ ∈ Da, p
′′ ∈ Vb}, Ca := Ca,a.

Given p ∈ H2, we will also denote

Ca,b(p) := p ∗ Ca,b, Ca(p) := p ∗ Ca.
Note that πP0(p) is the unique point p′ ∈ P0 such that p ∈ V ∗ p′.

Given p ∈ H2, we let Pp := span{X1(p), X2(p)} and, given a cylinder Ca(q), we define the excess-
like quantity

Ek(q, a) := a−2

�
Ca(q)

∥P − Pp∥2 dvk(P, p),

where we identify P and Pp with the orthogonal (in TpH2) projection matrices and use the Hilbert–
Schmidt norm of their difference.

Lemma IV.8. There exist sets Sk ⊆ C100 such that |vk|(Sk) ≤ Cηk and

Ek(q, a) < ηk for all Ca(q) ⊆ C100 with q ̸∈ Sk,

for a sequence ηk → 0. □

Proof. We take any vanishing sequence ηk > 0 such that�
C100

∥P − Pp∥2 dvk(P, p) ≤ η2k.

This can be done since the left-hand side converges to zero, thanks to the varifold convergence of
vk to a multiple of P0. Calling Sk the set of points where the statement fails, by Vitali’s covering
lemma we can cover it with balls Br

10aj
(qj) (depending also on k) such that qj ∈ Sk and the smaller

balls Br
2aj

(qj) are disjoint, with�
Caj (qj)

∥P − Pp∥2 dvk(P, p) ≥ ηka
2
j .

In particular, the cylinders Caj (qj) are disjoint. Summing over j, we obtain∑
j

a2j ≤ ηk.

The claim now follows from Corollary III.12, which gives the bound |vk|(Br
10aj

(qj)) ≤ Ca2j uniformly

in k, so that |vk|(Sk) ≤
∑

j |vk|(Br
10aj

(qj)) ≤ Cηk. ■

We let Θk denote the quantity Θ defined in (III.10) for the varifold vk. Recall that, by Theorem
III.6, we have

Θk(q, a) ≤ Θk(q, b) for 0 < a ≤ b < 100

and
θχ(vk, q) = lim

a→0
Θk(q, a).
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Proof of Proposition IV.1. The varifold convergence vk ⇀ θ0 · P0 gives

(πP0)∗(vk Π−1(C100))⇀ θ0H2 D100.

Moreover, as we saw in Lemma IV.3, we have

d|vk| =
θχ(vk, ·)

2π
d(H2 spt |vk|)

and θχ(vk, q) ∈ 2πN∗ for H2-a.e. q ∈ spt |vk| (recall that, by Theorem III.6 and standard prop-
erties of Hausdorff measures, a |vk|-negligible subset of spt |vk| is also H2

K-negligible, and thus
H2-negligible).

Letting Ek := (C100 ∩ spt |vk|) \ Sk, by the area formula we then have�
Da

∑
q∈Ek∩π−1

P0
(x)

θχ(vk, q)

2π
dH2(x) → θ0H2(Da)

for any a > 0. Thus, by a diagonal argument, we can select a sequence of points xk → 0 such that∑
q∈Ek∩π−1

P0
(xk)

θχ(vk, q) ≥ 2πθ0 − ηk,

up to modifying the sequence ηk → 0, and such that each term in the sum belongs to 2πN∗.
Assuming by contradiction that θ0 ̸∈ N, we can then find a finite subset

Fk ⊆ Ek ∩ π−1
P0

(xk),

consisting of at most [θ0] + 1 points, such that

lim inf
k→∞

∑
q∈Fk

θχ(vk, q) ≥ 2π([θ0] + 1).

Up to translating each vk, we can assume that xk = 0. We now let

ζa(p) := −χ
′(|πP0(p)|/a)
|πP0(p)|/a

and we claim that

(IV.8)

�
C4a,4

ζa d|vk| ≥ a2
∑
q∈Fk

θχ(vk, q)− εka
2 for all a ∈ (0, 1],

for another sequence εk → 0. In particular, for a = 1, in the limit this gives

2πθ0 = lim
k→∞

�
C4
ζ1 d|vk| ≥ lim sup

k→∞

∑
q∈Fk

θχ(vk, q),

which gives the desired contradiction.
To prove this key claim, we fix ε > 0 and let λ > 0 be given by Lemma IV.10 below. In the

sequel, we drop the subscript k to simplify notation, even if the next constructions depend on k.
We call a ∈ (0, 1] a good radius if F = Fk can be partitioned as

F = F(1) ⊔ · · · ⊔ F(ℓ)

with diamK(F(j)) ≤ a, dK(F(j), F(j′)) ≥ 16a for j ̸= j′, and (IV.10) for all q ∈ F . Clearly, by
Theorem III.6, the set of good radii includes a collection of intervals

(0, s0] ∪ [r1, s1] ∪ · · · ∪ [rm, sm] ⊂ (0, 1],

with si < ri+1 and m ≤ |F |, as well as ri+1 ≤ C(|F |, λ)si and sm ≥ c(|F |, λ) > 0. We can also
require that the previous partition is constant on each interval Ii and that the partition for Ii is a
refinement of the partition for Ii+1 (roughly speaking, at a larger scale, some clusters might merge
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into a single one). For each Ii we choose a collection Ri ⊂ F of representative points, one in each
set F(1), . . . , F(ℓ).

The partition for I0 is just given by the singletons {q} for each q ∈ F . By Lemma IV.10 below,
for a ∈ (0, s0] we have

a−2

�
C4a(q)

ζa d|v| ≥ Θ(q, a)− ε ≥ θχ(q)− ε.

Assume now that we have a bound of the form

(IV.9)
∑
q∈Ri

s−2
i

�
C4si (q)

ζsi d|v| ≥
∑
q∈F

θχ(q)− Cε

for some i = 0, . . . ,m−1 (we just proved this for i = 0), and let us show that a similar bound holds
for i+ 1, with a larger C. Indeed, given a set F ′′ ⊆ F in the partition for the interval of good radii
Ii+1, we can write

F ′′ = F ′
(1) ⊔ · · · ⊔ F ′

(n)

for suitable sets F ′
(1), . . . , F

′
(n) in the partition for Ii. By construction, taking representatives

{q′1} = F ′
(1) ∩Ri, . . . , {q′n} = F ′

(n) ∩Ri, {q′′} = F ′′ ∩Ri+1,

the cylinders C4si(q′) are disjoint as q′ varies in {q′1, . . . , q′n}. Moreover, we have⋃
q′

C4si(q′) ⊆ C4si,4si+ri+1(q
′′),

since diamK({q′1, . . . , q′n, q′′}) ≤ diam(F ′′) ≤ ri+1. We apply Lemma IV.9 below to deduce

r−2
i+1

�
C4ri+1,4ri+1

(q′′)
ζri+1 d|v| ≥ s−2

i

�
C4si,4si+ri+1

(q′′)
ζsi d|v| − ε

(clearly, we can assume that 4si ≤ ri+1). Moreover, by Lemma IV.10 again, we obtain

Θ(q′′, ri+1) ≥ r−2
i+1

�
C4ri+1,4ri+1

(q′′)
ζri+1 d|v| − ε.

By monotonicity of Θ, we also have

Θ(q′′, si+1) ≥ Θ(q′′, ri+1),

and as before it holds that

s−2
i+1

�
C4si+1

(q′′)
ζsi+1 d|v| ≥ Θ(q′′, si+1)− ε.

Combining these inequalities and summing over q′′ ∈ Ri+1, we get∑
q′′∈Ri+1

s−2
i+1

�
C4si+1

(q′′)
ζsi+1 d|v| ≥

∑
q∈F

θχ(q)− Cε,

obtaining (IV.9) for i + 1 in place of i. Finally, it is clear that an analogous argument proves our
initial claim (IV.8). ■

Lemma IV.9. Given Λ > 1 and ε > 0, for k large enough we have

1

b2

�
C4b,4b(q)

ζb d|vk| >
1

a2

�
C4a,2b(q)

ζa d|vk| − ε,

for any q ∈ Fk and any two radii 0 < a ≤ b ≤ 1 such that b ≤ Λa. □
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Proof. Assume by contradiction that the claim fails for some qk ∈ Fk and two radii ak, bk, along a
subsequence. After a left translation by q−1

k and a dilation by a factor 1/bk, we obtain new HSLVs
v′
k on C8(0) such that �

C8(0)
∥P − Pp∥2 dv′

k(P, p) ≤ Cηk → 0,

thanks to Lemma IV.8. Up to a subsequence, we then get a limit v = limk→∞ v′
k (on C8(0)) satisfying

the assumptions of Lemma IV.4; this varifold is then a finite union of disks of the form q ∗D8, with
q ∈ V8, each with constant multiplicity.

Letting αk :=
ak
bk

∈ [Λ−1, 1], after rescaling we obtain�
C4,4

ζ1 d|v′
k| ≤

1

α2
k

�
C4αk,2

ζαk
d|v′

k| − ε.

Calling α := limk→∞ αk (up to a subsequence), we deduce that�
C4,4

ζ1 d|v| ≤
1

α2

�
C4α,2

ζα d|v| − ε.

However, by the structure of v and the definition of ζa, we clearly have

1

α2

�
C4α,2

ζα d|v| =
1

α2

�
V 2∗D4α

ζα d|v| =
�
V 2∗D4

ζ1 d|v|,

yielding a contradiction since V 2 ∗D4 ⊆ V4 ∗D4 = C4,4. ■

Lemma IV.10. Given ε > 0, there exists λ ∈ (0, 1) such that the following holds for k large enough:
for any q ∈ Fk and any radius 0 < a ≤ λ, if

(IV.10)

�
λa<rq<a/λ

|∇P arctanσq|2 dvk(P, p) ≤ λ

then ∣∣∣∣∣Θk(q, a)−
1

a2

�
C4a(q)

ζa d|vk|

∣∣∣∣∣ < ε

holds true. □

Proof. Let us fix ε > 0 and, by contradiction, using a diagonal argument, assume that the claim
fails along a subsequence with centers qk ∈ Fk and radii 0 < ak ≤ λk → 0. After a left translation
by q−1

k and a dilation by a factor a−1
k , we obtain varifolds v′

k which, up to a subsequence, converge

to a varifold v on H2 satisfying the assumptions of Lemma IV.4 and such that ∇P arctanσ = 0 on
spt(v) ∩ {r > 0}. Thus, as shown by Lemma IV.4 (and its proof), v is a constant multiple of P0,
giving

Θ(v, 0, 1) =

�
C4(0)

ζ1 d|v|.

Thus, for k large enough the statement was true, a contradiction. ■

V. A point removability result for PHSLVs

In this section we show that if we have a PHSLV on H2, defined on a punctured Riemann
surface Σ \ S for a locally finite set S, then it extends to a PHSLV defined on Σ, provided that
some technical assumptions are satisfied. Among them, we assume a slightly stronger notion of
stationarity, as follows.

Definition V.1. We say that (Σ, u,N) is a PHSLV∗ if, for a.e. ω ⊂⊂ Σ\S, we can test stationarity
with all Hamiltonian vector fields WF associated with an F ∈ C∞

c (H2) which is locally constant
near u(∂ω). □
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Remark V.2. Note that (WF )
H , which appears in divP WF = divP(WF )

H in the definition of
stationarity, is still compactly supported in H2 \ u(∂ω). Also, since (WF )

H does not change if we
add a constant to F , we can equivalently consider all functions F ∈ C∞(H2) locally constant near
u(∂ω) and constant near infinity (i.e., outside of a compact set). □

Remark V.3. This stronger assumption is quite natural, for the following reason. Denoting by L
the positive φ-axis and taking QX(p) := span{X1(p), X2(p)} and QY (p) := span{Y1(p), Y2(p)}, it
can be checked that the varifold

v(P, p) :=
δQX(p)(P) + δQY (p)(P)

2
⊗ (H1 L)(p)

is a HSLV on H2 \{0}. However, it is not a HSLV on H2, and indeed it does not satisfy the stronger
stationarity condition obtained by taking any F ∈ C∞

c (H2) constant near 0. □

We start with a simple observation, exploiting some tools from the next section.

Proposition V.4. Let u ∈ W 1,2
loc (Σ) and N ∈ L∞

loc(Σ,N∗). Assume that (Σ \ S, u,N) is a PHSLV
on H2. Then u has a continuous representative on Σ. □

Proof. First of all, continuity holds away from x0, by Proposition VI.2 below. We now assume
without loss of generality that Σ is an open set in C and S = {x0}. As in the proof of Proposition
VI.2, we can find a decreasing sequence of radii rk → 0 such that

diamK u(∂Brk(x0)) → 0.

Up to a subsequence, we can assume that the sets u(∂Brk(x0)) either converge to a point p or go off
to infinity. In the first case, we must have u(x) → p as x→ x0: if not, up to a further subsequence, we
could find points xk ∈ Ak := Brk(x0) \ Brk+1

(x0) such that lim infk→∞ dK(u(xk), p) > 0. However,
this contradicts Proposition VI.6 below, together with Theorem III.6, which would imply that the
induced varifold vAk

has a lower bound on the mass, while clearly

lim sup
k→∞

�
Ak

N |∇u|2 dx2 = 0.

Thus, in this case we are done. In the second case, an analogous argument gives r ◦ u(x) → ∞ as
x → x0. Thus, for any F ∈ C∞

c (H2), the composition F ◦ u vanishes in a neighborhood of x0. It is
then clear that (Σ, u,N) satisfies the definition of PHSLV, since if F vanishes near u(∂ω) then it
also vanishes near u(∂(ω \ Br(x))) for r > 0 small enough. However, the discontinuity of u at x0
contradicts Proposition VI.2. ■

Proposition V.5. Let (Σ, u,N) be as in the previous statement. Assume that (Σ \ S, u,N) is a
PHSLV∗ on H2, with

(V.1) lim inf
ε→0

ε−2

�
ω∩{ru(x0)◦u<ε}

N |∇u|2 dx2 <∞ for all x0 ∈ S,

for any neighborhood x0 ∈ ω ⊂⊂ Σ. Then (Σ, u,N) is a PHSLV on H2. □

Remark V.6. Recall that ru(x0)(q) = r(u(x0)
−1 ∗ q) = dK(u(x0), q) and that u is continuous, so

that u(x0) is defined. Note that the last assumption is simply requiring that the mass of vω in
the ball of center u(x0) and radius ε, with respect to the distance dK , is bounded by O(ε2) for
a sequence ε → 0. In a closed ambient, this assumption holds automatically for bubbles defined
on C = Ĉ \ {∞} = S2 \ {x0}, in the context of the bubbling phenomenon, as a consequence of
monotonicity. □
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Proof. We fix a conformal metric h on Σ. Since u is continuous, given ω ⊂⊂ Σ it is easy to see that
the stronger definition of stationarity is satisfied for the domain ωr := ω \

⋃
x∈S∩ω Br(x), for any

r > 0 small enough. We define the finite set

S′ := u(S ∩ ω) \ u(∂ω)
and, for each q ∈ S′, we consider a smooth cut-off function χq : H2 → R+ equal to 1 near q and
supported in a bounded open set Uq ⊂⊂ H2 \ u(∂ω), such that Uq ∩ Uq′ = ∅ for q, q′ ∈ S′ distinct.

Given any F ∈ C∞
c (H2 \ u(∂ω)), we need to show that the induced varifold vω satisfies�

G
divP WF dvω(P, p) = 0.

We let
Fq := χqF, F̃ := F −

∑
q∈S′

Fq.

Since F̃ vanishes near S′ ∪ u(∂ω), for r small we have�
G
divP WF̃ dvω(P, p) =

�
G
divP WF̃ dvωr(P, p) = 0.

Finally, we can use Proposition V.7 below, applied to the varifold v := vω on Uq: indeed, given

another function F̂ ∈ C∞
c (Uq) constant near q, we see that F̂ is locally constant on u(∂ωr) for all

r > 0 small (as F̂ vanishes near u(∂ω) ∪ (S′ \ {q})), so that�
G
divP WF̂ dvω(P, p) =

�
G
divP WF̂ dvωr(P, p) = 0.

Thus, by Proposition V.7, we can conclude that�
G
divP WFq dvω(P, p) = 0

holds as well. ■

We used the following singularity removability for general varifolds, which will also be useful to
rule out energy dissipation in neck regions.

Proposition V.7. Assume that v is a varifold on an open set U ⊆ H2, restricting to a HSLV on
U \ {q} for some q ∈ U . Assume also that we can test its stationarity with any Hamiltonian vector
field WF generated by a function F ∈ C∞

c (U) constant near q, as well as

lim inf
ε→0

ε−2|v|(Br
ε(q)) <∞.

Then v is a HSLV on U . □

Proof. We assume without loss of generality that q = 0. Given F ∈ C∞
c (U), we have to show that

(V.2)

�
G
divP WF dv(P, p) = 0.

Let χ : R+ → R be a smooth decreasing function with χ = 1 on [0, 1/2] and χ = 0 on [3/4, 1], and
denote χε(t) := χ(t/ε). Letting

F̃ := (1− χε ◦ r)F + (χε ◦ r)F (0),
we decompose WF =WF̃ +W ′, where

W ′ :=W(χε◦r)(F−F (0)).
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Moreover, since F̃ is as in the statement, (V.2) holds with WF̃ in place of WF . Hence, to prove the
claim it suffices to show that, along a suitable sequence ε→ 0, we have�

G
divP W

′ dv(P, p) = O(ε).

Given a Legendrian plane P spanned by an orthonormal basis (Z1, Z2), recall that

divP W
′ =

2∑
j,ℓ=1

[(∇Xℓ
W ′ ·Xℓ)(Xℓ · Zj) + (∇YℓW

′ · Yℓ)(Yℓ · Zj)].

Thus, thanks to the assumption |v|(Br
ε(0)) = O(ε2) along a sequence ε→ 0, it suffices to show that

|∇Xℓ
W ′ ·Xℓ|+ |∇YℓW

′ · Yℓ| ≤ Cε−1

for ε small. We check this only for the first term, since for the second one the computation is
analogous. Since

2(W ′)H = ε−1χ′(r/ε)(F − F (0))
2∑
ℓ=1

[Xℓ(r)Yℓ − Yℓ(r)Xℓ] + χ(r/ε)
2∑
ℓ=1

[Xℓ(F )Yℓ − Yℓ(F )Xℓ],

we can compute

−2∇Xℓ
W ′ ·Xℓ = ε−2χ′′(r/ε)(F − F (0))Xℓ(r)Yℓ(r)

+ ε−1χ′(r/ε)(F − F (0))Xℓ(Yℓ(r))

+ ε−1χ′(r/ε)[Xℓ(F )Yℓ(r) + Yℓ(F )Xℓ(r)]

+ χ(r/ε)Xℓ(Yℓ(F )).

By homogeneity of r, we have Xℓ(r) ≤ C (in fact, we have the more precise bound (III.14)) and
|Xℓ(Yℓ(r))| ≤ Cr−1 ≤ Cε−1 on the support of χ′(r/ε). Since |F − F (0)| ≤ Cε here (by smoothness
of F ), we see that all the terms in the expansion are bounded by Cε−1, as desired. ■

VI. Basic properties of PHSLVs

VI.1. A universal lower bound for the density. Let (Σ, u,N) be a PHSLV and fix a decreasing
cut-off function χ : R+ → R with χ = 1 on [0, 1] and χ = 0 on [2,∞). We let

Gu := {x ∈ Σ : x is a Lebesgue point for u and ∇u}
and

Gfu := {x ∈ Gu : |∇u|(x) ̸= 0}.
Note that, for x ∈ Gfu , the differential ∇u(x) is an injective, linear conformal map, with values in
a Legendrian two-plane P ⊂ Hu(x). For a.e. ω ⊂⊂ Σ, we consider the induced varifold vω. We now
establish the following lemma for the density of vω.

Proposition VI.1. Given p ∈ u(ω ∩ Gfu) \ u(∂ω), we have

(VI.1) θχ(p) = lim
ε→0

−1

ε

�
ω
χ′
(rp
ε

)[
N

|∇rp|2

rp
+N

φp
r3p

arctanσp|∇u|2
]
dx2 ≥ 2π,

where we write rp in place of rp ◦ u (and similarly for φp and arctanσp), as well as

(VI.2) lim inf
ε→0

1

ε

�
ω∩{ε≤rp<2ε}

N
|∇rp|2

rp
dx2 ≥ 2π,

for any cut-off function χ as above. □
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Proof. The formula for θχ(p) follows directly from the definition of induced varifold. In the sequel,

up to a left translation, we assume that p = 0. We can find a local conformal chart where 0 ∈ Gfu
and u(0) = 0. Modulo a rotation (see Remark II.4), we can further assume that

∂x1u(0) = eλ0X1(0) = (eλ0 , 0, 0, 0, 0), ∂x2u(0) = eλ0X2(0) = (0, 0, eλ0 , 0, 0).

We will show only (VI.2). The same proof will show that

lim
ε→0

−1

ε

�
ω
χ′
(rp
ε

)
N

|∇rp|2

rp
dx2 ≥ 2π,

proving also (VI.1).
Since 0 is a Lebesgue point for ∇u, we have

lim
r→0

−
�
Br(0)

2∑
j=1

|∂xju(x)− eλ0Xj(0)|2 dx2 = 0.

This implies in particular

lim
r→0

−
�
Br(0)

[|∇u1 − eλ0∂x1 |2 + |∇u2|2 + |∇u3 − eλ0∂x2 |2 + |∇u4|2] dx2 = 0.

Thanks to [10, Theorem 6.1], the map u is approximately differentiable at 0 in the sense that

lim
r→0

r−2−
�
Br(0)

|u(x)− eλ0X1(0)x1 − eλ0X2(0)x2|2 dx2 = 0.

This implies in particular

(VI.3) lim
r→0

r−2−
�
Br(0)

[|u1(x)− eλ0x1|2 + |u2(x)|2 + |u3(x)− eλ0x2|2 + |u4(x)|2] = 0.

Recalling that ∇(φ◦u) = u1∇u2−u2∇u1+u3∇u4−u4∇u3 and using the previous bounds, together
with Cauchy–Schwarz, we get

−
�
Br(0)

|∇(φ ◦ u)| dx2 = o(r).

We claim that, in fact,

(VI.4) −
�
Br(0)

|φ ◦ u|2 dx2 = o(r4).

Indeed, the Sobolev–Poincaré inequality gives√√√√−
�
Br(0)

∣∣∣∣∣φ ◦ u−−
�
Br(0)

(φ ◦ u) dx2
∣∣∣∣∣
2

dx2 ≤ Cr−1

�
Br(0)

|∇(φ ◦ u)| dx2 = o(r2),

thanks to the previous integral bound on ∇(φ ◦ u). It remains to bound the average of φ ◦ u on
Br(0). Given f ∈W 1,1(D), we have

d

dr
−
�
Br(0)

f dx2 =
d

dr
−
�
B1(0)

f(ry) dy2 = −
�
B1(0)

∇f(ry) · y dy2 = 1

r
−
�
Br(0)

∇f(x) · x dx2.

Applying this to f := φ ◦ u, we obtain

−
�
Br(0)

(φ ◦ u) dx2 −−
�
Bs(0)

(φ ◦ u) dx2 =
� r

s

dt

t
−
�
Bt(0)

∇(φ ◦ u)(x) · x dx2 = o(r2)

for all 0 < s < r. Letting s→ 0 we deduce that

−
�
Br(0)

(φ ◦ u) dx2 = o(r2),
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and hence the claimed bound (VI.4).
This implies that

−
�
Br(0)

∣∣∣∣∣∣r4 ◦ u(x)−
4∑
j=1

u4j

∣∣∣∣∣∣
1/2

dx2 = 2−
�
Br(0)

|φ ◦ u| dx2 = o(r2),

and hence

−
�
Br(0)

∣∣∣r4 ◦ u(x)− e4λ0 |x|4
∣∣∣1/2 dx2

≤ −
�
Br(0)

∣∣∣∣∣∣
4∑
j=1

u4j − e4λ0 |x|4
∣∣∣∣∣∣
1/2

dx2 + o(r2)

≤ −
�
Br(0)

[|u1(x)4 − e4λ0x41|1/2 + u22 + |u3(x)4 − e4λ0x42|1/2 + u24] dx
2 + o(r2)

≤
2∑
j=1

(
−
�
Br(0)

|u2j−1(x)
2 − e2λ0x2j | dx2

)1/2(
−
�
Br(0)

|u2j−1(x)
2 + e2λ0x2j | dx2

)1/2

+ o(r2)

= o(r2).

This implies that

(VI.5) lim
r→0

r−2|{x ∈ Br(0) : |r4 ◦ u(x)− e4λ0 |x|4| > εr4}| = 0 for all ε > 0,

so that

(VI.6)

�
Br(0)\Br/2(0)

|1− 1eλ0r/2≤r◦u<eλ0r| dx
2 = o(r2).

We now introduce the sets

Ar
eλ0r

(0) := Br
eλ0r

(0) \Br
eλ0r/2

(0), Ar(0) := Br(0) \Br/2(0),

where Br
s(p) := {q ∈ H2 : rp(q) < s} = {q ∈ H2 : dK(p, q) < s} is the ball of center p and radius s

with respect to the distance dK . Letting Ãr := u−1(Ar
eλ0r

(0)) ∩Ar(0), we clearly have�
Ãr

1√
1 + σ2

|∇u|2

r
dx2 = 2e2λ0

�
Ãr

r−1

√
1 + σ2

dx2 +

�
Ãr

r−1

√
1 + σ2

|∇u(x)−∇u(0)|2 dx2

+ 2

�
Ãr

r−1

√
1 + σ2

∇u(0) · (∇u(x)−∇u(0)) dx2

(where we write r and σ in place of r◦u and σ◦u, and we let σ◦u := sgn(φ◦u)(+∞) when ρ◦u = 0;

note that on Ãr we never have ρ ◦ u = φ ◦ u = 0). Since on Ãr we have r ◦ u ∈ (eλ0r/2, eλ0r), the
second term on the right-hand side is o(r); the same holds for the third one, by Cauchy–Schwarz.
Hence, �

Ãr

1√
1 + σ2

|∇u|2

r
dx2 = 2e2λ0

�
Ãr

r−1

√
1 + σ2

dx2 + o(r).

Because of (VI.5), for any ε > 0 we have�
Ãr

r−1

√
1 + σ2

1|r(x)−eλ0 |x||>εr dx
2 ≤ C

|Ãr ∩ {|r(x)− eλ0 |x|| > εr}|
r

dx2 = o(r),
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as well as

2e2λ0
�
Ãr

r−1

√
1 + σ2

1|r(x)−eλ0 |x||≤εr dx
2

= 2eλ0
�
Ãr

|x|−1

√
1 + σ2

1|r(x)−eλ0 |x||≤εr dx
2 +O(εr)

= 2eλ0
�
Ãr

|x|−1

√
1 + σ2

dx2 +O(εr) + o(r).

Combining the previous bounds with a simple diagonal argument, we finally obtain�
Ãr

1√
1 + σ2

|∇u|2

r
dx2

= 2eλ0
�
Ãr

1√
1 + σ2

|x|−1 dx2 + o(r).

(VI.7)

Moreover, the integral bound (VI.4) gives

|{x ∈ Ãr : |φ ◦ u|(x) > εr2 ◦ u(x)}| = o(r2)

for any given ε > 0. Recalling that 1√
1+σ2

= ρ2

r2
=
√
1− 4r−4φ2, we deduce that

2eλ0
�
Ãr

∣∣∣∣1− 1√
1 + σ2

∣∣∣∣ |x|−1 dx2 = O(εr) + o(r).

Thus, using again a diagonal argument and recalling also (VI.6), the previous bounds give�
Ãr

1√
1 + σ2

|∇u|2

r
dx2 = 2eλ0

�
Ãr

|x|−1 dx2 + o(r)

= 2eλ0
�
Ar(0)

|x|−1 dx2 + o(r)

= 4πeλ0r + o(r).

(VI.8)

For x ∈ Gfu such that r ◦ u(x) ̸= 0, at the point u(x) we decompose

∇Hr = (∇Hr)T + (∇Hr)⊥,

where (∇Hr)T denotes the orthogonal projection of∇Hr onto the Lagrangian plane span{∂x1u, ∂x2u}
(this depends not only on u(x) but also on x). Letting 2e2λ := |∇u(x)|2, by conformality of ∇u(x)
we have

(∇Hr)T ◦ u = e−2λ
2∑

k=1

∂xk(r ◦ u)∂xku.

Away from {ρ ◦ u = 0} we similarly decompose ∇Hσ = (∇Hσ)T + (∇Hσ)⊥. Recalling (III.13) and
the fact that JH realizes an isometry from span{∂x1u, ∂x2u} to its orthogonal inside H, we obtain

r3JH [(∇Hr)T ] =
ρ4

2
(∇Hσ)⊥, r3JH [(∇Hr)⊥] =

ρ4

2
(∇Hσ)T .

Hence, for x ∈ Gfu such that ρ ◦ u(x) > 0, we have

ρ4

2
e−2λ

2∑
k=1

∂xk(σ ◦ u)∂xku = r3e−2λ
2∑

k=1

⟨(∇Hr)⊥, JH∂xku⟩∂xku.

Since e−λ(JH∂x1u, JH∂x2u) is an orthonormal basis of the normal plane, we deduce that

ρ8|∇(σ ◦ u)|2 = 2r8
|(∇Hr)⊥|2

r2
|∇u|2.
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In particular, writing again σ in place of σ ◦ u, we have

|∇ arctanσ|2 = |∇σ|2

(1 + σ2)2
=
ρ8

r8
|∇σ|2 = 2

|(∇Hr)⊥|2

r2
|∇u|2.

Recall that arctanσ extends to a smooth function on H2\{0} and note that this identity (discarding

intermediate equalities) is valid also at any x ∈ Gfu such that u(x) ∈ {ρ = 0} \ {0}, since both sides
vanish (as ∇H arctanσ = 0 and r3∇Hr = ∇Hφ2 = φJH∇Hρ2 = 0 here). By Theorem III.6, we then
have

lim
r→0

1

r

�
Ãr

N
|(∇Hr)⊥|2

r
|∇u|2 dx2 = 0.

Since |∇r| = |(∇Hr)T |eλ, the left-hand side of (VI.2) is

lim
r→0

1

eλ0r

�
ω∩{eλ0r≤r<2eλ0r}

N
|∇r|2

r
dx2 ≥ e−λ0 lim

r→0

1

r

�
Ãr

N
|∇r|2

r
dx2

= e−λ0 lim
r→0

1

r

�
Ãr

N
|∇Hr|2

r

|∇u|2

2
dx2.

Recalling (III.14), the conclusion follows from (VI.8). ■

VI.2. Continuity of the underlying map. We now show that the map u is in fact continuous,
in a quantitative way.

Proposition VI.2. Let (Σ, u,N) be a PHSLV. Then u admits a continuous representative and there
exists a universal constant C1 > 0 such that, in any conformal parametrization ϕ : B1(0) → Σ,

diam2
K u ◦ ϕ(B1/2(0)) ≤ C1

�
ϕ(B1(0))

N |∇u|2 dx2.

Here diamK denotes the diameter with respect to dK . □

Remark VI.3. Since the Carnot–Carathéodory distance is equivalent to the Korányi distance
(by left-invariance and homogeneity with respect to the dilations δt), we can replace diamK with
diamCC . The Carnot–Carathéodory distance is obviously larger than the distance dH2 induced by
gH2 . Hence the stated inequality holds as well (with a possibly different constant C1) if we measure
the diameter with respect to dH2 . □

Remark VI.4. The control of the modulus of continuity will be important to pass to the limit the
fact that u ∈ L∞

loc while considering sequences of PHSLVs with uniformly bounded masses. □

Proof. With a slight abuse of notation, we write u in place of u ◦ ϕ. Using Fubini and the mean
value theorem we obtain an s ∈ (1/2, 1) such that u ∈W 1,2(∂Bs(0)) ↪→ C0(∂Bs(0)) and(�

∂Bs(0)
|∇u| dH1

)2

≤ 2πs ·
�
∂Bs(0)

|∇u|2 dH1 ≤ 4πs ·
�
B1(0)

|∇u|2 dx2,

as well as
H1(∂Bs(0) \ Gu) = 0.

This gives

diam2
H2 u(∂Bs(0)) ≤ 4π

�
B1(0)

|∇u|2 dx2,

where the diameter is taken with respect to the metric given by gH2 . Observe that, since the
rectifiable curve u(∂Bs(0)) is horizontal, we have as well

diam2
CC u(∂Bs(0)) ≤ 4π

�
B1(0)

|∇u|2 dx2.
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Since the Carnot–Carathéodory distance dCC is comparable with dK , there exists a universal con-
stant C ′

1 > 0 such that

diamK u(∂Bs(0)) ≤ C ′
1

√�
B1(0)

|∇u|2 dx2.

We now fix q ∈ u(Gu ∩ ∂Bs(0)). We claim that, for any x ∈ Bs(0) ∩ Gfu , we have

rq(u(x)) ≤ C1

√�
ϕ(B1(0))

N |∇u|2 dx2

for another universal constant C1 > 0. Once this claim is proved, we will have

(VI.9) ∥r4q ◦ u∥L∞(Bs(0)) ≤ C4
1

[�
ϕ(B1(0))

N |∇u|2 dx2
]2

=: C.

Indeed, r4q is smooth and we have r4q ◦ u ≤ C on Bs(0)∩ Gfu , while ∇u = 0 a.e. on Bs(0) \ Gfu . Thus,
given any ψ ∈ C∞

c ((C,∞)), we see that ∇(ψ ◦ r4q ◦u) = 0 on Bs(0), obtaining ψ ◦ r4q ◦u = 0 here (as
q is the image of a point in Gu ∩ ∂Bs(0)) and thus (VI.9). In turn, this implies the statement with
C1 replaced by (2C1)

2.
In order to prove the previous claim, let p := u(x). If p ∈ u(∂Bs(0)) then the claim follows from the

bound for diamK u(∂Bs(0)) (as usual, u(∂Bs(0)) denotes the image of the continuous representative
of u|∂Bs(0)). Assuming then p ̸∈ u(∂Bs(0)), we let ω := Bs(0) and consider the induced varifold vω,

which restricts to a HSLV on H2 \ u(∂Bs(0)). Letting
2r := dK(p, u(∂Bs(0))),

by Theorem III.6 we have

θχ(p) ≤ Cr−2

�
ω∩{r<rp◦u<2r}

N
|∇u|2

2
dx2 ≤ Cr−2

�
ω
N

|∇u|2

2
dx2,

and from Proposition VI.1 it follows that

r2 ≤ C

4π

�
ω
N |∇u|2 dx2,

proving the claim. ■

From now on, we always replace u with its continuous representative.

Remark VI.5. It is immediate to check that the requirement in the definition of PHSLV now holds
for every open set ω ⊂⊂ Σ (rather than for a.e. domain ω ⊂⊂ Σ). □

VI.3. Properties of the density. We consider an arbitrary smooth cut-off function χ : R+ → R
satisfying the previous assumptions, namely χ = 1 on [0, 1], χ = 0 on [2,∞), χ′ ≤ 0, and also√
−χ′ ∈ C∞

c ((1, 2)). The present subsection is devoted to the proof of the following proposition,
itself a consequence of the upper semi-continuity of θχ for general HSLVs.

Proposition VI.6. Assume that (Σ, u,N) is a PHSLV on H2 and let ω ⊂⊂ Σ. Then the induced
varifold vω satisfies

θχ(p) ≥ lim sup
k→∞

θχ(pk) whenever pk → p ̸∈ u(∂ω).

Moreover, we have
θχ(p) ≥ 2π

for all p ∈ u(ω) \ u(∂ω). □
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Proof. The first assertion follows immediately from Corollary III.10. Let us now fix a point p ∈
u(ω) \ u(∂ω). Given any ψ ∈ C∞

c (H2 \ u(∂ω)) with ψ(p) = 1, the function ψ ◦ u cannot be constant
on ω, since it vanishes at the boundary and equals 1 on ω ∩ u−1(p) ̸= ∅. Hence,�

ω
|∇(ψ ◦ u)|2 dx2 > 0.

By the chain rule, we can then find x ∈ ω ∩ Gfu such that u(x) ∈ spt(ψ). This shows that p belongs

to the closure of u(ω ∩ Gfu) \ u(∂ω), and the second assertion follows from Proposition VI.1. ■

VI.4. Rectifiability of the image. By classical results on Sobolev functions (see, e.g., the ap-
pendix in [23]), the image u(Gu) is rectifiable and H2-measurable, with respect to the Euclidean
distance or equivalently the distance induced by gH2 . We now show the stronger result that this
holds also with respect to the finer distance dK (see also Remark VII.9 below).

Proposition VI.7. Assume that (Σ, u,N) is a PHSLV on H2. Then we have

H2
K(u(Σ \ Gfu)) = 0

and the image u(Gu) is a countable union of Lipschitz images, namely we can cover Gu ⊆
⋃
j Fj

with Borel sets such that
u|Fj : Fj → H2

is Lipschitz (endowing Σ with a reference conformal metric h and H2 with dK). □

Proof. Assume without loss of generality that Σ = D. We introduce the sets

Ωj := {x ∈ D : dist(x, ∂D) > 2/j}
and

F ′
j :=

{
x ∈ Ωj : sup

0<r<1/j
−
�
B2r(x)

|∇u|2 < j

}
.

Let x, x′ ∈ F ′
j such that r := |x − x′| ≤ 1/j. Using Proposition VI.2 (after rescaling B2r(x) to the

unit ball) we have

dK(u(x), u(x′)) ≤ C

√�
B2r(x)

|du|2 dx2 ≤ C
√
jr = C

√
j|x− x′|.

Hence, uS is Lipschitz for any subset S ⊆ F ′
j of diameter at most 1/j. This proves the second

assertion.
Thanks to the area formula for Lipschitz maps from subsets of R2 into (H2, dK) (see [16] or more

specifically [4, Theorem 6.8], keeping in mind that R2 can be viewed as a Carnot group of step 1),
for any measurable subset A ⊆ Gu we have�

A

|∇u(x)|2

2
dx2 =

�
H2

N(u,A, p) dH2
K(p),

where N(u,A, p) denotes the cardinality of {x ∈ A : u(x) = p}. Applying the formula to A :=

Gu \ Gfu , on which ∇u = 0, we obtain

H2
K(Gu \ Gfu) = 0.

To conclude, let W ⊆ D be an arbitrary open set including D \ Gu. We claim that for any x ∈ W
there exists an arbitrarily small radius r > 0 such that�

B2r(x)
|∇u|2 dx2 ≤ 8

�
Br(x)

|∇u|2 dx2 + (2r)2.
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If not, then we could find j0 ∈ N large such that for any j ≥ j0 we have in particular�
B

2−j (x)
|∇u|2 dx2 ≥ 2−2j ,

�
B

2−j (x)
|∇u|2 dx2 ≥ 8

�
B

2−j−1 (x)
|∇u|2 dx2,

giving the contradiction

2−2j ≤
�
B

2−j (x)
|∇u|2 dx2 = O(2−3j).

Given any δ > 0, for any x ∈ W we choose a radius rx > 0 such that B2rx(x) ⊆ W , the previous
claim holds, and

�
B2rx (x)

|∇u|2 dx2 ≤ δ2. From the cover {Brx(x) | x ∈ W}, we can extract a

Besicovitch subcover, denoted {Brj (xj) | j ∈ I}, such that

1W ≤
∑
j∈I

1Brj (xj)
≤ C01W ,

where C0 > 0 is a universal constant. Using again Proposition VI.2 we deduce

diam2
K u(Brj (xj)) ≤ C1δ

and ∑
j∈I

diam2
K u(Brj (xj)) ≤ C1

∑
j∈I

�
B2rj

(xj)
|∇u|2 dx2

≤ 8C1

∑
j∈I

�
Brj (xj)

|∇u|2 dx2 +
∑
j∈I

(2rj)
2

≤ 8C1C0

�
W

|∇u|2 dx2 + 4

π

∑
j∈I

|Brj (xj)|

≤ 8C1C0

�
W

|∇u|2 dx2 + 4

π
C0|W |.

This holds for any open set W containing D \ Gu. Since D \ Gu is negligible, we can make the last
right-hand side as small as we want, and the first assertion follows. ■

VI.5. Structure of fibers. In order to understand how the multiplicity θχ

2π in the target is related to
the domain multiplicity N , and more specifically to produce a more appropriate domain counterpart
(which will be denoted by Ñ), it is important to study the structure of fibers. This is the content
of the next statement.

Proposition VI.8. Assume that (Σ, u,N) is a PHSLV on H2. Given ω ⊂⊂ Σ and p ̸∈ u(∂ω), the

number of connected components of ω ∩ u−1(p) is finite. Moreover, for any x ∈ Gfu , the connected
component of u−1(u(x)) containing x is just to {x}. □

Proof. Let p ̸∈ u(∂ω) and, denoting by θχ the density function for the varifold vω, let

M :=
θχ(p)

2π
.

We claim that the number of connected components of u−1(p) is not larger thanM . If this were not
the case, we could find [M ]+1 disjoint compact setsK1, . . . ,K[M ]+1 whose union is ω∩u−1(p), where
[M ] is the integer part ofM . Let ω1, . . . , ω[M ]+1 ⊂⊂ ω be disjoint open sets such that Kj ⊆ ωj ; note

in particular that p ̸∈ u(∂ωj). The induced varifold vωj then restricts to a HSLV on H2 \ u(∂ωj)
and, thanks to Proposition VI.6, we have

lim
ε→0

�
ωj

−χ
′(rp/ε)

ε
N

[
|∇rp|2

rp
+N

φp
2r3p

arctanσp|∇u|2
]
dx2 ≥ 2π.



46 ALESSANDRO PIGATI AND TRISTAN RIVIÈRE

Summing over j = 1, . . . , [M ] + 1 gives

θχ(p) = lim
ε→0

�
ω
−χ

′(rp/ε)

ε
N

[
|∇rp|2

rp
+N

φp
2r3p

arctanσp|∇u|2
]
dx2 ≥ 2π([M ] + 1),

contradicting the definition of M . Hence, the number of connected components of u−1(p) is not
larger than [M ].

Consider now a point x ∈ Gfu and denote by Kx the connected component of u−1(u(x)) containing
x. We claim that Kx = {x}. We choose a local conformal chart ϕ centered at x and, by abuse of

notation, we write u in place of u ◦ ϕ−1. We can assume that u(0) = 0 and |∇u(0)|2
2 = 1, up to a

translation and a dilation in H2. Since u is conformal and Legendrian, (∂x1u(0), ∂x2u(0)) defines an
orthonormal basis of a Legendrian plane at the origin. Modulo a rotation (see also Remark II.4),
we can assume that

∂x1u(0) = (1, 0, 0, 0, 0), ∂x2u(0) = (0, 0, 1, 0, 0).

As in the proof of Proposition VI.1, we have
�
Br(0)

2∑
j=1

|∂xju(x)−Xj(0)|2 dx2 = o(r2),

as well as

−
�
Br(0)

[|u1(x)− x1|2 + |u2(x)|2 + |u3(x)− x2|2 + |u4(x)|2] dx2 = o(r2).

This is saying that vr(x) := r−1π ◦ u(rx) converges to v0(x) := (x1, 0, x2, 0) in W 1,2(D) as r → 0,
where π : H2 → C2 is the canonical projection. By Fatou’s lemma, we have� 1

0
lim inf
r→0

�
∂Bs(0)

[|vr − v0|2 + |∇vr −∇v0|2] dH1 ds ≤ lim
r→0

�
D
[|vr − v0|2 + |∇vr −∇v0|2] dx2 = 0.

Hence, we can select an s ∈ (0, 1) such that each vr restricts to a function in W 1,2(∂Bs(0)), con-
verging weakly to v0 in this space, along a subsequence. Since this space compactly embeds in
C0(∂Bs(0)), eventually we have 0 ̸∈ vr(∂Bs(0)). It follows thatK0 ⊂ Brs(0), and thusK0 = {0}. ■

VI.6. The integer nature of the density H2
K-a.e. We now establish the fact that θχ(p)

2π ∈ N for

H2
K-a.e. p ∈ H2.

Proposition VI.9. Given a PHSLV (Σ, u,N) on H2 and ω ⊂⊂ Σ, the following holds for the
induced varifold vω. For H2

K-a.e. p ̸∈ u(∂ω) there holds

(VI.10) θχ(p) ∈ 2πN.

Moreover, assuming also that u−1(p) ⊆ Gfu and that u−1(p) consists exclusively of Lebesgue points
for N , we have

(VI.11) θχ(p) = 2π
∑

x∈u−1(p)

N(x)

(recall that the sum is finite by the previous proposition). □

Proof. Clearly, we have θχ(p) = 0 for any p ̸∈ u(ω). Let S be the set of points which are not
Lebesgue for either ∇u or N (recall that u is continuous). The same proof used in Proposition VI.7
shows that

H2
K(u(S)) = 0.

In the sequel, we can then consider p ∈ u(Gfu)\u(∂ω∪S) and we are left to show that (VI.11) holds.



A VARIATIONAL THEORY FOR THE AREA OF LEGENDRIAN SURFACES 47

Thanks to Proposition VI.8, we have u−1(p) = {x1, . . . , xn} ⊆ ω∩S. We fix disjoint neighborhoods
ω1, . . . , ωn conformally equivalent to D. Since ω ∩ {rp ◦ u < 2ε} ⊆

⋃
j ωj for ε > 0 small, it suffices

to show that for each j the varifold vωj has density

θχ(p) = 2πN(xj).

By replacing ω with ωj , we can assume in the sequel that n = 1 and write D in place of ω. As in
the previous proofs, we can also assume that our reference point is 0 ∈ D, that u(0) = p = 0, and
that

∂x1u(0) = (1, 0, 0, 0, 0), ∂x2u(0) = (0, 0, 1, 0, 0).

We now claim that

(VI.12) lim
x→0

ρ ◦ u(x)
|x|

= 1.

Indeed, defining vr as in the previous proof, given any y ∈ S1 and t ∈ (0, 1/2) we can select a small
radius s ∈ (t, 2t) such that vr → v0 uniformly on ∂Bs(y), along a subsequence (again, this can be
done by finding s such that lim infr→0 ∥vr − v0∥W 1,2(∂Bs(y)) = 0). Moreover, since π : H2 → C2 is
1-Lipschitz, applying Proposition VI.2 to the maps δ1/r ◦ u(r·) we obtain

diam2 vr(Bs(y)) ≤ C1

�
B2s(y)

N |∇vr|2 dx2 → C1

�
B2s(y)

N |∇v0|2 dx2 ≤ Cs2.

In particular, since vr → v0 on ∂Bs(y), we obtain

lim sup
r→0

∥|vr| − 1∥L∞(Bt(y)) ≤ Cs ≤ Ct

along the subsequence. Since this can be done for any initially chosen subsequence rk → 0, we
deduce that the last inequality holds for r → 0, and the claim follows.

Since r ≥ ρ, the previous claim implies that

θχ(0) = lim
ε→0

�
D
−1

ε
χ′
( r
ε

)[
N

|∇r|2

r
+N

φ

r3
arctanσ|∇u|2

]
dx2

= lim
ε→0

�
B2ε(0)

−1

ε
χ′
( r
ε

)[
N

|∇r|2

r
+N

φ

r3
arctanσ|∇u|2

]
dx2.

Since Sε := {x ∈ B2(0) : N(εx) ̸= N(0)} has |Sε| → 0 and ∇vε → ∇v0, we have

ε−2

�
B2ε(0)∩{N ̸=N(0)}

|∇u|2 dx2 =
�
Sε

|∇vε|2 dx2 → 0

as ε→ 0. Since the integrands above are bounded by

Cε−1r−1|∇u|2 ≤ Cε−2|∇u|2

(as r is comparable with ε on the support of χ′(r/ε)), it follows that in the previous formula we can
replace N with N(0).

Moreover, fixing δ ∈ (0, 1), we let

Ãδε := {x ∈ B2ε(0) \Bδε(0) : χ′(r ◦ u(x)/ε) ̸= 0}.
As we saw along the proof of Proposition VI.1, we have

|{x ∈ Ãδε : |φ ◦ u(x)| > λr2 ◦ u(x)}| = o(ε2)

for any fixed δ, λ > 0, as ε→ 0. Since σ2

1+σ2 = 4φ2

r4
outside the origin (the left-hand side is understood

to be 1 on the φ-axis minus the origin), we obtain

|{x ∈ Ãδε : |σ ◦ u(x)| > λ}| = o(ε2)
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for any fixed δ, λ > 0. Since |φ| ≤ r2, it follows that

lim
ε→0

−1

ε

�
Ãδ

ε

χ′
( r
ε

) φ
r3

arctanσ|∇u|2 dx2 = 0.

On the other hand, exactly as in the proof of Proposition VI.1, we have

lim
ε→0

−1

ε

�
Ãδ

ε

χ′
( r
ε

) |∇r|2

r
dx2 = lim

ε→0
−1

ε

�
Ãδ

ε

χ′
( r
ε

) |∇u|2

2r
√
1 + σ2

dx2

= lim
ε→0

−1

ε

�
B2ε(0)\Bδε(0)

χ′(|x|/ε)
|x|

dx2

= 2π.

Finally, we have

−1

ε

�
Bδε(0)

χ′
( r
ε

)[ |∇r|2

r
+
φ

r3
arctanσ|∇u|2

]
dx2 ≤ Cε−2

�
Bδε(0)

|∇u|2 dx2 = Cδ2
�
B1(0)

|∇δε|2 dx2,

which converges to Cδ2 · 2π. By a diagonal argument, it follows that

θχ(0) = N(0) lim
ε→0

−1

ε

�
B2ε(0)

χ′
( r
ε

)
dx2

[
|∇r|2

r
+
φ

r3
arctanσ|∇u|2

]
dx2 = 2πN(0),

as desired. ■

VI.7. A robust representative of N and its upper semi-continuity. Following [23], we now
introduce the following L∞

loc function on a subset of Σ, which is a sort of domain counterpart of θ
χ

2π .

Definition VI.10. We let Σ̃ ⊆ Σ denote the open set of points x such that, for some open ω ⊂⊂ Σ,
we have x ∈ ω and u(x) ̸∈ u(∂ω). We define Ñ : Σ̃ → [0,∞) as follows:

Ñ(x) := inf
ω

lim
ε→0

− 1

2πε

�
ω
χ′
(
ru(x)

ε

)[
N

|∇ru(x)|2

ru(x)
+
φ2
u(x)

r3u(x)
arctanσu(x)|∇u|2

]
dx2,

where ω ranges among open subsets ω ⊂⊂ Σ such that x ∈ ω and u(x) ̸∈ u(∂ω). □

Note that a priori this function might not be integer-valued.

Remark VI.11. As shown in the proof of Proposition VI.8, we have Gfu ⊆ Σ̃. □

Remark VI.12. Observe that the infimum in the definition of Ñ(x) is in fact a minimum. Indeed,
given ω as above, the compact set u−1(u(x)) ∩ ω has finitely many connected components. Calling
Kx the one containing x, the minimum is achieved (for instance) for any open set Kx ⊆ ω′ ⊆ ω
disjoint from the remainder [u−1(u(x)) ∩ ω] \Kx. □

Proposition VI.13. The function Ñ is upper semi-continuous and

(VI.13) 1 ≤ Ñ(x) ≤ C0ℓ
−2

�
u−1(Br

ℓ(u(x))∩ω
N |du|2 dx2, ℓ :=

dK(u(x), u(∂ω))

2

for a universal constant C0 > 0, for any ω as above. Moreover, Ñ = N a.e. on Gfu . □

Proof. Let x ∈ Σ̃ and fix ω realizing the infimum in the definition of Ñ . We consider the induced

varifold vω. Thanks to Proposition VI.6 we have the lower bound Ñ(x) = θχ(u(x))
2π ≥ 1, while the

upper bound follows from Theorem III.6.
Moreover, given a sequence of points xk → x, eventually we have xk ∈ ω and the points pk :=

u(xk) converge to p := u(x) ̸∈ u(∂ω), by continuity of u. Hence, eventually we have xk ∈ Σ̃ and
pk ̸∈ u(∂ω). Hence, by Proposition VI.6 again, we have

lim sup
k→∞

2πÑ(xk) ≤ lim sup
k→∞

θχ(pk) ≤ θχ(p) = 2πÑ(p).
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The fact that Ñ = N at a.e. x ∈ Gfu (specifically, at any x ∈ Gfu which is also a Lebesgue point
for N) is a direct consequence of (VI.11). ■

VII. Sequential compactness of PHSLVs

We now show a fundamental compactness property of the class of parametrized varifolds studied
in this work. This property will be one of the key tools in the regularity theory developed in the
second part of the paper.

Theorem VII.1. Let (Σ, [hk]) be a sequence of Riemann surfaces (for a fixed connected Σ) and
assume that the sequence of metrics hk is pre-compact in C∞

loc. Assume that (Σ, uk, Nk) is a sequence
of PHSLVs in H2 such that uk(x) stays bounded, for a fixed reference point x ∈ Σ, and that

lim sup
k→∞

�
ω
Nk|∇uk|2hk d volhk <∞ for all ω ⊂⊂ Σ,

as well as the existence of C(ω) > 0 such that

(VII.1) lim sup
k→∞

�
ω∩{rp◦uk<R}

Nk|∇uk|2hk d volhk ≤ C(ω)R2

for all ω ⊂⊂ Σ, p ∈ H2, and R > 0. Then, along a subsequence, the limit

u∞ := lim
k→∞

uk exists in C0
loc and weakly in W 1,2

loc

and, for a suitable new conformal class [ĥ∞], there exist a limit PHSLV

(Σ, û∞, N̂∞)

and a (locally) quasiconformal homeomorphism ψ : (Σ, [h∞]) → (Σ, [ĥ∞]) such that

u∞ = û∞ ◦ ψ.
Moreover, we have the limit of Radon measures

(VII.2) lim
k→∞

Nk

|∇uk|2hk
2

d volhk = (ψ−1)∗

[
N̂∞

|∇û∞|2
ĥ∞

2
d volĥ∞

]
and the induced varifolds vk,ω (see Remark III.2) satisfy

v∞,ψ(ω) = lim
k→∞

vk,ω on H2 \ u∞(∂ω)

for any ω ⊂⊂ Σ. □

Remark VII.2. A similar result holds on a closed Sasakian manifold M5, except that the conver-
gence in C0

loc is guaranteed only away from a locally finite set, and the last equality could become
an inequality (if ω intersects this set), due to possible bubbling (cf. Remark VII.5 below). Nonethe-
less, assuming the slightly stronger condition given in Definition V.1, we can recover an equality
by a standard bubble-tree analysis, as explained in Remark VII.10, and when Σ is closed we can
even remove the assumption of having a controlled conformal class (see Remark VII.11; in both
cases, Σ becomes a possibly disconnected Riemann surface in the limit). However, as shown by the
counterexample of Theorem A.1, this cannot be done with the initial definition of PHSLV. □

Remark VII.3. The upper bound (VII.1) is a mild assumption which is typically satisfied in
practice, e.g., when Σ and the ambient are closed, or while studying parametrized blow-ups, as a
consequence of monotonicity. □
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For simplicity, we assume that the conformal class is independent of k. In the general case, given
any smooth ω ⊂⊂ Σ, we can find diffeomorphisms ψk : ω → ψ(ω) converging smoothly to the
identity such that ψ∗

k[hk] = [h∞], thus reducing to this situation up to using heavier notation.
We then endow Σ with a metric h inducing the fixed conformal class [h] = [hk] = [h∞]. We can

assume that uk(x) → 0, up to a subsequence. By covering each ω ⊂⊂ Σ with a connected union of
conformal disks, Proposition VI.2 gives

lim sup
k→∞

∥r ◦ uk∥L∞(ω) <∞.

Thus, in view of the local equivalence between the R5 and H2 Riemannian metrics, we obtain
that (uk) is bounded in W 1,2(ω,R5). Up to a subsequence, we can then extract a limiting map
u∞ : Σ → H2 such that

uk ⇀ u∞ weakly in W 1,2
loc .

We observe that the map u∞ is still L∞
loc and Legendrian, since the condition u∗kα = 0 is stable

under weak limits in W 1,2
loc (Σ,R

5). We introduce the Radon measures

dνk := Nk
|∇uk|2

2
dx2

on Σ. By assumption, we can extract a limit Radon measure ν∞, up to a subsequence. Note that,
for any ω ⊂⊂ Σ, the pushforward of νk ω via uk is simply the weight of the induced varifold vk,ω,
namely we have

(uk)∗(νk ω) = |vk,ω|.
Moreover, as seen in Remark III.2, the varifold vk,ω restricts to a HSLV on H2\uk(∂ω). We postpone
the actual proof of Theorem VII.1, since we first need another key result.

VII.1. Energy quantization. Before continuing the proof, we will establish the following lemma,
which is an energy quantization result. In its statement, we fix a conformal reference metric h on
Σ, used to define balls on the domain.

Lemma VII.4. There exist two universal constants c∗, C2 > 0 such that the following holds. Given
ω ⊂⊂ Σ open, assume that (along a subsequence) the maps uk → u∞ uniformly on ∂ω. Taking any
a > 2ℓ > 0 such that

a ≥ lim
k→∞

diamK(uk(ω)),

ℓ ≥ lim
k→∞

diamK(uk(∂ω)) = diamK(u∞(∂ω)),

we have either

(VII.3) ν∞(ω) ≥ c∗a
2

or

(VII.4) diamK(uk(ω)) ≤ C2ℓ+ C2ℓ
−1 max

p′∈uk(∂ω)
|vk,ω|(Br

4ℓ(p
′)) ≤ Cℓ

for k large enough, where C depends only on the sequence and ω. □

Remark VII.5. In the Heisenberg group, this statement can be immediately improved. Indeed,
by taking a > 0 large enough, we can obviously falsify (VII.3), so that (VII.4) always holds true.
However, in a closed Sasakian manifold M5, an analogous statement holds only for bounded scales
a ≤ a0(M); as a consequence of possible bubbling, (VII.4) might fail in general, even for small ℓ
(but in this case (VII.3) holds with a right-hand side c(M) = c∗a0(M)2 > 0). □
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Proof. We select pk ∈ uk(ω) maximizing the dK-distance from uk(∂ω) and fix p′k ∈ uk(∂ω) such
that

dK(pk, p
′
k) = dK(pk, uk(∂ω)).

We observe that eventually

diamK(uk(ω)) ≤ 2 max
p∈uk(ω)

dK(p, uk(∂ω)) + 2ℓ = 2dK(pk, p
′
k) + 2ℓ;

hence, we can assume without loss of generality that

dK(pk, p
′
k) > 8ℓ.

Recall that χ = 1 on [0, 1] and χ = 0 on [2,∞) and let

ζ(t) := 1− χ

(
t

2ℓ

)
,

so that ζ = 0 on [0, 2ℓ] and ζ = 1 on [4ℓ,∞). In the sequel, we will often write p and p′ in place of
pk and p′k, for simplicity.

We test stationarity of vk,ω with W(ζ◦rp′ )Fp
, where

Fp := (χ(rp/a)− χ(rp/ε)) arctanσp

(note that eventually (ζ ◦ rp′)Fp vanishes on uk(∂ω) ⊆ Br
2ℓ(p

′)). Using (II.12)–(II.14) and recalling
from Proposition III.4 that

−2 divP WFp = 2
|∇Prp|2

rp

(
χ′(rp/a)

a
− χ′(rp/ε)

ε

)
+ |∇Pz|2

[
2φp
r3p

(
χ′(rp/a)

a
− χ′(rp/ε)

ε

)
arctanσp

]
−

r4p
2
∇P arctanσp · ∇P

[
r−3
p

(
χ′(rp/a)

a
− χ′(rp/ε)

ε

)
arctanσp

]
,

we obtain

2

�
ω
Nk(ζ ◦ rp′)(χ(rp/a)− χ(rp/ε))|∇ arctanσp|2 dx2

− 2

ε

�
ω
Nk(ζ ◦ rp′)χ′(rp/ε)

[
|∇rp|2

rp
+
φp
2r3p

|∇uk|2 arctanσp
]
dx2

= −2

a

�
ω
Nk(ζ ◦ rp′)χ′(rp/a)

[
|∇rp|2

rp
+
φp
2r3p

|∇uk|2 arctanσp
]
dx2

+
1

2a

�
ω
Nk(ζ ◦ rp′)r4p∇

[
arctanσp

χ′(rp/a)

r3p

]
· ∇ arctanσp dx

2

− 1

2ε

�
ω
Nk(ζ ◦ rp′)r4p∇

[
arctanσp

χ′(rp/ε)

r3p

]
· ∇ arctanσp dx

2

+A+B

(as usual, some compositions with uk are omitted), where

A :=

�
ω
Nk

2∑
j=1

∇(uk)2j · ∇
[(
∇H(ζ ◦ rp′) ·Xj

)
Fp
]
dx2

−
�
ω
Nk

2∑
j=1

∇(uk)2j−1 · ∇
[(
∇H(ζ ◦ rp′) · Yj

)
Fp
]
dx2
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and

B :=

�
ω
Nk

2∑
j=1

∇(uk)2j · ∇(ζ ◦ rp′)
(
∇HFp ·Xj

)
dx2

−
�
ω
Nk

2∑
j=1

∇(uk)2j−1 · ∇(ζ ◦ rp′)
(
∇HFp · Yj

)
dx2.

We first bound A. We rewrite it as

A =

�
ω
Nk

2∑
j=1

∇(uk)2j · ∇
[(
∇H(ζ ◦ rp′) ·Xj

)
(Fp − Fp(p

′))
]
dx2

−
�
ω
Nk

2∑
j=1

∇(uk)2j−1 · ∇
[(
∇H(ζ ◦ rp′) · Yj

)
(Fp − Fp(p

′))
]
dx2,

where we tested stationarity withWζ◦rp′ in order to subtract the constant Fp(p
′) from Fp. Expanding

∇H
(
∇H(ζ ◦ rp′) ·Xj

)
= (ζ ′′ ◦ rp′)(∇Hrp′ ·Xj)∇Hrp′ + (ζ ′ ◦ rp′)∇H(∇Hrp′ ·Xj)

we get

|∇H(∇H(ζ ◦ rp′) ·Xj)| ≤
C

ℓ2
1Br

4ℓ(p
′)\Br

2ℓ(p
′),

and similarly for Yj . Since dK(p, p′) > 8ℓ, using the equivalence between the Carnot–Carathéodory
distance and the Korányi distance dK , we have∥∥Fp − Fp(p

′)
∥∥
L∞(Br

4ℓ(p
′))

≤ C∥∇HFp∥L∞(Br
4ℓ(p

′)) · 4ℓ ≤
Cℓ

a

(note that on Br
4ℓ(p

′) we have χ(rp/ε) = 0 for ε small, namely for 4ℓ+ 2ε < 8ℓ < dK(p′, p), so that
eventually the balls Br

4ℓ(p
′) and Br

2ε(p) are disjoint). Combining the previous bounds gives

|A| ≤ C

ℓa

�
ω∩{rp′<4ℓ}

Nk|∇uk|2 dx2.

As for B, a similar (simpler) argument implies exactly the same bound.
Thus, denoting by θχk the density of vk,ω and letting ε→ 0, we obtain

θχk (p)−
C

ℓa

�
ω∩{rp′<4ℓ}

Nk|∇uk|2 dx2

≤ −2

a

�
ω
Nk(ζ ◦ rp′)χ′(rp/a)

[
|∇rp|2

rp
+
φp
2r3p

|∇uk|2
]
dx2

+
1

2a

�
ω
Nk(ζ ◦ rp′)r4p∇

[
arctanσp

χ′(rp/a)

r3p

]
· ∇ arctanσp dx

2

≤ C

a2

�
ω
Nk|∇uk|2 dx2.

Using Proposition VI.6 to lower bound θχk (p) ≥ 2π, we obtain

2π − C

ℓa

�
ω∩{rp′<4ℓ}

Nk|∇uk|2 dx2 ≤
Cνk(ω)

a2
,
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where C > 0 is universal. Calling C ′ this constant, we deduce that either�
ω∩{rp′<4ℓ}

Nk|∇uk|2 dx2 ≥
π

C ′ ℓa

or
νk(ω) ≥

π

C ′a
2.

Since eventually diamK(uk(ω)) < 2a and p′ stays bounded in H2, we can use (VII.1) to bound the
last integral, and the statement follows. ■

VII.2. Conclusion of the proof. The previous quantization result is exploited in the proof of the
following lemma (cf. [26, Lemma III.5] and [23, Lemma 4.2]).

Lemma VII.6. We have the uniform convergence

uk → u∞ in C0
loc(Σ).

Moreover, the limiting measure ν∞ is absolutely continuous with respect to volh and the density
vanishes a.e. on {∇u∞ = 0}. □

Remark VII.7. In a closed Sasakian ambientM5, the correct analogue is that ν∞ decomposes as an
absolutely continuous part, plus a locally finite sum

∑
j∈J cjδxj of atoms, each with cj ≥ c(M) > 0

(an energy concentration reflecting bubbling). Moreover, the uniform convergence holds locally on
Σ \ {xj | j ∈ J}. □

Proof. Given any x0 ∈ Σ and ℓ > 0, as in the proof of Proposition VI.2 we can select ρ > 0 such
that u∞ is in W 1,1(∂Bρ(x0)), with image (of the continuous representative) having diameter less
than ℓ. As in the proof of Proposition VI.8, we can also assume that uk converges uniformly to u∞
on ∂Bρ(x0). Thus, by the previous result and Remark VII.5, we have

lim sup
k→∞

diamK uk(Bρ(x0)) ≤ Cℓ

along a subsequence. Since this could be applied to any initially chosen subsequence, we immediately
deduce uniform convergence.

To see that ν∞ is absolutely continuous with respect to volh, take x0 ∈ Σ ∩ spt(∇u∞) and note
that the previous argument, in conjunction with (VII.1), gives that for any r > 0 small we can find
ρ ∈ (r, 2r) and ℓ > 0 such that

ν∞(Bρ(x0)) ≤ Cℓ2, ℓ2 ≤ C

�
B2r(x0)

|∇u∞|2 dx2,

where C = C(ω) (for any fixed ω ⊂⊂ Σ containing x0). The claim now follows from a standard
covering argument (similar to the one used in Proposition VI.7) and the absolute continuity of the
measure |∇u∞|2 d volh. ■

In the sequel, we replace u∞ with its continuous representative. We now obtain a much more
precise structure for ν∞.

Lemma VII.8. There exists a function N∞ ∈ L∞
loc(Σ,N∗) such that

dν∞ = N∞|∂x1u∞ ∧ ∂x2u∞| dx2

in any local conformal chart on Σ. □

Proof. We tacitly work in a local chart, itself included in a fixed domain ω ⊂⊂ Σ. Writing dν∞ =
f dx2, we can assume that 0 is a Lebesgue point for f and that 0 ∈ Gu∞ , as well as ∇u∞(0) ̸= 0.
Up to a left translation, we can also assume that u∞(0) = 0. We first observe that, as r → 0, the
rescaled maps

u(r)∞ (x) := δ1/r ◦ u∞(rx)
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converge weakly in W 1,2
loc (C,R

5) to the linear map

L(x) = x1∂x1u∞(0) + x2∂x2u∞(0).

Indeed, for any R > 0, we have

lim
r→0

lim
k→∞

�
B2R(0)

Nk|∇u
(r)
k |2 dx2 = lim

r→0
lim
k→∞

�
B2R(0)

Nk|∇(π ◦ u(r)k )|2 dx2

= lim
r→0

lim
k→∞

r−2

�
B2Rr(0)

Nk|∇(π ◦ uk)|2 dx2

= (2R)2 lim
r→0

2ν∞(B2Rr(0))

(2Rr)2

= 8πR2f(0)

(the maps u
(r)
k are defined on B2R(0) for r small enough). Thus, taking into account Proposition

VI.2, we see that

lim sup
r→0

lim sup
k→∞

diam2
K u

(r)
k (BR(0)) ≤ CR2,

and hence
lim sup
r→0

diam2
K u

(r)
∞ (BR(0)) ≤ CR2.

Since u
(r)
∞ (0) = 0, this gives

(VII.5) lim sup
r→0

∥r ◦ u(r)∞ ∥L∞(BR(0)) ≤ CR

for all R > 0. Moreover,�
BR(0)

|∇u(r)∞ |2 dx2 =
�
BR(0)

|∇(π ◦ u(r)∞ )|2 dx2 = r−2

�
BRr(0)

|∇(π ◦ u∞)|2 dx2 → πR2|∇u∞|2(0).

By the local equivalence between the H2 and R5 metrics, we deduce that u
(r)
∞ converges weakly in

W 1,2
loc (C,R

5) to a limit map u
(0)
∞ , up to a subsequence. Moreover, we clearly have π ◦ u(r)∞ → π ◦L in

W 1,2
loc , as well as u

(0)
∞ (0) = 0 = L(0) by (VII.5). Further, u

(0)
∞ is Legendrian, and it is easy to check

that L is Legendrian as well; since π ◦ u(0)∞ = π ◦ L, this forces u(0)∞ = L, as claimed.

Moreover, calling ν
(r)
k the domain measure associated with u

(r)
k , we have

lim
r→0

lim
k→∞

ν
(r)
k = lim

r→0
ν(r)∞ = f(0)L2.

By a diagonal argument, replacing each uk with a suitable rescaling δ1/rk ◦ uk(rk·), we can then
assume that u∞ = L and the claim becomes that

(VII.6) ν∞(B1(0)) = π|L(e1) ∧ L(e2)| · n,
for an integer n ≥ 1 bounded solely in terms of ω.

If L has rank 1, then L(B1(0)) is included in a line, itself included in {φ = 0}. Covering this set
with O(s−1) balls Bj of radius s, we have

lim sup
k→∞

�
B1(0)∩u−1

k (Bj)
Nk|∇uk|2 dx2 ≤ Cs2

by (VII.1) (which is preserved by our rescaling operation). Summing over j and using the fact that
eventually uj(B1(0)) ⊆

⋃
j Bj by the C0

loc convergence established in the previous result, we obtain

lim sup
k→∞

�
B1(0)

Nk|∇uk|2 dx2 = O(s2) ·O(s−1) = O(s).

Since s was arbitrary, the claim follows in this case.
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Assume now that |L(e1) ∧ L(e2)| ≠ 0 and denote by

E∞ := L(B1(0))

the (filled) ellipse obtained as the image of B1(0) through L (which might not be conformal a priori).
Moreover, let

P∞ := L(C)
be the Legendrian two-plane spanned by L. Up to a rotation, we can assume that

P∞ = span{X1(0), X2(0)} = {(α, 0, β, 0, 0) | α, β ∈ R}.
We now claim that

(VII.7)

�
B1(0)

[|∇(uk)2|2 + |∇(uk)4|2 + |∇(uk)φ|2] dx2 → 0.

Since ∇(uk)φ = (uk)1∇(uk)2 − (uk)2∇(uk)1 + (uk)3∇(uk)4 − (uk)4∇(uk)3, it suffices to show that�
B1(0)

[|∇(uk)2|2 + |∇(uk)4|2] dx2 → 0.

We consider an arbitrary cut-off ξ : P∞ → R supported in the interior of E∞, as well as

F (z, φ) := ξ(z1, z3)[z1z2 + z3z4 − φ].

Since uk → L in C0(B1(0)), eventually uk(∂B1(0)) ∩ spt(ξ) = ∅. The stationarity condition (II.14)
then gives

0 =

�
B1(0)

2∑
j=1

Nk∇(uk)2j · ∇[(ξ ◦ uk)(uk)2j + (∂z2j−1ξ ◦ uk)((uk)1(uk)2 + (uk)3(uk)4 − (uk)φ)] dx
2

−
�
B1(0)

2∑
j=1

Nk∇(uk)2j−1 · ∇[(ξ ◦ uk)(uk)2j−1] dx
2 +

�
B1(0)

Nk

4∑
ℓ=1

∇(uk)ℓ · ∇[(ξ ◦ uk)(uk)ℓ] dx2.

Since (uk)2j → 0, the contributions from the terms containing (uk)2, (uk)4, or (uk)φ (not differen-
tiated) go to zero in the limit. Hence, the term on the first line equals

2∑
j=1

�
B1(0)

Nk(ξ ◦ uk)|∇(uk)2j |2 dx2 +
2∑

j,ℓ=1

�
B1(0)

Nk(∂z2j−1ξ ◦ uk)(uk)2ℓ−1∇(uk)2j · ∇(uk)2ℓ dx
2

−
2∑
j=1

�
B1(0)

Nk(∂z2j−1ξ ◦ uk)∇(uk)2j · ∇(uk)φ dx
2 + o(1)

=

2∑
j=1

�
B1(0)

Nk(ξ ◦ uk)|∇(uk)2j |2 dx2

+
2∑

j,ℓ=1

�
B1(0)

Nk(∂z2j−1ξ ◦ uk)(uk)2ℓ∇(uk)2j · ∇(uk)2ℓ−1 dx
2 + o(1)

=

2∑
j=1

�
B1(0)

Nk(ξ ◦ uk)|∇(uk)2j |2 dx2 + o(1),

thanks to the Legendrian condition ∇(uk)φ =
∑2

ℓ=1[(uk)2ℓ−1∇(uk)2ℓ − (uk)2ℓ∇(uk)2ℓ−1], while the
second line above equals

2∑
j=1

�
B1(0)

Nk(ξ ◦ uk)|∇(uk)2j |2 dx2 + o(1).
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This proves (VII.7).
Along a subsequence, the induced varifolds vk,B1(0) converge to a varifold v∞ (whose weight is)

supported on E∞. Moreover, v∞ restricts to a HSLV on H2\∂E∞, where ∂E∞ := L(∂B1(0)). Thanks
to (VII.7), we also have

v∞(P, p) = δP∞(P)⊗ |v∞|(p).
For arbitrary a, b ∈ C∞

c (P∞) supported in the interior of E∞, we take

F (z, φ) := −a(z1, z3)z2 − b(z1, z3)z4,

for which the associated Hamiltonian vector field is

2WF = JH∇HF − 2F∂φ = a(z1, z3)∂z1 + b(z1, z3)∂z3 on P∞.

Hence, v∞ is stationary in the classical isotropic sense, away from ∂E∞. By the constancy theorem,
there exists a constant θ0 > 0 such that

d|v∞| = θ0 dH2 E∞.
In fact, we could also have deduced this from the fact that

|v∞| = lim
k→∞

|vk,B1(0)| = lim
k→∞

(uk)∗(1B1(0)νk) = L∗(1B1(0)ν∞)

and the fact that ν∞ is a constant multiple of L2. Since E∞ has area π|L(e1) ∧ L(e2)|, we obtain

ν∞(B1(0)) = |v∞|(E∞) = θ0 · π|L(e1) ∧ L(e2)|.
Using (VII.1), we see that θ0 is bounded by a constant C(ω). Finally, from Theorem IV.1 we deduce
that θ0 ∈ N (see also Lemma IV.3 and Remark VII.9). ■

Proof of Theorem VII.1. Recall that we already established the following: we have the C0
loc con-

vergence uk → u∞ and the measures dνk = Nk
|∇uk|2

2 dx2 converge to a limit of the form dν∞ =

N∞|∂x1u∞ ∧ ∂x2u∞| dx2 (in any conformal chart). We now fix ω ⊂⊂ Σ and consider the induced
varifolds vk,ω.

We claim that, on the complement of u∞(∂ω), any subsequential limit v∞ coincides with the
varifold induced by u∞ with the multiplicity N∞, so that in particular the latter restricts to a
HSLV on H2 \ u∞(∂ω). Indeed, it is straightforward to deduce that

|v∞| = lim
k→∞

|vk,ω| = lim
k→∞

(uk)∗(νk ω) = (u∞)∗(ν∞ ω)

on H2\u∞(∂ω). To obtain the claim, we just have to show that v∞ is rectifiable (as a varifold in R5),
so that it is uniquely determined by its own weight |v∞|. Let T be theH2-negligible set of points such
that |v∞| has a tangent plane (with respect to Euclidean dilations) at any p ∈ spt |v∞|\(T∪u∞(∂ω)).
Further, let T ′ be the |v∞|-negligible set of points such that any p ∈ spt |v∞| \ (T ′ ∪ u∞(∂ω)) is an
approximate continuity point of the Grassmannian part (in the disintegration of v∞ with respect
to Π : G → H2), both in terms of Euclidean and anisotropic balls, as discussed while proving
Proposition IV.3.

As in the proof of Proposition VI.7 (see also the proof of Lemma VII.6), we see that u∞ carries
negligible sets to H2

K-negligible sets and

H2
K(u∞(S)) = 0,

where S is the set of points which are not in Gfu∞ or which are not Lebesgue points for N∞. By
(VII.1), we conclude that

|v∞|(u∞(S)) = 0,

as well. For |v∞|-a.e. p ∈ spt |v∞| (with p ̸∈ u∞(∂ω)), we then have p ̸∈ u∞(S). Moreover, it is a
classical fact (similar to the proof of Proposition VI.7) that we can write Σ \ S as a disjoint union
of sets E0, E1, E2, . . . , such that volh(E0) = 0 and, for j ≥ 1, u∞ maps (Ej , dh) in a bi-Lipschitz
way to a subset of (Mj , dR5), for a C1 embedded surface Mj ⊂ R5, in such a way that the image of
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∇u∞(x) is precisely TxMj for all x ∈ Ej . Since TpMj = TpMj′ for H2-a.e. p ∈ Mj ∩Mj′ , we can
then find S′ ⊇ S such that L2(S′ \ S) = 0 and

img∇u∞(x) = img∇u∞(x′) whenever x, x′ ̸∈ S′ and u∞(x) = u∞(x′),

as well as
u∞(x) ̸∈ T ∪ T ′ for all x ̸∈ S′.

For q ∈ u∞(ω) \ u∞(S′ ∪ ∂ω), we may then call Pq the image of ∇u∞(x) for any x ∈ u−1
∞ (q). Note

that we still have H2
K(u∞(S′)) = 0, and thus

|v∞|(u∞(S′)) = 0.

For |v∞|-a.e. p ̸∈ u∞(∂ω), which we now fix, we then have p ∈ spt |v∞| \ u∞(S ∪ S′). We assume
p = 0, up to a left translation. We deduce that any anisotropic blow-up w, i.e., any limit of rescalings
(δ1/r)∗v∞ along a sequence r → 0, has the form

w(P, p) = µ(P)⊗ |w|(p).
To reach the claim, it suffices to show that µ = δP0 : indeed, once this is done, by definition of T
and T ′ the Euclidean blow-up of v∞ at 0 is a constant multiple of P0, as desired.

As in the proof of Proposition VI.8, the fiber

ω ∩ u−1
∞ (0) = {x1, . . . , xn}

is finite and is made of points in ω \ S ⊆ Gfu∞ . By construction, the image of ∇u∞ at each of these
points is the same Legendrian plane P0. Arguing as in the proof of (VI.12) (see also the proof of
Lemma VII.6), we see that

ω ∩ u−1
∞ (Br

a(0)) ⊆
n⋃
j=1

BCa(xj),

for small a > 0. Thus, on each ball Br
R(0), the varifold w is a limit of suitable rescalings
n∑
j=1

(δ1/rk)∗vk,B2CRrk
(xj).

As in the first part of the proof of Lemma VII.8, we can also arrange that each rescaled map
δ1/rk ◦ uk ◦ ϕ−1

j (rk·) converges in W 1,2
loc ∩ C0

loc to a linear map with image P0, where each ϕj is a
conformal chart centered at xj . Thus, as we saw along that proof, w does indeed coincide with a
positive multiple of P0 on B

r
R(0). Since R > 0 was arbitrary, this establishes the claim that µ = δP0 .

Finally, by lower semi-continuity of the L2-norm, the convergence of νk to ν∞ and Lemma VII.8
give

|∇u∞|2

2
≤ N∞|∂x1u∞ ∧ ∂x2u∞|

a.e. in any conformal chart. On each conformal disk D ⊂⊂ Σ, recall from the proof of Lemma VII.8
that we have

(VII.8) πN∞ ≤ C(D),

for the constant C(D) (i.e., C(ω) with ω := D) from (VII.1). Hence, arguing exactly as in [23,

pp. 2013–2014], we can construct a C(D)2

π2 -quasiconformal homeomorphism ψ : D → D such that

u∞◦ψ−1 is weakly conformal. Moreover, the chain rule for such maps (see, e.g., [17, Lemma III.6.4])
shows that ψ′ ◦ ψ−1 is conformal for any two of them. Hence, they give an atlas for a new smooth
and conformal structure on the topological surface Σ. We now invoke the classical fact that these
two smooth structures are diffeomorphic to each other to conclude. ■
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Remark VII.9. The last proof shows also the following fact: given a PHSLV (Σ, u,N) and an open
set ω ⊂⊂ Σ such that |vω|(Br

R(p)) ≤ CR2 (for any ball Br
R(p) ⊂ H2), for |vω|-a.e. p ∈ spt |vω|\u(∂ω)

the dilations around p, namely
(δ1/r ◦ ℓp−1)∗vω,

converge as varifolds to a Legendrian plane with constant density (recall that ℓp−1(x) := p−1 ∗ x).
It also shows that, for a PHSLV (Σ, u,N), a set F ⊆ u(Σ) is H2-negligible if and only if it is
H2
K-negligible. This last fact is false for subsets of the support of |v|, for a general HSLV v (see the

example in Remark IV.2 and note that H2
K {z = 0} is a nontrivial Radon measure). □

Remark VII.10. In a closed ambient M5, in case of bubbling, we can extract limit bubbles in the
standard way, by using Proposition V.5 to represent them as PHSLVs defined on Ĉ = S2, provided
the slightly stronger stationarity condition given in Definition V.1 holds. We also get a (possibly
constant) limit PHSLV defined on Σ in the same way. We can rule out energy dissipation in neck
regions as follows: assuming (by restriction) that we have a sequence of PHSLVs

(S1 × (0, Rk), uk, Nk)

satisfying (VII.1) with ω := S1 × (0, Rk), with the usual neck region assumption that Rk → ∞ and

(VII.9) sup
a∈(0,Rk−1)

�
S1×(a,a+1)

Nk|∇uk|2 dx2 → 0,

we claim that in fact

(VII.10)

�
S1×(0,Rk)

Nk|∇uk|2 dx2 → 0.

Indeed, given any two sequences ak, bk ∈ (0, Rk) with ak < bk, thanks to (VII.9) we can select
a′k < b′k such that |a′k − ak| + |b′k − bk| ≤ 1, and such that both uk(S

1 × {a′k}) and uk(S
1 × {b′k})

have vanishing diameter. Thus, the two sets converge to two points qa, qb, respectively. Hence, up
to another subsequence, the limit

v := lim
k→∞

vS1×(ak,bk) = lim
k→∞

vS1×(a′k,b
′
k)

exists and is a HSLV on M \ {qa, qb}. Further, we can also test its stationarity with Hamiltonian
vector fields WF generated by an F ∈ C∞(M) constant near qa and near qb. Hence, by Proposition
V.7, v is a HSLV on M . If (VII.10) does not hold, we can select ak and bk such that the limit v has
a positive, arbitrarily small mass; however, v has density θχ ≥ 2π on its support by Proposition
VI.6 and Corollary III.11, and hence it obeys a universal lower bound |v|(M) ≥ c(M) > 0 on the
mass by Theorem III.6, a contradiction. □

Remark VII.11. When Σ is closed, the previous argument also holds for neck regions called
“collars” appearing due to a degenerating conformal structure (see [14] for a concise treatment
of the Deligne–Mumford compactification of the space of closed Riemann surfaces). If we do not
assume the stronger definition of PHSLV∗, then compactness of PHSLVs plainly fails, as shown in
Theorem A.1. □

We finally complete the proof of Theorem I.6. In its statement, we just have the PHSLV as-
sumption. Since the conformal class is controlled, the theorem follows from a standard bubble-tree
analysis and the following lemma (used inductively along the tree).

Lemma VII.12. Assume that (Σk, uk, Nk) is a sequence of PHSLVs in a closed Sasakian ambient
M5, satisfying (VII.1) (with Σk in place of ω) and such that, up to a conformal equivalence, we can
write

Σk = Σ′
k ∪ (S1 × [0, Rk]) ∪ Σ′′

k, Rk → ∞,
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for two compact Riemann surfaces with boundary ∂Σ′
k = S1 ×{0} and ∂Σ′′

k = S1 ×{Rk}, such that
(VII.9) holds. Then, for any open ωk ⊆ Σ′′

k including the boundary ∂Σ′′
k, any subsequential limit

v := lim
k→∞

vk,ωk

is a HSLV away from the subsequential limit limk→∞ uk(∂ωk) (where ∂ωk denotes the topological
boundary, i.e., does not include ∂Σ′′

k). Moreover, no energy is dissipated in the neck region, meaning
that (VII.10) holds. □

Proof. The proof is similar to the one of Lemma VII.4. For simplicity, we assume ωk = Σ′′
k; the

general case is a trivial modification of the following argument.
We pick p′k ∈ uk(S

1 × {ak}), with ak ∈ [0, Rk] chosen such that uk(S
1 × {ak}) has vanishing

diameter, and let
ω̃k := [S1 × (ak, Rk)] ∪ Σ′′

k.

Given F ∈ C∞(M), considering the associated Hamiltonian vector field WF , we claim that�
G
divP WF dvk,ω̃k

→ 0

as k → ∞, where vk,ω̃k
denotes the varifold induced by (uk,Σk, Nk) and the domain ω̃k ⊂ Σk.

Once this is done, we can conclude that vk,Σ′′
k
converges to a HSLV, up to a subsequence. Also, by

subtraction, as in Remark VII.10 we see that any subsequential limit of vk,S1×(ak,bk) is a HSLV with
density θχ ≥ 2π on its support, and thus (VII.10) must hold.

To check this claim, we consider a vanishing sequence ℓk → 0 such that

diamK(uk(S
1 × {ak})) < ℓk,

as well as

(VII.11)

�
rp′

k
◦uk<2ℓk

Nk|∇uk|2 dx2 ≤ Cℓ2k,

and we let χk(t) := χ(t/ℓk). Since (1 − χk ◦ rp′k)F vanishes near uk(∂ω̃k) = uk(S
1 × {ak}), we

obviously have �
G
divP W(1−χk◦rp′

k
)F dvk,ω̃k

= 0.

Hence, in order to conclude, we just have to prove that�
G
2 divP W(χk◦rp′

k
)F dvk,ω̃k

= Ak +Bk + Ck

goes to zero, where

Ak :=

�
ω̃k

Nk

2∑
j=1

∇(uk)2j · ∇
[(

∇H(χk ◦ rp′k) ·Xj

)
F
]
dx2

−
�
ω̃k

Nk

2∑
j=1

∇(uk)2j−1 · ∇
[(

∇H(χk ◦ rp′k) · Yj
)
F
]
dx2

(we omit composition with uk) and

Bk :=

�
ω̃k

Nk

2∑
j=1

∇(uk)2j · ∇(χk ◦ rp′k)
(
∇HF ·Xj

)
dx2

−
�
ω̃k

Nk

2∑
j=1

∇(uk)2j−1 · ∇(χk ◦ rp′k)
(
∇HF · Yj

)
dx2,
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as well as

Ck :=

�
G
(χk ◦ rp′k) divP WF dvk,ω̃k

.

We first bound Ak. We rewrite it as

A =

�
ω̃k

Nk

2∑
j=1

∇(uk)2j · ∇
[(

∇H(χk ◦ rp′k) ·Xj

)
(F − F (p′k))

]
dx2

−
�
ω̃k

Nk

2∑
j=1

∇(uk)2j−1 · ∇
[(

∇H(χk ◦ rp′k) · Yj
)
(F − F (p′k))

]
dx2,

where we tested stationarity with Wχk◦rp′
k

= −W(1−χk)◦rp′
k

in order to subtract the constant F (p′k)

from F . We have the bound

|∇H(∇H(ζ ◦ rp′k) ·Xj)| ≤
C

ℓ2k
1Br

2ℓk
(p′k)\B

r
ℓk

(p′k)
,

and similarly for Yj . Using the equivalence between the Carnot–Carathéodory distance and the
Korányi distance dK , we also have∥∥F − F (p′k)

∥∥
L∞(Br

2ℓk
(p′k))

≤ Cℓk∥∇HF∥L∞(Br
2ℓk

(p′k))
≤ Cℓk.

Combining the previous bounds gives

|Ak| ≤
C

ℓk

�
{rp′

k
◦uk<2ℓk}

Nk|∇uk|2 dx2.

As for Bk, a similar (simpler) argument implies exactly the same bound, while obviously

|Ck| ≤ C

�
{rp′

k
◦uk<2ℓk}

Nk|∇uk|2 dx2.

Hence, by (VII.11) we have
|Ak|+ |Bk|+ |Ck| ≤ Cℓk → 0,

as desired. ■

Remark VII.13. It is important to point out why the previous proof does not work for collars,
in the context of degenerating conformal class. The fundamental difference is that a collar does
not disconnect Σk. Hence, we would need to cut it at two different places (rather than just one),
corresponding to two points p′k, p

′′
k ∈M . However, the previous proof breaks down when we subtract

a constant from F in the term Ak (since the two constants F (p′k) and F (p
′′
k) might be far from each

other). And indeed the lemma is false for collars, as shown in Theorem A.1. □

VII.3. Tangent cones to PHSLVs. In this part we consider a PHSLV (Σ, u,N) and we fix a
point x0 ∈ Σ. We now show that a notion of parametrized blow-up exists at x0, under suitable
assumptions. The first one is the technical assumption that x0 ∈ Σ̃. Recall that this means that we
have u(x0) ̸∈ u(∂ω) for a suitable ω ⊂⊂ Σ containing x0. This assumption is typically satisfied in
practice, as the next criterion shows (cf. Remark VII.3).

Proposition VII.14. If u is not constant in any neighborhood of x0 and for some ε > 0 we have

(VII.12)

�
Bε(x0)∩{ru(x0)◦u<R}

N |∇u|2 dx2 ≤ CR2

for all radii R > 0, then x0 ∈ Σ̃. □
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Proof. Since the claim is local, we can assume that Σ = D, x0 = 0, and ε = 1. Let Λ ≥ 2 large, to
be found later. Up to a translation, we can assume u(0) = 0. We fix a radius r ∈ (0, 1/Λ) and let

s2 :=

�
Br(0)

|∇u|2 dx2 > 0.

Since by (VII.12), for r < ε, we have�
Br(0)∩{r◦u<s}

|∇u|2 dx2 ≤ Cs2,

we can find ρ ∈ (r,Λr) such that u ∈W 1,2(∂Bρ(0)) and, for a possibly different C, we have�
{r◦u<s}∩∂Bρ(0)

|∇u|2 dH1 ≤ Cs2

ρ log Λ
.

Then Cauchy–Schwarz gives �
{r◦u<s}∩∂Bρ(0)

|∇u| dH1 ≤ Cs√
log Λ

=: ℓ.

By (III.14) we have |∇(r ◦ u)| ≤ |∇u| on {u ̸= 0}. Hence, if {r ◦ u < ℓ} ∩ ∂Bρ(0) ̸= ∅ and 2ℓ ≤ s,
then the previous inequality gives

∂Bρ(0) ⊆ {r ◦ u < 2ℓ}
(since the image of r ◦ u on this circle cannot include the full interval (ℓ, 2ℓ)). By Lemma VII.4
(applied to a constant sequence) and Remark VII.5, this gives

diamK u(Bρ(0)) ≤ Cℓ+ Cℓ−1|vBρ(0)|(B
r
6ℓ(0)) ≤ Cℓ,

where we used (VII.12). In turn, this implies

s2 ≤
�
Bρ(0)

|∇u|2 dx2 ≤ Cℓ2,

again by (VII.12). Both s < 2ℓ and the last inequality are impossible for Λ large enough. Hence, for
this radius ρ ∈ (r,Λr) we have r ◦ u ≥ ℓ on ∂Bρ(0), and in particular u(0) = 0 ̸∈ u(∂Bρ(0)). ■

Proposition VII.15. Let (Σ, u,N) be a PHSLV and let x0 ∈ Σ̃ such that u is not constant in any
neighborhood of x0. Moreover, in a conformal chart centered at x0, assume that for a sequence of
radii rk → 0 we have

(VII.13) lim sup
k→∞

�
BRrk

(0) |∇u|
2 dx2�

Brk
(0) |∇u|2 dx2

≤ C(R)

for any given R > 1, where as usual we use the metric gH2 to measure the Dirichlet energy. Letting

uk(y) := δ1/sk ◦ ℓu(0)−1 ◦ u(rky), s2k :=

�
Brk

(0)
|∇u|2 dx2,

and Nk(y) := N(rky), up to extracting a subsequence, we have uk → u∞ in C0
loc for a suitable map

u∞ : C → H2 and a limit PHSLV (C, û∞, N̂∞), such that

u∞ = û∞ ◦ ψ
for a quasiconformal homeomorphism ψ : C → C with ψ(0) = 0, with the same conclusions as
Theorem VII.1. Moreover, the maps u∞ and û∞ are proper, with

u−1
∞ (0) = û−1

∞ (0) = {0},
and we have

φ ◦ u∞ = φ ◦ û∞ = 0,
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as well as
Ñ∞ ≤ Ñ∞(0) = Ñ(x0),

where Ñ∞ denotes the function built in VI.10 for the limit. □

Remark VII.16. In fact, a posteriori (VII.13) is always satisfied, provided that a bound of the
form (VIII.1) holds at least locally, as a consequence of the regularity theory developed in the second
part of the paper. □.

Remark VII.17. Note that this result holds without changes in the case of a closed ambient.
Indeed, once we magnify it at smaller and smaller scales, Remark VII.5 applies; in particular, we
cannot have bubbling in this blow-up setting. □

Proof. Without loss of generality, we can assume that u(x0) = 0. Since

(δt)∗Xj = tXj , (δt)∗Yj = tYj

and ∇u takes values in horizontal planes, we see that for any R′ > 1 we have�
BR′ (0)

|∇uk|2 dx2 = s−2
k

�
BR′rk

(0)
|∇u|2 dx2 ≤ C(R′)

in the conformal chart. Also, by assumption there exists ω0 ⊂⊂ Σ such that 0 = u(x0) ̸∈ u(∂ω0).
Hence, for any R,R′ > 0 we have

lim sup
k→∞

�
BR′ (0)∩{r◦uk<R}

Nk|∇uk|2 dx2 = lim sup
k→∞

s−2
k

�
BR′rk

(0)∩{r◦u<Rsk}
N |∇u|2 dx2

≤ lim sup
k→∞

s−2
k |vω0 |(Br

Rsk
(0))

≤ CR2,

(VII.14)

by Corollary III.12 and the fact that vω0 restricts to a HSLV on H2 \ u(∂ω0), which is an open set
containing the origin. Recalling that N ∈ L∞

loc, we see that all the assumptions of Theorem VII.1
are satisfied, except for the fact that we apply it with domains increasing to C, which makes no
difference in the proof.

We then obtain a limit map u∞ and a limit PHSLV (C, û∞, N̂∞) up to a subsequence. Crucially,
u∞ and û∞ are not constant thanks to (VII.2). This convergence of measures, together with (VII.14),
also gives

(VII.15)

�
r◦û∞<R

N̂∞|∇û∞|2 dx2 ≤ CR2.

We now show that û∞ is proper. By arguing exactly as in the previous proof, we can find an
increasing sequence of radii τj → ∞ such that

inf
∂Bτj (0)

r ◦ û∞ → ∞ as j → ∞.

If û∞ is not proper, then we can find points xj ∈ Aj := Bτj+1(0) \ Bτj (0) such that û∞(xj) stays
bounded, up to a subsequence. Applying Theorem III.6 to the varifold v∞,Aj (induced by the limit
PHSLV and the domain Aj), as well as Proposition VI.6, we would get

|v∞,Aj |(Br
1(û∞(xj))) ≥ c > 0

for j large enough, since Br
1(û∞(xj)) is disjoint from û∞(∂Aj) eventually. Taking

R := 1 + sup
j→∞

r ◦ û∞(xj),
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we then get �
r◦u∞<R

|∇û∞|2 dx2 ≥
∑
j

|v∞,Aj |(Br
1(û∞(xj))) = ∞,

contradicting (VII.15).

In particular, since û∞ (and thus also u∞) is proper, the function Ñ∞ is defined on all of C. Also,
a proof similar to the one used in Proposition VI.13, relying on Corollary III.11, shows that

Ñ∞(0) ≥ lim sup
k→∞

Ñk(0) = Ñ(x0).

We can assume without loss of generality that 2πÑ(x0) = θχ(vω0 , x0). Moreover, since vω0 is a
HSLV near the origin, Corollary III.12 gives the bound

lim sup
k→∞

s−2
k |vω0 |(Br

Rsk
(0)) ≤ CR2,

so that up to a subsequence the limit HSLV

w := lim
k→∞

(δ1/sk)∗vω0

exists and satisfies

(VII.16) |w|(Br
R(0)) ≤ CR2.

The same derivation of (VII.14) shows that

(VII.17) v∞,ψ(BR′ (0)) ≤ w

for any given R′ > 0. Since θχ(w, 0) = 2πÑ(x0), we conclude that also the reverse inequality

Ñ∞(0) ≤ Ñ(x0) holds. Moreover, the same argument used in the proof of Proposition VI.8, together

with (VII.17) and the equality θχ(w, 0) = 2πÑ∞(0), proves that û−1
∞ (0) is a compact connected

set containing 0. However, taking x on its topological boundary, the argument used in the previous
proof gives arbitrarily small radii r > 0 such that r ◦ û∞ > 0 on ∂Br(x), proving that

û−1
∞ (0) = {0}.

Let us now show that 2πÑ∞(x) ≤ θχ(w, 0) = 2πÑ∞(0) for all x ∈ C. By (VII.17) and the

definition of Ñ∞, it suffices to show that θχ(w, p) ≤ θχ(w, 0) for any given p ∈ H2. Using the
notation (III.10) and calling fq,a the integrand in (III.10), we clearly have

|f0,1 − fq,1| ≤ C|q| ≤ CdK(0, q) for all q ∈ Br
1/2(0).

By a simple scaling and translation-invariance, we obtain

|fq′,a − fq′′,a| ≤ C
dK(q′, q′′)

a3
for all q′, q′′ ∈ H2 and a > 2dK(q′, q′′).

Hence, letting R0 := dK(0, p), by monotonicity and the last bound we have

(VII.18) Θ(w, p, ε) ≤ Θ(w, p, R) ≤ Θ(w, 0, R) + C
R0

R3
|w|(Br

2R+2R0
(0))

for all 0 < ε < R with R > 2R0. Hence, letting ε→ 0 and using (VII.16), we obtain

θχ(w, p) ≤ Θ(w, 0, R) +O(R−1).

Since ∇P arctanσ = 0 on spt(w) \ Π−1(0) (see Remark III.9), monotonicity implies that R 7→
Θ(w, 0, R) is constant and thus equal to θχ(w, 0), and the claim follows once we let R→ ∞.

It remains to show that φ ◦ û∞ = 0. By (VII.17) we have

∇P arctanσ = 0 for all (P, p) ∈ spt(v∞,C) \Π−1(0).

Since û∞(x) ̸= 0 for x ̸= 0, we deduce that

∇(arctanσ ◦ û∞) = 0 a.e. on C \ {0},
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and hence arctanσ ◦ û∞ is constant on C \ {0}. This constant cannot be ±π
2 , since in this case û∞

would take values in {z = 0} and hence we would have ∇û∞ = 0, a contradiction since û∞ is proper
(and thus not constant).

Thus, for x ̸= 0 we have ρ◦ û∞(x) > 0 and σ◦ û∞ is constant. Since û∞ vanishes only at 0, taking
an arbitrary r > 0 and 0 < R < min∂Br(0) ρ ◦ û∞, we see that the induced varifold v∞,Br(0) is a
HSLV on {ρ < R}, and by applying the same proof of Lemma IV.5 we conclude that the constant
is zero. ■

VIII. Regularity: inductive setup and base case

VIII.1. Inductive setup. From now on, up to working in a local chart, we assume that we have a
PHSLV varifold (Ω, u,N), with Ω ⊆ C a connected open set and u nonconstant (i.e., ∇u ̸≡ 0), such
that for some constant C > 0 we have

(VIII.1)

�
u−1(BR(p))

N |∇u|2 dx2 ≤ C0R
2

for all p ∈ H2 and all radii R > 0. Our long-term goal is the following regularity theorem.

Theorem VIII.1. There exist two disjoint, locally finite sets of points SSW ,Sbranch ⊂ Ω such that:

(i) for any x0 ∈ SSW and any sequence rj → 0, the maps

x 7→ δ1/sj ◦ ℓu(x0)−1 ◦ u(x0 + rjx), s2j :=

�
Brj (x0)

|∇u|2 dx2

converge in C0
loc ∩W 1,2

loc to a map C → {φ = 0} whose image is a non-flat Schoen–Wolfson
cone, up to a subsequence;

(ii) on Ω\SSW , the map u is smooth (in fact, a branched immersion with branch points at Sbranch);
(iii) on Ω \ (SSW ∪ Sbranch), the map u is a smooth immersion;
(iv) N is a.e. constant. □

Recall that Ω̃ ⊆ Ω is the (open) set of points x ∈ Ω such that u(x) ̸∈ u(∂ω) for some open set
x ∈ ω ⊂⊂ Ω. We let Ωnc ⊆ Ω be the (relatively closed) distributional support of ∇u; in other words,
Ω \ Ωnc is the largest open subset of Ω where u is locally constant.

Proposition VIII.2. We have Ωnc = Ω̃ = Ω. □

Proof. Proposition VII.14 shows the inclusion Ωnc ⊆ Ω̃. Assume now that Ωnc ̸= Ω and let Ω′ be a
connected component of the open set Ω \Ωnc. Then u is constant on Ω′; up to a translation, we can
assume that u|Ω′ = 0.

Since Ω is connected and the closed set Ωnc ̸= ∅ by assumption, the relative boundary Ω∩ ∂Ω′ is
not empty. Taking an arbitrary x on this boundary, and thus in Ωnc, the proof of Proposition VII.14
gives arbitrarily small radii ρ > 0 such that 0 ̸∈ u(∂Bρ(x)). Thus, the circle ∂Bρ(x) is disjoint from
Ω′. Since Ω′ is connected and x belongs to its closure, this implies that Ω′ ⊆ Bρ(x), and hence
Ω′ = ∅ (as ρ was arbitrarily small and x ̸∈ Ω′), a contradiction. ■

In particular, Ñ : Ω → [1,∞) is defined at every point of Ω. From the definition of Ñ and
(VIII.1), we see that

sup
Ω
Ñ <∞.

We let ν ∈ N∗ be such that

(VIII.2) sup
Ω
Ñ ∈ (ν − 1, ν].

We will prove the regularity theorem by induction on ν. As in [23], we now define admissible points.
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Definition VIII.3. We say that x0 ∈ Ω is strongly admissible if the bound

lim sup
r→0

�
B2r(x0)

|∇u|2 dx2�
Br(x0)

|∇u|2 dx2
<∞

holds true. We say that x0 is admissible if there exist Λ > 0 and a sequence rk → 0 such that�
B

2jrk
(x0)

|∇u|2 dx2 ≤ 22Λj
�
Brk

(x0)
|∇u|2 dx2 for j = 1, . . . , k

holds true. □

It is important that, while Λ depends on x0, it is independent of k. This will allow us to have a
blow-up defined on the full complex plane C. Indeed, thanks to Proposition VIII.2 we have x0 ∈ Ω̃
for all x0 ∈ Ω. Moreover, thanks to the previous proposition, we can always form the blow-up at
an admissible point, along a suitable sequence of radii rk → 0 (as opposed to any sequence for a
strongly admissible one), in the sense that Proposition VII.15 always applies.

Proposition VIII.4. The image through u of the set of non-admissible points has dK-Hausdorff
dimension zero. □

Proof. Let us fix Λ > 0 and let aℓ := log2[
�
B

2−ℓ (x0)
|∇u|2 dx2] + 2Λℓ, which is defined for ℓ large

enough. We assume that eventually
aℓ ≥ Λℓ

and claim that x0 is admissible. If not, then we can find k, ℓ0 ∈ N∗ such that, for any ℓ ≥ ℓ0, there
exists j(ℓ) ∈ {1, . . . , k} such that

aℓ−j > aℓ.

This implies that

bℓ := max{aℓ, aℓ+1, . . . , aℓ+k−1} = max{aℓ, aℓ+1, . . . , aℓ+k−1, aℓ+k} ≥ bℓ+1

forms a decreasing sequence for ℓ ≥ ℓ0. However, this contradicts the fact that bℓ ≥ Λℓ.
If instead, for any Λ > 0, we have aℓ < Λℓ for infinitely many indices ℓ, then for these we have�

B
2−ℓ (x0)

|∇u|2 dx2 < 2−Λℓ.

The image of such points has Hausdorff dimension zero, by Proposition VI.2 (cf. [23, Lemma 5.3]).
■

Remark VIII.5. In [23] we showed that, in the isotropic setting, non-admissible points are remov-
able singularities. The analogous result here seems challenging, due to the lack (even a posteriori) of
an elliptic PDE. Rather, we will show that, in fact, non-admissible points do not exist; the drawback
is that the latter has to be established in tandem with the induction used to show regularity. In
fact, admissibility of all points is also stated in [31, Proposition 4.2], with a different proof. Here
we prefer an argument which looks much more natural, exploiting the principle that the doubling
bounds required in Definition VIII.3 are satisfied in a blow-up. □

The following tools will be used in the sequel. We start from a fact which follows easily from the
work carried out previously by the two authors in the isotropic setting [23].

Proposition VIII.6. For a PHSLV (Ω, u,N) taking values in a Lagrangian plane P ⊂ C2 × {0},
the map u is holomorphic up to a suitable linear isometric identification P ∼= C, and moreover N
is constant a.e. □

Note that a Lagrangian plane P ⊂ C2 × {0} is the same as a Legendrian plane (namely, a two-
dimensional linear subspace P ⊂ R5 such that T0P ⊂ T0H2 is horizontal, i.e., belongs to G; it is
automatic that the same holds at all points of P).
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Proof. Up to a rotation, we can assume that P = span{∂z1 , ∂z3}. Given any open set ω ⊂⊂ Ω and
any two smooth maps

a, b ∈ C∞
c (P \ u(∂ω)),

we can take F (z, φ) := −a(z1, z3)z2 − b(z1, z3)z4, which vanishes near u(∂ω) and has

2 divP WF = ∂z1a+ ∂z3b.

Thus, the fact that (Ω, u,N) is a PHSLV implies that it is also a parametrized stationary varifold,
as defined in [23]. The fact that u is holomorphic then follows from [23, Theorem 3.7] (see also
[23, Theorem 3.3] for the simpler case of a proper map). Working away from the locally finite set
{∇u = 0}, we can consider an open set ω ⊂⊂ Ω such that u|ω is a diffeomorphism with its image.
The induced varifold vω has constant density θ0 ∈ N∗ by the constancy theorem. From the definition
of Ñ , it is straightforward to conclude that Ñ = θ0 on ω. ■

The following is an important observation which essentially follows from the previous two results.

Proposition VIII.7. Assume that the PHSLV (C, û∞, N̂∞) is a blow-up at an admissible point x0,

as in Proposition VII.15, and recall that in this case Ñ∞(x) ≤ Ñ∞(0) for all x ∈ C. If equality holds
at some point x ̸= 0, then û∞ is a holomorphic map with values in a Lagrangian plane P ⊂ C2×{0},
and N̂∞ is constant a.e. □

Proof. We use the same notation of the proof as in Proposition VII.15. Assuming that Ñ∞(x) =

Ñ∞(0) for some x ̸= 0, then letting p := û∞(x) ̸= 0 (as û−1
∞ (0) = {0}) and recalling that

Θ(w, 0, R) = θχ(w, 0) = 2πÑ∞(0) for all R > 0,

as in the derivation of (VII.18) by monotonicity we get

2πÑ∞(x) +

�
G\Π−1(p)

χ(rp/R)|∇P arctanσp|2 dw(P, p)

≤ θχ(w, p) +

�
G\Π−1(p)

χ(rp/R)|∇P arctanσp|2 dw(P, p)

≤ Θ(w, p, R)

≤ Θ(w, 0, R) +O(R−1)

= 2πÑ∞(0) +O(R−1).

Letting R→ ∞, we deduce that

2πÑ∞(x) +

�
G\Π−1(p)

|∇P arctanσp|2 dw(P, p) ≤ 2πÑ∞(0),

and hence, thanks to the assumption that Ñ∞(x) = Ñ∞(0), we deduce that�
û∞ ̸=p

|∇ arctan(σp ◦ û∞)|2 dx2 = 0.

Using the properness of û∞ (and the fact that û∞ cannot take values into {zp = 0} = {z = z(p)}),
we conclude exactly as in the proof of Proposition VII.15 that

φp ◦ û∞ = 0.

In the sequel, we let v := π ◦ û∞. Recalling that φ ◦ û∞ = 0, we then have û∞ = (v, 0). Writing

p = û∞(x) = (ẑ, 0) ̸= 0,

the fact that φp ◦ û∞ = 0 says that

0 = φ ◦ (p−1 ∗ v) = −ẑ1v2 + ẑ2v1 − ẑ3v4 + ẑ4v3,
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or equivalently Jẑ ⊥ v at every point, where J(z) := iz in C2. Hence, assuming up to a rotation
that ẑ = e3, we obtain that û∞ takes values in the three-dimensional space {z4 = φ = 0}.

Recall that, by the Legendrian condition, the fact that φ ◦ û∞ = 0 says also that the vector
Jv(x) = (−v2(x), v1(x), 0, v3(x)) is perpendicular to the image of ∇v(x) at a.e. x ∈ C. In other
words, (−v2, v1) is a.e. perpendicular to the image of ∇(v1, v2). Hence, the map

v̂ :=
(v1, v2)

|(v1, v2)|
,

defined on the open set C \ {v1 = v2 = 0}, is locally constant. Thus, on each connected component
Ω′, calling a(Ω′) ∈ R2 ⊂ R5 the constant value, the map v takes values in the Lagrangian plane
P(Ω′) := span{a(Ω′), e3}.

By Proposition VIII.6, we can find a linear isometry L(Ω′) : P (Ω′) → C such that te3 7→ it for all
t ∈ R and such that L(Ω′)◦v is holomorphic. It is immediate to check that the map h : C → C given
by this composition on each Ω′ and by 0 on {v1 = v2 = 0} is still W 1,2 and satisfies the Cauchy–
Riemann equations. Hence, h is holomorphic. It follows that the set {v1 = v2 = 0} = {h = 0} is
discrete and that, in fact, there is only one connected component Ω′. Thus, û∞ takes values in a
Lagrangian plane and, by Proposition VIII.6, N̂∞ is constant a.e. ■

We conclude with a sort of ε-regularity result, which follows from an analogous statement in the
work of Schoen–Wolfson [31], in which it was one of the fundamental tools for the regularity theory
of minimizers.

Proposition VIII.8. There exists a universal constant ε0 > 0 with the following property. Assume
that L : R2 → P is a linear isometry taking values in a Legendrian plane P and assume that on a
ball Br(x0) ⊂ Ω we have

sup
x∈Br(x0)

dK(ℓu(x0)−1 ◦ u(x), L(x))2 < ε0r
2,

as well as �
Br(x0)

[|∂x1u(x)− Z1(u(x))|2 + |∂x2u(x)− Z2(u(x))|2] dx2 < ε0r
2,

where Z1, Z2 are orthonormal, left-invariant vector fields such that P = span{Z1(0), Z2(0)}. More-

over, assume that N is a.e. constant on Gfu . Then u is a smooth embedding on Br/2(x0). □

Proof. Recall that, in the definition of stationarity for a PHSLV, the value of N matters only on

Gfu . Since stationarity is not affected if we multiply N by a constant, we can then assume without
loss of generality that N = 1 on all of Ω. The result now follows from the proof of [31, Theorem 4.1]
(note carefully that, although the regularity theory in [31] deals with minimizers, the minimality
assumption is not used in the proof of this result). ■

VIII.2. Base case of the induction: ν = 1. We now deal with the base case of the inductive
argument where ν = 1. Recalling (VIII.2) and the fact that Ñ(x) ≥ 1 for all x ∈ Ω̃ = Ω, this means
that

Ñ(x) = 1 for all x ∈ Ω.

Recalling that u is not constant and Ω is connected, we claim that the map u is a smooth immersion.
Obviously, to prove this, it is enough to show that u is a smooth embedding near any point x ∈ Ω.
We begin with a simpler case.

Proposition VIII.9. If x0 ∈ Ω is admissible, then u is a smooth embedding near x0. □

Proof. Up to a left translation in H2, we can assume that u(x0) = 0. We consider a parametrized
blow-up at x0, provided by Proposition VII.15, taken along a suitable sequence rk → 0. Let
(C, û∞, N̂∞) be the resulting PHSLV and recall that

u∞ = û∞ ◦ ψ,
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where ψ : C → C is a quasiconformal homeomorphism and u∞ is a C0
loc limit of rescalings uk of the

map u.
Recalling that Ñ∞ ≥ 1 by Proposition VI.13, we also know from Proposition VII.15 that

1 ≤ Ñ∞ ≤ Ñ∞(0) = Ñ(x0) = 1.

Hence, Ñ∞ = 1 is constant. By Proposition VIII.7, it follows that N̂∞ is a.e. constant and û∞ is a
proper holomorphic map taking values in a Lagrangian plane P ⊂ C2 × {0}. Since N̂∞ = Ñ∞ = 1

a.e. on Gfû∞ by Proposition VI.13, we have N̂∞ = 1 a.e.

Moreover, the map û∞ is injective, since if p := û∞(x′) = û∞(x′′) ̸= 0 for two points x′ ̸= x′′

then, using the same notation as in the proof of Proposition VII.15 (arguing as in the proof of
Proposition VI.8 and noting that the fibers of û∞ are finite sets), we see that

2πÑ∞(x′) + 2πÑ∞(x′′) ≤ θχ(w, p) ≤ θχ(w, 0) = 2πÑ∞(0),

contradicting the fact that Ñ∞(x′) = Ñ∞(x′′) = Ñ∞(0) = 1. Since û∞ is an injective holomorphic
map with û∞(0) = 0, it is linear.

Finally, recall from the proof of Theorem VII.1 that we have the convergence of Radon measures

Nk
|∇uk|2

2
dx2 ⇀ N∞|∂x1u∞ ∧ ∂x2u∞| dx2,

where N∞ = N̂∞ ◦ ψ = 1 a.e. (as quasiconformal homeomorphisms preserve negligibility of sets).

Since Nk = Ñk = 1 a.e. on Gfuk , we conclude that

|∇uk|2

2
dx2 ⇀ |∂x1u∞ ∧ ∂x2u∞| dx2 ≤ |∇u∞|2

2
dx2.

By lower semi-continuity of the Dirichlet energy, this implies that the last inequality is an equality
and that the weak convergence uk ⇀ u∞ in W 1,2

loc is in fact a strong one.
Hence, u∞ is already weakly conformal, in which case ψ can be taken to be the identity (cf. the

proof of Theorem VII.15). Thus, we have

u∞ = û∞.

Since uk → u∞ in C0
loc ∩W

1,2
loc (C,H

2), and since uk is a linear conformal map, we conclude that
(a rescaling of) uk eventually satisfies the assumptions of Proposition VIII.8. Thus, uk is a smooth
embedding near the origin, for k large enough, which implies that u is a smooth embedding near
the point x0. ■

We now turn to the general case. The following argument will be useful also in the inductive step,
revealing that, in fact, all points in Ωnc are strongly admissible.

Proposition VIII.10. Any point x0 ∈ Ω is strongly admissible, and thus the map u is a smooth
immersion on all of Ω. □

Proof. Fix x0 ∈ Ω and assume without loss of generality that x0 = 0 and u(x0) = 0. Let us assume
by contradiction that 0 ∈ Ω is not a strongly admissible point. This means that we can find a
sequence of radii rj → 0 and numbers εj → 0 such that

(VIII.3)

�
Brj/2

(0)
|∇u|2 dx2 = ε4js

2
j , s2j :=

�
Brj (0)

|∇u|2 dx2.

Given any sequence τj ∈ [εjsj , 2εjsj ], let D
′
j = D′

j(τj) be the connected component of {r◦u < τj}
containing 0. We claim that

(VIII.4) Brj/4(0) ⊆ D′
j ⊆ BCrj (0)
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eventually, for a constant C > 1 independent of j. The first inclusion follows directly from Propo-
sition VI.2 and our assumption, which gives

diamK u(Brj/4(0)) ≤ Cε2jsj = o(εjsj),

while the second one is obtained as in the proof of Proposition VII.14: for a large enough Λ ≥ 2, we
can find ρj ∈ (rj ,Λrj) such that

r ◦ u ≥ sj√
log Λ

on ∂Bρj (0),

and the latter is greater than 2εjsj ≥ τj eventually, giving

D′
j ⊆ Bρj (0) ⊆ BΛrj (0).

We now select a smooth domainDj in the following way: for j large enough we haveD′
j(2εjsj) ⊂⊂

Ω and, considering the compact set

Kj := D′
j(2εjsj) ∩ {r ◦ u ≤ εjsj},

we take a smooth domain Kj ⊂ ωj ⊂⊂ D′
j(2εjsj) and set Γ′

j := ∂ωj . Note that Γ′
j a priori consists

of one or more loops; we let Γj denote the outer loop and let Dj ⊇ ωj ⊇ D′
j(εjsj) be the domain

enclosed by Γj , for which clearly we still have the inclusions

Brj/4(0) ⊆ Dj ⊆ BCrj (0).

Moreover, by Lemma VII.4 (applied to a constant sequence) and Remark VII.5, since r◦u < 2εjsj
on Γj , we have r ◦ u ≤ Cεjsj on Dj , which by (VIII.1) gives

(VIII.5)

�
Dj

N |∇u|2 dx2 ≤ C(εjsj)
2.

We now consider a conformal diffeomorphism

ϕj : B1(0) → r−1
j Dj with ϕj(0) = 0.

By the classical Carathéodory theorem, ϕj extends to a homeomorphism ∂B1(0) → Γj . We claim
that ϕj converges (in C

∞
loc) to a limit diffeomorphism ϕ∞ : B1(0) → ϕ∞(B1(0)).

Indeed, a limit in C∞
loc exists since the maps ϕj are holomorphic and equi-bounded. In order to

conclude that ϕ∞ is a diffeomorphism, it is enough to show that it is nonconstant (see Lemma
VIII.13). Assuming by contradiction that ϕ∞ = x0 is constant, we observe that ϕj is bounded in
W 1,2 since it is a sequence of injective conformal maps whose image has bounded area. Hence, they
converge weakly to ϕ∞ in W 1,2. Since the traces converge weakly in H1/2, they converge strongly
in L2 to x0. Thus, the classical representation formula with the Poisson kernel shows that

ϕj → x0 in C∞
loc(B1(0)).

Since ϕj(0) = 0, we must have x0 = 0. However, this contradicts the strong L2 convergence of traces
and the fact that |ϕj | ≥ 1/4 at the boundary ∂B1(0).

In the same way, we now consider another smooth domain 0 ∈ ∆j ⊂⊂ Dj diffeomorphic to the
unit disk, such that

r ◦ u ∈ (εjsj/4, εjsj/2) on ∂∆j .

Crucially, the next lemma gives also the inclusion

ϕ−1
j (r−1

j ∆j) ⊆ Bα(0)

eventually, for some α ∈ (0, 1). Moreover, by monotonicity applied to the induced varifold v∆j , we
see that �

∆j

N |∇u|2 dx2 ≥ |v∆j |(Br
εjsj/4

(0)) ≥ c(εjsj)
2.
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As a consequence of this and (VIII.5), there exist two other constants 0 < c < C such that

c(εjsj)
2 ≤

�
Bα(0)

[N |∇u|2] ◦ (rjϕj)
|rj∇ϕj |2

2
dx2 ≤

�
B1(0)

[N |∇u|2] ◦ (rjϕj)
|rj∇ϕj |2

2
dx2 ≤ C(εjsj)

2.

Setting
uj := δ1/(εjsj) ◦ u ◦ (rjϕj), Nj := N ◦ (rjϕj),

we then have

c ≤
�
Bα(0)

Nj |∇uj |2 dx2 ≤
�
B1(0)

Nj |∇uj |2 dx2 ≤ C.

We can then apply Theorem VII.1 and take a (subsequential) limit PHSLV (B1(0), û∞, N̂∞). Note
carefully that the limit map û∞ is not constant, since (VII.2) implies that�

ψ(Bα(0))
|∇û∞|2 dx2 > 0

for a suitable quasiconformal homeomorphism ψ.
Recalling that Ω̃ = Ω and taking 0 ∈ ω0 ⊂⊂ Ω such that 0 ̸∈ u(∂ω0), as in the proof of Proposition

VII.15 we see that the induced limit varifold v∞ has support included in a blow-up of vω0 . Moreover,
for the (subsequential) Hausdorff limit

T := lim
j→∞

ϕ−1
j (r−1

j ∂∆j) ⊆ Bα,

we have 0 ̸∈ T since u∞|T takes values in [1/4, 1/2], and moreover the connected component of
B1(0) \ T containing 0 is compactly included in B1(0), since the same holds along the sequence

(with ϕ−1
j (r−1

j ∂∆j) in place of T ). This shows that 0 belongs to the domain of Ñ∞.
Hence, arguing exactly as in the proof of Proposition VII.15, we obtain that û∞ is not constant

in any neighborhood of 0. Recalling (VII.2), this means that, for any fixed ρ ∈ (0, 1), there exists a
constant c(ρ) > 0 such that �

Bρ(0)
|∇uj |2 dx2 > c(ρ)

eventually. Since ϕj converges to a limit diffeomorphism ϕ∞, we also have ϕj(Bρ(0)) ⊆ BC0ρ(0)
eventually, for a constant C0 > 0 independent of ρ and j. This immediately gives�

BC0ρrj
(0)

|∇u|2 dx2 ≥ c(ρ)(εjsj)
2.

Taking ρ > 0 so small that C0ρ ≤ 1/2, we reach a contradiction with (VIII.3). ■

Remark VIII.11. At the end of the previous proof, we could have also concluded as in the proof
of Proposition VIII.9: since Ñ∞ = 1 near 0, we have uj → u∞ strongly in W 1,2 here and thus
û∞ = u∞ is an injective holomorphic map near 0, which is then close to a linear conformal map at a
small scale. Hence, Proposition VIII.8 applies to uj , for j large enough, showing that u is a smooth
embedding near 0, a contradiction. However, we preferred an argument which better generalizes to
the situation of the inductive step. □

Lemma VIII.12. In the situation of the previous proof, there exists a constant α ∈ (0, 1) such that

ϕ−1
j (r−1

j ∆j) ⊆ Bα(0)

for j large enough. □

Proof. Let Aj := B1(0) \ ϕ−1
j (r−1

j ∆j), which is diffeomorphic to a closed annulus. It is well known

(see, e.g., [6, Theorem A.1]) that there exist ξj ∈ (0, 1) and a conformal diffeomorphism

fj : B1(0) \Bξj (0) → Aj
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which maps ∂Bξj (0) → ϕ−1
j (r−1

j ∂∆j) and ∂B1(0) → ∂B1(0).
We claim that

β := lim sup
j→∞

ξj < 1.

Indeed, assuming by contradiction that ξj → 1 along a subsequence, by (VIII.5) we have�
B1(0)

|∇ũj |2 dx2 ≤ C(εjsj)
2,

where ũj := u ◦ (rjϕj) ◦ fj , and thus by Cauchy–Schwarz we deduce that�
B1(0)\Bξj

(0)
|∇ũj | dx2 = o(εjsj).

In particular, we can select θj ∈ R/2π such that ũj restricts to a W 1,1 function along the segment

Sj := [ξje
iθj , eiθj ], with �

Sj

|ũ′j | dH1 = o(εjsj).

Recalling (III.14), this implies that the oscillation of r ◦ ũj |Sj is o(εjsj). This contradicts the fact

that the oscillation is at least r ◦ ũj(eiθj ) − r ◦ ũj(ξjeiθj ) > εjsj/2 (recall that r ◦ u > εjsj on ∂Dj

and r ◦ u < εjsj/2 on ∂∆j).
Now, taking any β′ ∈ (β, 1), we claim that

(VIII.6) lim sup
j→∞

max
x∈∂Bβ′ (0)

|fj(x)| < 1.

Indeed, assume that |fj(xj)| → 1 along a subsequence, for some points xj ∈ ∂Bβ′(0). Up to a further
subsequence, we can assume that xj → x∞ and fj → f∞ locally uniformly, for a holomorphic map

f∞ : B1(0) \Bβ(0) → C. Since Brj/4(0) ⊆ ∆j , we have

|ϕj ◦ fj | ≥
1

4
.

If f∞ = 0 then, since ϕj → ϕ∞ uniformly near 0, we would have ϕj◦fj → ϕ∞(0) = 0, a contradiction.
Since fj/|fj | has degree 1 from ∂B1(0) to itself, it also has degree 1 from ∂Bβ′(0) to ∂B1(0), showing
that fj cannot converge to a nonzero constant on ∂Bβ′(0) either.

Thus, f∞ is not constant, and from Lemma VIII.13 we deduce that it is a conformal diffeomor-
phism. Since |fj | ≤ 1, we have |f∞| ≤ 1 as well, and hence |f∞| < 1 by the maximum modulus
principle for nonconstant holomorphic maps. Hence, we have

|fj(xj)| → |f∞(x∞)| < 1,

contradicting the assumption that |fj(xj)| → 1. Finally, using the fact that fj is an orientation-
preserving diffeomorphism, it is easy to deduce from (VIII.6) that

lim sup
j→∞

max
x∈∂Bξj

(0)
|fj(x)| < 1,

as desired. ■

We also used the following well-known fact.

Lemma VIII.13. Assume that we have a sequence of conformal diffeomorphisms fj : Uj → fj(Uj),
with Uj ⊆ C open, converging to

f∞ : U∞ → C
locally uniformly, for an open connected ∅ ≠ U∞ ⊆ C (meaning that, for any compact K ⊂ U , we
have K ⊆ Uj eventually and fj |K → f∞|K uniformly). If f∞ is not constant, then f∞ is a conformal
diffeomorphism. □
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Proof. Since the maps fj are holomorphic, the limit f∞ is also holomorphic. Assuming that f∞ is
not constant, in order to prove the statement it suffices to show that f∞ is injective. Assuming that
f∞(x0) = f∞(x1) for two points x0 ̸= x1, up to subtracting a constant we can assume that

f∞(x0) = f∞(x1) = 0.

Since U∞ is connected and f−1
∞ (0) is discrete, we can enclose {x0, x1} with a smooth Jordan curve

γ, bounding a subset of U∞ and whose image avoids the zeros of f∞. Using complex notation, the
classical Rouché’s theorem then gives the contradiction

1 ≥ 1

2πi

�
γ

f ′j(z)

fj(z)
dz → 1

2πi

�
γ

f ′∞(z)

f∞(z)
dz ≥ 2,

since the two integrals count the number of zeros (with multiplicity) enclosed by γ, for the two
functions fj and f∞, respectively. ■

IX. Inductive step: preparation

IX.1. Classification of tangent cones. Recalling Proposition VIII.2 and (VIII.2), we now assume
that we have

sup
Ω
Ñ ∈ (ν − 1, ν] for some ν ≥ 2

and we assume inductively that the regularity result, i.e., Theorem VIII.1 holds for any PHSLV
such that this supremum is at most ν − 1.

Definition IX.1. From now on, we will use the following notation for the rescalings:

(IX.1) ux0,r(x) := δ1/s(x0,r) ◦ ℓu(x0)−1 ◦ u(x0 + rx), s(x0, r)
2 :=

�
Br(x0)

|∇u|2 dx2.

Similarly, we let Nx0,r(x) := N(x0 + rx). These two functions ux0,r and Nx0,r are defined on the
dilated set Ωx0,r := r−1(Ω − x0). We will often omit the subscript x0, when the reference point x0
is clear from the context. □

In this part we want to show the following structure theorem for tangent cones, which can be
either flat planes or non-flat Schoen–Wolfson cones, described in [31, Section 7].

Proposition IX.2. Assume that x0 ∈ Ω is an admissible point and consider a blow-up PHSLV
(C, û0, N̂0) arising as the limit of (Ωr, ur, Nr) along a sequence r → 0, as in Proposition VII.15.
Then its image is either a Lagrangian plane P ⊂ C2 × {0} or a non-flat Schoen–Wolfson cone. In
the first case, û0 is a polynomial of the form

û0(z) = czk with k ∈ {1, . . . , ν},
after we suitably identify P ∼= C, while in the second case it is smooth on C \ {0} and it is an
immersion here, outside a locally finite subset of C \ {0}. □

Let A0 denote the set of admissible points for û0. We now make the following observation, which
exploits our previous understanding of the flat case.

Lemma IX.3. If x ∈ A0 \ {0}, then Ñ0(x) ∈ N and, for any blow-up at x, the parametrization is
a homogeneous polynomial. □

Proof. Note that (VIII.1) is inherited by the blow-up. Since û0 is not constant, we can apply

Proposition VIII.2 and deduce that we can form blow-ups of (C, û0, N̂0) at all points of A0.
Let x′0 ∈ A0 \{0} and consider a blow-up at x′0. We claim that the limit PHSLV, which we denote

by (C, û0,0, N̂0,0), takes values in a Lagrangian plane P ⊂ C2 × {0}. Once this is done, we conclude
as in the proof of Proposition VIII.7 that this iterated blow-up is a parametrized stationary varifold,
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whose corresponding varifold is supported on P and has constant integer density θ0 (recall that û0,0
is proper), and hence

Ñ0(x
′
0) = Ñ0,0(0) = θ0 ∈ N.

Since proper holomorphic maps C → C are polynomials and û−1
0 (0) = {0}, the statement follows.

To prove the claim, recall that a blow-up takes values into {φ = 0} and the Legendrian condition
then says that Jû0(x) is orthogonal to the image of ∇û0(x). Thus, we see that on any given compact
set of C we have

|ΠJû0(x′0) ◦ ∇(û0)x′0,r| ≤ ε(r)|∇(û0)x′0,r|,
for a vanishing function ε(r) → 0, where ΠJû0(x′0) is the orthogonal projection onto span{Jû0(x′0)}.

We deduce that the limit PHSLV (C, û0,0, N̂0,0) takes values into {φ = 0} ∩ Jû0(x′0)⊥. Up to a
rotation, let us assume that Jû0(x

′
0) = e4, so that û0,0 takes values into {z4 = φ = 0}. Moreover,

the vector Jû0,0(x) is perpendicular to the image of ∇û0,0, as well. We now conclude exactly as in
the proof of Proposition VIII.7. ■

Crucially, thanks to the previous proposition, if Ñ0(x) > ν − 1 at a point x ∈ A0 \ {0} then

Ñ0(x) ≥ ν, and thus Ñ0(x) = ν since ν is the highest possible value. Thus, by Proposition VIII.7,
the statement of Proposition IX.2 holds in this case. Hence, in the sequel we can assume that

(IX.2) Ñ0 ≤ ν − 1 on A0 \ {0}.

Proposition IX.4. The set A0 \ {0} is open and consists of strongly admissible points. □

Proof. By a simple compactness argument, outlined below for completeness (cf. also the proof of
Lemma X.7), we can show the following fact: given λ > 0, there exists η ∈ (0, 1/2) (depending only
on λ, ν, and the constant C0 appearing in (VIII.1)) such that if

(IX.3)

�
Br/2(x)

|∇û0|2 dx2 > λ

�
Br(x)

|∇û0|2 dx2,

as well as the pinching

(IX.4) Θ(v0,ω, û0(x), s(x, r)/η) < 2πÑ0(x) + η

for some open x ∈ ω ⊂⊂ C such that B
r
2s(x,r)/η(û0(x)) ∩ û0(∂ω) = ∅, where we use the notation

(III.10), so that by monotonicity

θχ(v0,ω, û0(x)) ≤ Θ(v0,ω, û0(x), R) < θχ(v0,ω, û0(x)) + η

for all 0 < R < s(x, r)/η, and

(IX.5) |Jû0 − Jû0(x)| < η|Jû0(x)| on Br(x),

then the same bounds hold for a smaller radius r′ ∈ (ηr, r/2), as long as λ > λ0(ν, C0) > 0.
To check this claim we argue by contradiction, rescaling Br(x) to B1(0) and replacing û0 with

(û0)x,r. In the limit η → 0 we end up with a PHSLV (B, ŵ, N̂ŵ), where B = ψ(B1(0)) for a suitable
quasiconformal homeomorphism. This PHSLV is nontrivial thanks to (IX.3) and (VII.2), and the
induced varifold vŵ,B satisfies

vŵ,B ≤ ṽ,

where ṽ is a HSLV which has Θ(ṽ, 0, R) constant in R ∈ (0,∞) and equal to the limit (along the

sequence η → 0) of 2πÑ0(x). Since 2πÑŵ(0) is at least this limit by Corollary III.11, by arguing as
in Proposition VI.8 we see that ŵ−1(0) = {0} (recall also Proposition VIII.2).

Moreover, we have ∇P arctanσ = 0 on spt(ṽ) \Π−1(0) (see Remark III.9). Hence, we have

∇ arctan(σ ◦ ŵ) = 0 on B \ {ŵ = 0}
and, as at the end of the proof of Proposition VII.15, we conclude that φ ◦ ŵ = 0.
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Note that, since Jû0 is perpendicular to the image of ∇û0 at all points, (IX.5) implies that x ̸= 0
and

|ΠJû0(x) ◦ ∇û0| ≤ η|∇û0| on Br(x).

Thus, the image of ∇ŵ is orthogonal to the limit (along the sequence η → 0) of Jû0(x)
|û0(x)| . Hence, ŵ

is a holomorphic map taking values in a plane, by the same argument used in the previous proof.
Since vŵ,B has density at most 2πν at the origin, the degree of ŵ at 0 is at most ν. We obtain

the desired contradiction if ŵ is a strong W 1,2
loc limit, since (IX.3) clearly holds with û0 replaced by

z 7→ zk, for some k ∈ {1, . . . , ν}, as long as λ ≥ λ0(ν).
In general, we can use (VII.2) together with the distortion bounds from Lemma IX.5 (recall from

(VII.8) that ψ is
C2

0
π2 -quasiconformal, where C0 is the constant appearing in (VIII.1)).

Moreover, with the same proof, we can find another constant 0 < η′ < η such that, whenever the
previous conditions are satisfied with η′ in place of η, we have�

Bηr

|∇û0|2 dx2 ≥ η′
�
Br

|∇û0|2 dx2.

By iterating the previous two facts, it follows that any x ∈ C \ {0} satisfying these conditions
(with η′) is strongly admissible. Clearly, any point in A0 \ {0} fits the previous conditions for some
λ > 0 and r > 0. Hence, A0 \ {0} consists of strongly admissible points.

Moreover, the set {Ñ0 < ν − 1} is open (by upper semi-continuity of Ñ0) and here, by inductive
assumption, the regularity theorem holds; in particular, all points in this set are strongly admissible,
i.e.,

{Ñ0 < ν − 1} ⊆ A0.

To conclude, thanks to (IX.2) and the last inclusion, it suffices to show the following: given x0 ∈
A0 ∩ {Ñ0 = ν − 1} \ {0} and a sequence xk → x0, we have xk ∈ A0 for k large enough. If

Ñ0(xk) < ν − 1, this holds by the previous inclusion. We can then assume that

Ñ0(xk) = ν − 1 for all k.

Since x0 is admissible, it satisfies (IX.3) for some fixed λ > 0, for any r > 0 small enough (with η′ in
place of η), as well as (IX.5). Moreover, we can select ω such that (IX.4) holds with η′ in place of η,
again for r > 0 small (cf. the proof of Proposition VIII.2). Since these are open conditions on the set

{Ñ0 = ν − 1}, we conclude that xk satisfies them eventually, and hence is strongly admissible. ■

Lemma IX.5. Given a K-quasiconformal homeomorphism ψ : A → A′ between two open sets
A,A′ ⊆ C, there exists a constant C0(K) such that the following holds: for any disk Br(x) with
BC0(K)r(x) ⊆ A we have

Br′(x
′) ⊆ ψ(Br(x)) ⊆ ψ(B2r(x)) ⊆ BC0(K)r′(x

′),

where x′ := ψ(x) and r′ := miny∈∂Br(x) |ψ(y)− x′|. □

Proof. It is a well-known consequence of Teichmüller’s modulus theorem (see, e.g., the last part of
the proof of [23, Lemma 5.4]) that the statement holds when A = C.

In the more general form written here, it follows from the entire version by a standard compactness
argument, which we now detail. Assume by contradiction that the statement fails for a sequence of
maps ψk, with k = 1, 2, . . . in place of C0(K). For each of these counterexamples, we can assume
without loss of generality that x = ψk(x) = 0 and r = 1, as well as ψk(1) = 1.

We now take the Beltrami coefficients µk : Bk(0) → C such that

∂zψk = µk∂zψk
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and extend them by zero on C \ Bk(0), and we consider the normal solution Fµk : C → C to the
same equation (see, e.g., [15, Theorem 4.24]). By the chain rule (see, e.g., [17, Lemma III.6.4]), we
see that

fk := ψk ◦ (Fµk)−1 : Fµk(Bk(0)) → ψk(Bk(0))

is a conformal diffeomorphism with fk(0) = 0 and fk(1) = 1. By standard compactness properties
(see, e.g., [24, Lemma A.3]), along a subsequence we have the local uniform convergence Fµk → F∞,
and the same for the inverses, for a limit quasiconformal homeomorphism F∞ : C → C (see however
[24, Remark A.5]).

Likewise, for any fixed R > 1, eventually we have (Fµk)−1(BR(0)) ⊂ Bk(0) (as (F
µk)−1 → F−1

∞
locally uniformly), and thus eventually fk is defined on BR(0). Moreover, by Koebe’s distortion

theorem, the functions fk(Rz)
Rf ′k(0)

are a normal family (i.e., pre-compact in the topology of local uniform

convergence on D = B1(0)), with univalued subsequential limits (by Lemma VIII.13); since fk(1) =
1, it follows that

0 < c ≤ |f ′k(0)| ≤ C.

Thus, the functions fk are a normal family on BR(0), for any R > 1, and we can then extract a
subsequential limit f∞ : C → C. Since f∞(0) = 0 and f∞(1) = 1, by Lemma VIII.13 this map is a
conformal diffeomorphism, and hence it is the identity. As a consequence, we have

ψk = fk ◦ Fµk → f∞ ◦ F∞ = F∞.

Since F∞ satisfies the statement, we obtain a contradiction. ■

As a consequence, we can apply the inductive assumption: in particular, we know that on the
open set A0 \ {0} the map û0 is a smooth immersion, away from a locally finite set of points.

Proposition IX.6. The image of û0 is either a Lagrangian plane P ⊂ C2 × {0} or a non-flat
Schoen–Wolfson cone. □

Proof. Indeed, thanks to Proposition VIII.4, we can select τ > 0 such that

τ ̸∈ r ◦ û0(C \ A0).

We can also assume that (r ◦ û0)−1(τ) consists only of points where ∇û0 ̸= 0, since the set

(A0 \ {0}) ∩ {∇û0 = 0}
is at most countable, and that τ is a regular value for r ◦ û0, when this function is restricted to the
open set A0 \ {0}.

Then we can let ω be the connected component of {r ◦ û0 < τ} containing 0. Let Γ denote
its smooth boundary and let η := û0|Γ. Since û0 is a smooth immersion near Γ, by the inverse
function theorem we can find a tubular neighborhood of Γ, diffeomorphic to Γ× (−ε, ε) through a
diffeomorphism ζ, such that

û0 ◦ ζ−1 : Γ× (−ε, ε) → C2 × {0} = C2

is an immersion and the second component of ψ is precisely r ◦ û0 − τ . For s ∈ (−ε, ε), we let ηs be
the slice û0 ◦ ψ−1(·, s).

Thus, ηs takes values in the sphere ∂Bτ+s(0) ⊂ C2 (note that in C2 the Korányi metric is just
the Euclidean one). We consider

w := Π ◦ û0 ◦ ψ−1,

where Π is the nearest point projection onto ∂Bτ (0). Since û0 is Lagrangian and Jû0 is orthogonal
to the image of ∇û0 at all points, the latter image contains the position vector û0. Thus, the image
of ∇(û0 ◦ ψ−1)(θ, s) is the span of η′s(θ) and the position vector û0 ◦ ψ−1(θ, s), and we deduce that
the partial derivative ∂sw(θ, s) is a multiple of η′s. We deduce that ηs is just a reparametrization of
η0 = η, up to decreasing ε.
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As a consequence, the image of û0 ◦ ψ−1 takes the form

(τ − ε, τ + ε) · η(Γ) ⊂ C2.

Since w is an immersion, the PHSLV condition says that it is critical for the area among Lagrangian
maps; hence, η is an immersed curve on the three-dimensional sphere, critical for the length with
respect to the sub-Riemannian constraint that span{η(θ), η′(θ)} is a Lagrangian plane. It follows
that the image of each connected component of Γ is the cross-section of a plane or a non-flat
Schoen–Wolfson cone (cf. [31, Section 7]).

Moreover, Γ must actually be connected: since ω is a smooth connected domain, ω equals a disk
ω̃ with a finite number of inner disks ωj removed. It suffices to show that we cannot have any such

domain ωj . Since û
−1
0 (0) = {0}, we have 0 ̸∈ û0(ωj). In the same spirit of the convex hull property

for minimal surfaces, we can consider the Hamiltonian vector field

W :=Wφχ(ρ2),

where χ ≥ 0, χ′ ≥ 0, χ = 0 on [0, τ2], and χ > 0 on (τ2,∞). Testing it with the PHSLV localized
at ωj , we obtain that

r ◦ û0 ≤ τ on ωj .

This contradicts the fact that τ is a regular value for r ◦ û0, which would imply that r ◦ û0 increases
as we enter ωj ⊆ C \ ω.

We now show that, in fact, there is no other connected component of {r◦ û0 < σ}. Given another
component ω′, we can repeat the same argument: the image of its boundary is an immersed curve,
which has positive H1-measure, and hence we can find a unit vector a ∈ S3 such that, for each x in

Sa :=

{
x ∈ ω′ :

û0
|û0|

(x) = a

}
,

we have x ∈ A0 \{0} and ∇û0(x) ̸= 0 (as well as Sa ̸= ∅). Since a belongs to the image of ∇û0(x) at
such points, it is easy to conclude that ω′∩Sa contains a curve whose composition with û0 converges
to the origin. Since û0 is a proper map, we deduce that ω′ intersects û−1

0 (0) = {0}, a contradiction.
In summary, {r ◦ û0 < σ} is diffeomorphic to a disk. Moreover, if we take two different regular

values τ < τ ′ as above, yielding two curves Γ,Γ′ ⊂ C, the last argument shows that

û0(Γ)

τ
=
û0(Γ

′)

τ ′
.

Thus, the image of û includes a dense subset of [0,∞) · û0(Γ), and hence this set itself (as û0 is
proper and hence has closed image).

In fact, the previous argument also shows that the image S of û0
|û0| (as a map C \ {0} → S3)

satisfies

(IX.6)
û0(Γ)

τ
⊆ S, H1

(
S \ û0(Γ)

τ

)
= 0.

Since S is connected, we must have S = û0(Γ)
τ , as otherwise its composition with the distance

function from û0(Γ)
τ would include an interval (0, ε′), a contradiction to (IX.6). ■

Corollary IX.7. The map û0 is a smooth immersion away from 0. □

Proof. Indeed, the punctured Schoen–Wolfson cone, i.e., the image of

(0,∞)× Γ → C2, (s, t) 7→ s · η(t),
for the immersed curve η found above, is an embedded surface conformally equivalent to C \ {0},
via a map h. We extend h to the origin by h(0) := 0. Since û0 is a conformal immersion on C \ {0},
we have ∂z(h◦ û0) = 0 away from 0 and the composition h◦ û0 is continuous at 0. Hence, f := h◦ û0
is a proper holomorphic function on C, with f−1(0) = {0}.
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Hence, f(z) is a polynomial vanishing only at the origin, giving f(z) = czk for some c ∈ C \ {0}
and k ∈ N∗, proving the claim since û0 = h−1 ◦ f . ■

Corollary IX.8. The multiplicity Ñ0 is a constant integer on C \ {0}. □

Proof. Given x′0 ∈ C \ {0}, the blow-up at x′0 is unique and is given by the linear map ∇û0(x′0),
with constant multiplicity Ñ0(x

′
0), which must then be an integer. Thus, Ñ0 takes integer values on

C \ {0}. If it is not constant, then we can find µ ∈ N such that the open set

Ω := (C \ {0}) ∩ {Ñ0 ≤ µ} = (C \ {0}) ∩ {Ñ0 < µ+ 1}
is not all of C \ {0}. We can then find a disk D ⊂⊂ C \ {0} such that D ⊂ Ω and a boundary point

x ∈ ∂D has Ñ0(x) ≥ µ+ 1. Since the blow-up at x obviously arises as a strong W 1,2
loc limit, (VII.2)

implies that the constant multiplicity Ñ0,0 in the blow-up equals µ. Since Ñ0,0(0) = Ñ0(x
′
0) ≥ µ+1,

we arrive at a contradiction. ■

Note that, calling 2πκ > 0 the length of the cross-section of the cone and

η̃ : R/2πκZ → S3

its parametrization by arclength, we can take h to be the inverse of

(IX.7) h−1(reiθ) := rκη̃(κθ).

By repeating the proof of Proposition VIII.10 verbatim and using the fact that h and h−1 have
polynomial growth at 0, we obtain the following fact.

Proposition IX.9. In fact, any x0 ∈ Ω is strongly admissible. □

IX.2. Local finiteness of SSW in pinched-density regions. In the sequel, we fix an arbitrary
point x0 ∈ Ω. Recall that x0 is strongly admissible, by Proposition IX.9. We claim that all blow-ups
at a given point have isometric images. To show this, we first prove some technical lemmas.

Lemma IX.10. There exists a constant M > 1 such that, if x ̸= x0 is close enough to x0, then

dK(u(x), u(x0))

s(|x− x0|)
∈ [M−1,M ],

where we recall that s(r)2 = s(x0, r)
2 :=

�
Br(x0)

|∇u|2 dx2. □

Proof. If not, then we can find a sequence xk → x0 such that

dK(u(xk), u(x0))

s(|xk − x0|)
→ 0 or

dK(u(xk), u(x0))

s(|xk − x0|)
→ ∞.

Letting rk := |xk − x0| and uk := ux0,rk (as in (IX.1)), writing xk = x0 + rkyk, we have

r ◦ uk(yk) → 0 or r ◦ uk(yk) → ∞.

Since x0 is strongly admissible, by Proposition VII.15 we can extract a blow-up PHSLV (C, û∞, N̂∞)
such that uk → u∞ = û∞ ◦ψ locally uniformly on C, for a suitable quasiconformal homeomorphism
ψ : C → C. Since |yk| = 1, we can also assume that yk → y∞ ∈ S1 up to a subsequence. We then
have

uk(yk) → u∞(y∞) ∈ H2 \ {0},
since u−1

∞ (0) = {0}. In particular, r ◦ uk(yk) converges to a limit in (0,∞), a contradiction. ■

Lemma IX.11. There exists a constant M̂ > 1 such that if

M̂ |x− x0| ≤ |x′ − x0|
then

dK(u(x), u(x0)) ≤
1

2M
dK(u(x′), u(x0)),

provided that x, x′ ̸= x0 are close enough to x0. □
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Proof. If not, then we can find sequences xk, x
′
k → x0 and M̂k → ∞ such that

M̂k|xk − x0| ≤ |x′k − x0|, dK(u(xk), u(x0)) >
1

2M
dK(u(x′k), u(x0)).

Letting rk := |x′k − x0| and defining uk as above, we can extract a subsequential limit u∞. Writing
xk = x0 + rkyk and x′k = x0 + rkzk, we have

yk → 0, |zk| = 1.

Up to a subsequence, we can assume that zk → z∞ ∈ S1, so that

uk(yk) → u∞(0) = 0, uk(zk) → u∞(z∞) ̸= 0

as in the previous proof. In particular, we see that r ◦ uk(yk) < 1
2M r ◦ uk(zk) eventually, a contra-

diction. ■

In the sequel, with abuse of notation, given p ∈ H2 and λ > 0 we will denote
p

λ
:= δ1/λ(p).

Lemma IX.12. Letting C(r) ⊆ ∂Br
1(0) denote the image of the map

BM̂r(x0) \Br/M̂ (x0) → ∂Br
1(0), x 7→ u(x0)

−1 ∗ u(x)
dK(u(x0), u(x))

,

any subsequential limit limrk→0 C(rk) in the Hausdorff topology is the cross-section of a (possibly
flat) Schoen–Wolfson cone. □

Proof. Assume that C(rk) → C∞ along a subsequence, for some compact set C∞ ⊆ S3 ⊂ R4 =
C2 × {0}. We consider the rescaled maps uk, defined as above, and, up to a subsequence, the limit
map u∞. Letting C be the image of v∞

|v∞| |C\{0}, we know that C is the cross-section of a (possibly

flat) Schoen–Wolfson cone.
We claim that C0 = C. Given points yk ∈ BM (x0) \ B1/M (x0) converging to y∞, we know that

uk(yk) → u∞(y∞) ∈ (0,∞) · C, and hence

uk(yk)

r ◦ uk(yk)
→ u∞(y∞)

r ◦ u∞(y∞)
=

u∞(y∞)

|u∞(y∞)|
,

showing the inclusion C0 ⊆ C. To see that this inclusion is an equality, we fix a reference point
y ∈ S1 and we observe that by the first lemma above we have

|u∞(y)| ∈ [M−1,M ],

while from the second lemma we get

|u∞(y)| ≤ 1

2M
|u∞(y)| ≤ 1

2
for |y| ≤ M̂−1

and
|u∞(y)| ≥ 2M |u∞(y)| ≥ 2 for |y| ≥ M̂.

Thus, we have

C = u∞(C) ∩ S3 = u∞(BM̂ (0) \B1/M̂ (0)) ∩ S3 =
u∞
|u∞|

(BM̂ (0) \B1/M̂ (0)).

Using the uniform convergence uk
r◦uk → u∞

|u∞| on this annulus, we deduce that C0 = C. ■

Proposition IX.13. The images of two blow-ups at x0 are isometric to each other. In particular,
if at least one blow-up at x0 takes values in a plane, then the same holds for all blow-ups. □
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Proof. Indeed, the set of subsequential limits limr→0 C(r) (endowed with the Hausdorff topology)
is connected and consists of cross-sections of Schoen–Wolfson cones. By (VIII.1), the parameters
defining such cones take value in a finite set (cf. [31, Section 7]). Hence, the possible isometric
classes that can be attained as limits have positive distance from each other. Since the set of limits
is connected, it must be a subset of just one of them. ■

The previous facts were proved at fixed center, but the same ideas can be used to obtain the
following result, whose proof is just outlined.

Lemma IX.14. Given Λ > 0, there exist k0 ∈ N∗ and ζ, η > 0, depending only on Λ, ν, and the
constant C0 in (VIII.1), such that the following holds. If B2k0r(x) ⊆ Ω and

(i) the image of the map u(x)−1∗u
dK(u(x),u) on BM̂r(x) \ Br/M̂ (x) is ζ-close to a circle in the Hausdorff

metric,
(ii)

�
B

2kr
(x) |∇u|

2 dx2 ≤ Λk
�
Br(x)

|∇u|2 dx2 for k = 1, . . . , k0,

(iii) Θ(vω, u(x), s(x, r)/η) < 2πÑ(x) + η for some open x ∈ ω ⊂⊂ Ω such that B
r
2s(x,r)/η(u(x)) ∩

u(∂ω) = ∅,
then (i) holds also at a smaller radius r′ ∈ (ηr, r/2). □

Proof. We fix k0 and ζ, to be determined later. Arguing by contradiction as in the proof of Propo-
sition IX.4, in the limit η → 0 we get a nontrivial PHSLV (ψ(B2k0 (0)), ŵ, N̂ŵ) with φ ◦ ŵ = 0 and
ŵ−1(0) = {0}, such that the induced varifold satisfies

vŵ,ψ(B
2k0

(0)) ≤ ṽ

for a HLSV ṽ which has Θ(ṽ, 0, R) constant in R (and bounded by a constant C(C0)), equal to

2πÑŵ(0).
Moreover, letting w = ŵ ◦ψ, the image of BM̂r(x)\Br/M̂ (x) through ŵ/(r◦ ŵ) = ŵ/|ŵ| is ζ-close

to a circle. We now claim that the statement holds for a radius r′ ∈ (0, 1/2), provided that k0 is
large enough and ζ is small enough, giving the desired contradiction. If not, then letting k0 → ∞
and employing a diagonal argument we obtain a new PHSLV defined on C with the same properties.

As seen in the proof of Proposition IX.6, the image of its parametrization is a Schoen–Wolfson
cone (with parameters bounded in terms of C0). Since its cross-section is η-close to a circle, by
choosing η small enough we see that it is forced to be a circle (and this limit PHSLV is planar),
obtaining a contradiction. ■

Assume now that we have a sequence of points xk → x0 with xk ∈ SSW and xk ̸= x0.

Proposition IX.15. For k large enough we have Ñ(xk) < Ñ(x0)− η
4π . As a consequence, SSW is

at most countable. □

Proof. If the claim fails, we can assume without loss of generality that Ñ(xk) ≥ Ñ(x0)− η
4π for all

k. Letting rk := |xk − x0|, we can define uk and the limit u∞ = û∞ ◦ ψ as above, where ψ : C → C
is a suitable quasiconformal homeomorphism. Writing xk = x0+ rkyk and assuming yk → y∞ ∈ S1,
since û∞ is a smooth embedding near y∞ by Corollary IX.7, the first assumption of the previous
lemma holds eventually, for any fixed r > 0 small enough.

Also, the second assumption holds for free (see Lemma X.7 below). Finally, we can select ω such
that the third assumption holds for x = x0 and η/2 in place of η, for r > 0 small enough. Since

2πÑ(x0) ≤ 2πÑ(xk) +
η
2 , we obtain the third assumption eventually also for x = xk. By iterating

the lemma (note that the third assumption automatically holds for smaller radii), we obtain that
any blow-up at xk has cross-section ζ-close to a circle, and hence is planar (assuming that ζ is small
enough), contradicting the fact that xk ∈ SSW .
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Hence, setting γ := η
4π , the set SSW∩{Ñ ∈ [ν−γ, ν]} is locally finite. Looking now at {Ñ < ν−γ},

which is open by upper semi-continuity of Ñ , the set SSW ∩ {Ñ ∈ [ν − 2γ, ν − γ)} is again locally
finite here, and so on. This shows that SSW is at most countable. ■

X. Inductive step: conclusion

We now want to mimic the reasoning used in Step 3 of the proof of [23, Theorem 5.7]. Differently
from that situation, we already reduced ourselves to the case where all points are (strongly) admis-
sible. However, more work is needed in the present situation since, even on the regular set, the map
u does not satisfy a PDE as simple as the Laplace equation, due to the lack of a priori bounds on
the Lagrange multiplier β (cf. (X.2)) and on the cardinality of the singular set SSW .

X.1. The case SSW = ∅. If Ñ > ν − 1 at all points of Ω, then N = ν a.e. on Gfu (since N = Ñ

a.e. here and N takes integer values), and thus Ñ = ν on Ω (see the proof of Proposition VI.6).

Since the value of N matters only on Gfu , we can also assume that N = ν. Dividing N by ν, we are
back to the base case of the induction, where Ñ = 1. In the sequel, we can then assume that

{Ñ ≤ ν − 1} ≠ ∅.
Since SSW = ∅, any blow-up at any point x ∈ Ω (recall Proposition IX.9) is given by a homogeneous

polynomial, showing that Ñ(x) ∈ N. Since Ñ is upper semi-continuous, {Ñ ≤ ν − 1} ⊂ Ω is open.
We let Ωreg be the largest open set where the regularity theorem holds. By inductive assumption,

we then have
{Ñ ≤ ν − 1} ⊆ Ωreg.

We assume by contradiction that Ωreg ⊊ Ω and we let Ω′ be a connected component of Ωreg
intersecting {Ñ ≤ ν − 1}. By the regularity theorem, we have N = µ a.e. on Ω′, for some integer
1 ≤ µ < ν.

We can now find a disk D ⊂ Ω′ such that D ⊂ Ω and ∂D contains a point x ̸∈ Ω′, i.e., x ̸∈ Ωreg,

where necessarily Ñ(x) = ν. Recall that, for any blow-up (C, û0, N̂0) at x, the multiplicity Ñ0 equals
ν at the origin, while it is a constant µ′ ≥ µ elsewhere (since û0 is a homogeneous polynomial; the
fact that µ′ ≥ µ is a simple consequence of Corollary III.11).

Let H be the half-plane obtained by blowing up D at x. It is enough to show the following fact.

Proposition X.1. For any blow-up (C, û0, N̂0) at x, the map u0 arises as a strong W 1,2
loc limit on

H. As a consequence, µ′ = µ. □

Corollary X.2. We have Ñ ≤ µ in a punctured neighborhood of x. In particular, here the regularity
theorem holds and we have N = µ a.e. □

Proof. This corollary follows from upper semi-continuity of Ñ : if we had a sequence of points xj → x

with Ñ(xj) ≥ µ+ 1 and xj ̸= x, then letting rj := |xj − x| we would have Ñurj
(yj) ≥ µ+ 1 at the

point yj :=
xj−x
|xj−x| . Thus, we would have Ñ0(y) ≥ µ+1 at a subsequential limit y = limj→∞ yj ∈ S1,

for a certain blow-up û0 at x, a contradiction. ■

Corollary X.3. Any blow-up (C, û0, N̂0) at x arises as a strong W 1,2
loc limit on all of C. As a

consequence, u is a smooth immersion in a punctured neighborhood of x. □

Proof. Let u0 = û0 ◦ ψ denote the limit of the maps ur = ux,r along a subsequence. Recall from
(VII.2) that we have the convergence of measures

µ
|∇ur|2

2
dx2 = Nr

|∇ur|2

2
dx2 ⇀ N0|∂x1u0 ∧ ∂x2u0| dx2 ≤ µ

|∇u0|2

2
dx2,

where N0 := N̂0 ◦ ψ and we used the fact that N̂0 = Ñ0 = µ′ = µ a.e. on C. Hence, the inequality
must be an equality, and this immediately implies the first claim. Thus, we have ψ = id and u0 = û0.
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Moreover, we know that u0 = û0 is a smooth conformal immersion outside the origin, taking
values in C2 ⊂ H2. Taking any a small disk D ⊂⊂ C \ {0}, where u0 is close to an affine function,
we can apply Proposition VIII.8, showing that ur is a smooth embedding on a smaller disk, for r
small enough along our subsequence. Since the subsequence was arbitrary, this proves the second
claim. ■

Since x ̸∈ SSW , smoothness extends across x, as shown at the end of [31, Section 4], contradicting
the fact that x ̸∈ Ωreg. It remains to prove the previous proposition.

Proof of Proposition X.1. It suffices to see that, calling ur = ux,r the usual dilated maps, we have

ur → u0 strongly in W 1,2
loc (H) (along the subsequence defining the blow-up). Indeed, this will force

N0 = µ a.e. on H, where N0 := N̂0 ◦ ψ, or equivalently N̂0 = µ a.e. on ψ(H), and hence µ′ = µ.

The strong W 1,2
loc convergence on H follows from the following more general result. ■

We state and prove separately the following more general result, since it will be useful also to
deal with the general case SSW ̸= ∅.

Proposition X.4. Given C0,Λ > 0, assume that (B1(0), uj , Nj) are PHSLVs in H2 with uj → u∞
in C0

loc and weakly in W 1,2
loc , satisfying (VIII.1), as well as the doubling bound

(X.1)

�
B1(0)

|∇uj |2 dx2 ≤ Λ

�
B1/2(0)

|∇uj |2 dx2.

Moreover, assume that the regularity theorem holds for all j on some fixed disk D ⊆ B1/2(0), with

SSW (uj) ∩ D = ∅. Then we have uj → u∞ strongly in W 1,2
loc (D). □

Proof. Replacing uj with its projection onto C2, which we denote by vj := π ◦ uj , recall (see, e.g.,
[31, pp. 4–5]) that we have the elliptic system

(X.2)

{
∆vj + i∇βj · ∇vj = 0

∆βj = 0,

for a suitable harmonic function βj : D → R (indeed, vj is smooth on D, with the mean curvature
Hj extending smoothly across branch points, as shown in [31, Section 4]). We would like to show
that ∇βj stays bounded locally on D. After this is done, it is immediate to conclude the strong

W 1,2
loc convergence vj → v∞ on D (cf. Step 3 of the proof of [23, Theorem 5.7]), and hence the same

for uj → u∞.
Taking D′ ⊂⊂ D and writing D′ = Bρ(x̂), we define

mj := max
x∈D′

(ρ− |x− x̂|)|∇βj |(x).

Note that the maximum is not attained at the boundary ∂D′, since here ρ−|x− x̂| = 0. To conclude,
it is enough to show that mj stays bounded. Let us assume by contradiction that mj → ∞ up to a
subsequence. For each j, we let xj be one of the points realizing the maximum and we let

λj := |∇βj |(xj)−1.

We have

λj =
ρ− |xj − x̂|

mj
= o(ρ− |xj − x̂|),

and hence we can find another sequence λ̃j = λj/δj such that

δj → 0, λ̃j = o(ρ− |xj − x̂|).
Recalling (IX.1), we consider the rescaled maps

wj := π ◦ (uj)xj ,λ̃j ,
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as well as
γj := βj(xj + λ̃jx).

Clearly, we still have the equation

∆wj + i∇γj · ∇wj = 0

after the rescaling. We observe that |∇γj |(0) = δ−1
j and that, given any x ∈ C, we have xj+λ̃jx ∈ D′

eventually (as λ̃j = o(ρ− |xj − x̂|)), as well as

δj |∇γj |(x) = λj |∇βj |(xj + λ̃jx) ≤ λj
ρ− |xj − x̂|

ρ− |xj + λ̃jx− x̂|
|∇βj |(xj) =

ρ− |xj − x̂|
ρ− |xj + λ̃jx− x̂|

,

and this upper bound converges to 1 uniformly on compact sets, giving

lim sup
j→∞

δj |∇γj | ≤ 1

uniformly on compact sets. Thus, assuming without loss of generality that γj(0) = 0, we can extract
a limit harmonic map

δjγj → γ∞ in C∞
loc(C)

with |∇γ∞|(0) = 1 and |∇γ∞|(x) ≤ 1 everywhere, and hence |∇γ∞| ≡ 1.
By the lemma below, for any fixed integer k ≥ 1, for j large enough we have uniform upper

bounds of the form �
B

2k
(0)

|∇wj |2 dx2 ≤ Ck
�
B1(0)

|∇wj |2 dx2 = Ck.

By Theorem VII.1, we can then extract a limit PHSLV (C, ŵ∞, N̂∞), and a limit map

w∞ = lim
j→∞

wj = ŵ∞ ◦ ψ

in C0
loc and weakly in W 1,2

loc , for a suitable quasiconformal homeomorphism ψ : C → C. Since
δj∆wj + i(δj∇γj) · ∇wj = 0,

we can pass to the limit and obtain
∇γ∞ · ∇w∞ = 0.

Since∇γ∞ ̸= 0 is constant, this means that the differential∇w∞ is never invertible. By the chain rule
(see, e.g., [17, Lemma III.6.4]) and its consequence that quasiconformal homeomorphisms preserve
the class of negligible sets, it follows that the same holds for ŵ∞. Since the latter is weakly conformal,
we deduce that ∇ŵ∞ = 0. However, this contradicts (VII.2) and the fact that�

B1(0)
|∇wj |2 dx2 = 1,

by our definition of a rescaling (recall (IX.1)). ■

Lemma X.7 below, used in the previous proof, shows that the measures |∇ur|2 dx2 satisfy an
Ahlfors-type regularity (in a rather weak sense).

Lemma X.5. Given C0,Λ > 0, assume that (B1(0), u,N) is a PHSLV in H2 satisfying (VIII.1),
as well as

(X.3)

�
B1(0)

|∇u|2 dx2 ≤ Λ

�
B1/2(0)

|∇u|2 dx2.

Then there exist two constants η(C0,Λ) ∈ (0, 1/2) and Λ′(C0) > 0 such that�
Bs′ (0)

|∇u|2 dx2 ≤ Λ′
�
Bs′/2(0)

|∇u|2 dx2

for some radius s′ ∈ (η, 1/2). □
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Proof. This follows by a straightforward compactness argument: we fix Λ′ to be specified later and
assume that the claim does not hold for any η > 0. In the limit η → 0, we obtain a PHSLV
(ψ(B1(0)), û∞, N̂∞), which is nontrivial thanks to (X.3) and (VII.2).

By our contradiction assumption, we have�
ψ(Bs′ (0))

N̂∞|∇û∞|2 dx2 ≥ Λ′
�
ψ(Bs′/2(0))

N̂∞|∇û∞|2 dx2

for all radii s′ ∈ (0, 1/2). In turn, recalling (VII.8) and using Lemma IX.5, this implies that

(X.4)

�
Bs′ (0)

N̂∞|∇û∞|2 dx2 ≥ Λ′
�
Bcs′ (0)

N̂∞|∇û∞|2 dx2

for a suitable c = c(C0) ∈ (0, 1) and all s′ > 0 small enough.
However, by Proposition IX.9, the origin is an admissible point for the limit PHSLV. As in its

proof, any blow-up map ŵ takes values in a (possibly flat) cone, conformally equivalent to the plane
via a map h given by (IX.7), and the composition h ◦ ŵ(z) = czk. By (VIII.1), there are finitely
many possibilities for the map h (up to precomposition with isometries). This gives an upper bound
on k and, in turn, a doubling bound of the form�

Br(0)
|∇ŵ|2 dx2 ≤ C(C0)

�
Br/2(0)

|∇ŵ|2 dx2

for 0 < r < 1. As above, (X.4) implies�
Bs′′ (0)

N̂ŵ|∇ŵ|2 dx2 ≥ Λ′
�
Bc2s′′ (0)

N̂ŵ|∇ŵ|2 dx2

for all s′′ > 0. Since 1 ≤ N̂ŵ ≤ C0
π by (VII.8), this contradicts the previous doubling bound once we

take Λ′ = Λ′(C0) large enough. ■

Lemma X.6. In the situation of the previous statement, we have�
B1(0)

|∇u|2 dx2 ≤ C

�
Bs′ (0)

|∇u|2 dx2,

for a constant C depending only on C0 and Λ. □

Proof. The statement follows from a direct compactness argument. ■

Thanks to the universal Λ′ appearing in the conclusion of Lemma X.5, which depends only on
C0, we can iterate its statement infinitely many times, replacing B1(0) with Bs′(0) and so on, and
the constant Λ′ (and hence also η(C0,Λ

′)) stabilizes immediately after the first iteration. Thus, the
two previous lemmas easily imply the following corollary.

Lemma X.7. Given C0,Λ > 0, assume that (B1(0), u,N) is a PHSLV in H2 satisfying (VIII.1)
and (X.3). Then there exists a constant C(C0,Λ) > 0 such that�

Bs(x)
|∇u|2 dx2 ≤ C

�
Bs/2(x)

|∇u|2 dx2

for all x ∈ B1/2(0) and 0 < s < 1/4. □

Proof. Indeed, another simple compactness argument shows that (X.3) is also satisfied replacing
B1(0) with B1/4(x) (and B1/2(0) with B1/8(x)), for all x ∈ B1/2(0), up to replacing Λ with another

constant Λ̃ depending on C0,Λ. The statement now follows by iterating the two previous facts. ■

Remark X.8. This argument could mislead the reader to think that one can obtain a controlled
decay of Dirichlet energy, and hence admissibility of all points, in a much easier way compared to
the analysis of the previous sections. However, this is not the case since the proof of Lemma X.5
did use the fact that any point is admissible. □
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X.2. General case. As seen in Proposition IX.15, there exists γ > 0 such that, for any ℓ ∈ N∗,
the set of points

SSW ∩ {Ñ ∈ [ν − 1 + (ℓ− 1)γ, ν − 1 + ℓγ)}
is locally finite in Ωℓ := {Ñ < ν − 1 + ℓγ}. In fact, up to shrinking γ, we can also guarantee the
following.

Proposition X.9. If Ñ(x) ≤ ν − 1 + γ then Ñ(x) ≤ ν − 1. □

Proof. Indeed, any blow-up at x parametrizes a Schoen–Wolfson cone with constant multiplicity,
whose density at the origin is θχ(0) = 2πÑ(x). Since there is a finite number of such cones with
θχ(0) ≤ 2πν up to isometries, the claim follows. ■

We prove the regularity theorem on Ωℓ by induction over ℓ = 0, 1, . . . , up to reaching ℓ = ⌊ 1γ ⌋+1

(in which case Ωℓ = Ω).
The base case ℓ = 0 holds, since we are assuming the validity of the regularity theorem on

{Ñ < ν − 1}. We now assume inductively that regularity holds on Ωℓ and show it on Ωℓ+1.

If Ωℓ = ∅ then we have Ñ ≥ ν − 1 + ℓγ on all of Ωℓ+1. Hence, in this case SSW ∩ Ωℓ+1 is locally
finite. Applying the previous case on the relative complement Ωℓ+1 \ SSW , we obtain that u is
smooth here, and an immersion away from a set Sbranch which is locally finite in Ωℓ+1 \ SSW . To
conclude, this set is locally finite also in Ωℓ+1: indeed, the proof of Corollary X.3 applies also here,
and shows that u must be a smooth immersion on a punctured neighborhood of each x ∈ SSW , and
thus points in Sbrach cannot accumulate towards a point in SSW .

In the sequel, by localizing we can assume that Ω = Ωℓ+1 is connected and that

Ωℓ ̸= ∅.
Thus, letting Ωreg be the largest open subset where the regularity theorem holds, we have Ωreg ̸= ∅.
As in the previous case, we let Ω′ be a connected component of it intersecting Ωℓ.

As before, we can find a disk D ⊂ Ω′ with D ⊂ Ω = Ωℓ+1, such that the boundary ∂D contains
a point x ̸∈ Ωreg. In particular, we must have

Ñ(x) ≥ ν − 1 + ℓγ,

while by the regularity theorem we have N = µ a.e. on Ω′ for some integer µ ≤ ν − 1.
We want to show that Proposition X.1 holds also in this case. Namely, letting H denote the

half-plane obtained by blowing up D at x, we want to show that any blow-up (C, û0, N̂0) at x arises

as a strong W 1,2
loc limit on H.

Once this is done, we conclude as in the previous case: using Corollary IX.8, we deduce that
any blow-up at x has density Ñ0 = µ on C \ {0}. By upper semi-continuity, Ñ < ν − 1 + γ on a

punctured neighborhood of x. By Proposition X.9, this implies that Ñ ≤ ν − 1 here. Thus, by the
outer induction, the regularity theorem holds on this punctured neighborhood, and hence we have
N = µ a.e. here (since it intersects D). Again, this implies that any blow-up at x arises as a strong

W 1,2
loc limit on all of C, and we conclude exactly as in the proof of Corollary X.3 (by using Corollary

IX.7) that u is a smooth immersion in a punctured neighborhood of x. If x ∈ SSW , then we get
x ∈ Ωreg, a contradiction. If instead any blow-up at x is planar, then u is smooth across x (see [31,
Section 4]), and hence x ∈ Ωreg, which is again a contradiction.

The rest of the paper is devoted to the proof of Proposition X.1 in this more general case. The
main difficulty is that, when looking at the rescalings ur = ux,r of u around x, we could see more
and more points in SSW . While we have the qualitative information that they are locally finite in
(the rescalings of) D, they could become denser and denser, preventing uniform bounds on the
one-forms dβr defined on their complement.

Let us consider radii rj → 0 and rescalings uj := ux,rj around x, and assume by contradiction

that the claim fails. Then, by Corollary IX.8, the blow-up has Ñ0 = µ′ on C \ {0}, for some integer
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µ′ > µ, and recalling the proof of (VII.2) we have

µ
|∇uj |2

2
dx2 ⇀ µ′|∂x1u0 ∧ ∂x2u0| dx2 on H,

where u0 is the limit of uj = ux,rj and equals û0 ◦ ψ̃ for a suitable quasiconformal homeomorphism

ψ̃ : C → C. Recall from (VII.8) that the latter is K0-quasiconformal with K0 := (C0
π )2, where C0 is

the constant in (VIII.1).

Definition X.10. We let Q denote the class of K0-quasiconformal homeomorphisms ξ : C → C
with ξ(0) = 0 and ξ(1) = 1. Recall from [24, Lemma A.3] or the proof of Lemma IX.5 that Q is
sequentially compact in C0

loc(C). □

Fix any x0 ∈ H and let sk := ψ̃(x0 + 2−k)− ψ̃(x0) ∈ C∗. Defining

ψk(x) := s−1
k [ψ̃(x0 + 2−kx)− ψ̃(x0)], fk(x) := |sk|−1û0(ψ̃(x0) + skx),

we see that |sk|−1u0(x0 + 2−kx) = fk ◦ ψk(x) and that ψk ∈ Q, while fk converges to a (nontrivial)

linear conformal map L̃ up to a subsequence, since û0 is an immersion near ψ̃(x0). By sequential

compactness of Q, the rescaled maps fk ◦ψk converge in C0
loc to a map of the form L̃◦ψ∞, for some

ψ∞ ∈ Q, up to another subsequence.
Further, by the chain rule (see, e.g., [17, Lemma III.6.4]), for the Jacobians we have

(X.5)

�
ω
J(fk ◦ ψk) dx2 =

�
ψk(ω)

J(fk) dx
2 →

�
ψ∞(ω)

J(L̃) dx2 =

�
ω
J(L̃ ◦ ψ∞) dx2

for any smooth domain ω ⊂⊂ C, showing the convergence

J((û0)x0,2−k) dx2 ⇀ c2J(L̃ ◦ ψ∞) dx2

for some c ∈ (0,∞).

Hence, letting L := cL̃, ψ := ψ∞, and applying a diagonal argument, we can find suitable
rescalings wj of uj (around points converging to x) such that wj → L ◦ ψ in C0

loc and weakly in

W 1,2
loc , but with

µ
|∇wj |2

2
dx2 ⇀ µ′|∂x1(L ◦ ψ) ∧ ∂x2(L ◦ ψ)| dx2.

In particular, the maps wj do not converge strongly in W 1,2(ω) to L ◦ ψ, for any ω ⊂⊂ C.

Lemma X.11. There exists a sequence εj → 0 and points xj ∈ B1(0) such that�
Br(xj)

|∇(πP⊥ ◦ wj)|2 dx2 ≤ εj

�
Br(xj)

|∇wj |2 dx2

for any r ∈ (0, 1], where P is the Legendrian plane spanned by L. □

In the statement, we let πP(v) := ⟨v, Z1⟩Z1 + ⟨v, Z2⟩Z2 and πP⊥(v) := v − πP(v) for all v ∈ R5,
where (Z1, Z2) is an orthonormal basis of P.

Proof. Since the varifolds induced by (B2(0), wj , µ) converge to the one induced by (ψ(B2(0)), L, µ
′),

we have �
B2(0)

|∇(πP⊥ ◦ wj)|2 dx2 → 0.

Hence, we can find a sequence εj → 0 such that the previous integral is o(εj). Now we let Sj ⊆ B2
1/2

be the set of points where the claim fails. By the classical Besicovitch covering theorem, we can cover
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Sj with a family Fj of balls such that
∑

B∈Fj
1B ≤ C and

�
B |∇(πP⊥ ◦wj)|2 dx2 > εj

�
B |∇wj |2 dx2.

Hence, we get�
Sj

|∇wj |2 dx2 ≤ ε−1
j

∑
B∈Fj

�
B
|∇(πP⊥ ◦ wj)|2 dx2 ≤ Cε−1

j

�
B2(0)

|∇(πP⊥ ◦ wj)|2 dx2 = o(1).

On the other hand, we also have�
B1(0)

µ|∇wj |2 dx2 →
�
B1(0)

µ′|∂x1(L ◦ ψ) ∧ ∂x2(L ◦ ψ)| dx2 > 0,

showing that Sj is (eventually) a proper subset of B1(0). ■

Since the regularity theorem holds for (B2(0), wj , µ), the set B2(0) ∩ SSW (wj) is locally finite.
Thus, considering the points xj given by the previous lemma, regardless of whether xj ∈ SSW (wj)
or not, we can let

ρj := min{dist(xj ,SSW (wj) \ {xj}), 1} > 0.

The idea now is that at each scale ρj < r ≤ 1 the map wj is almost flat on Br(xj), forcing the
corresponding PHSLV to be close to a planar one with constant (a.e.) integer multiplicity. At the
largest scale this multiplicity is µ′, while at the smaller scale ρj it will be µ, essentially thanks to
an application of Proposition X.4, yielding a contradiction. We now make this idea precise.

In the sequel, we fix two constants ĉ, Ĉ > 0 such that, recalling (IX.1), all rescalings

wj,r := (wj)xj ,r

satisfy
∥r ◦ wj,r∥L∞(B1(0)) ≤ Ĉ, diamπC2 ◦ wj,r(B1/2(0)) ≥ ĉ,

for all r ∈ (0, 1/4]. It is clear that such constants exist, thanks to a trivial compactness argument
using the uniform doubling bounds valid for the Dirichlet energy of these maps, established in
Lemma X.7 (note that, although this result was proved in the previous part, its proof did not use
the assumption SSW = ∅).

Definition X.12. We let M be the set of maps f : B1(0) → C2 of the form f = h ◦ ξ, for a
homeomorphism ξ ∈ Q and a weakly conformal map h : ξ(B1(0)) → C2 such that the bounds

∥∇f∥L2 ≤ 1, ∥f∥L∞ ≤ Ĉ, diam f(B1/2(0)) ≥ ĉ

hold true. □

Definition X.13. We consider the set X consisting of pairs (f, λ) where f ∈ M, while λ is a
(positive) measure on B1(0) with total mass at most ν0π, where

ν0 :=

[
C0

π

]
.

We endow it with the product of the C0
loc topology and the weak-∗ topology on measures and we

let d be a distance on X metrizing this product topology. □

Definition X.14. For k = 1, . . . , ν0, we consider the subset Xk ⊂ X consisting of those pairs (f, λ)
with f ∈ M smooth and taking values in P, and λ given by

dλ = k|∂x1f ∧ ∂x2f | dx2,

whose total mass is at most ν0π since |∂x1f ∧ ∂x2f | ≤
|∇f |2

2 has integral at most π. □

Proposition X.15. Each Xk ⊂ X is a compact subset of X . □
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Proof. Given a sequence (fj = hj ◦ ξj , λj) ∈ Xk, we can assume that ξj converges to a limit ξ∞ ∈ Q
in C0

loc, thanks to the compactness of Q (endowed with the C0
loc topology). Since the maps hj are

harmonic and uniformly bounded, it follows that a subsequence converges to a limit h∞ in C∞
loc on

ξ∞(B1(0)), and it easily follows that f∞ := h∞ ◦ ξ∞ ∈ M. To conclude, we just need to observe
that the Jacobians J(hj ◦ ξj) dx2 ⇀ J(h∞ ◦ ξ∞) dx2 as measures, which is obtained as in (X.5). ■

Since these sets Xk are clearly disjoint (the lower bound involving ĉ prevents the problematic pair
(0, 0), which would otherwise be the common intersection point), we can find ε > 0 such that

d((f, λ), (f ′, λ′)) > 2ε whenever (f, λ) ∈ Xk, (f ′, λ′) ∈ Xk′ , k ̸= k′.

We now define the map

Fj : (0, 1] → X , Fj(r) :=

(
πC2 ◦ wj,r, µ

|∇wj,r|2

2
dx2
)
.

By continuity of this map, the contradiction will arise once we prove the next two propositions,
which show that Fj(r) is ε-close to one of the sets Xk for every r and that, specifically, k = µ for
r = ρj , while by assumption we know that k = µ′ > µ for r = 1 (since wj is close to L ◦ ψ and the

measure µ
|∇wj,r|2

2 dx2 is close to µ′|∂x1(L ◦ ψ) ∧ ∂x2(L ◦ ψ)| dx2).

Proposition X.16. For j large enough, for any 0 < r ≤ 1 there exists k ∈ {1, . . . , ν0} such that

d(Fj(r), (f, λ)) < ε

for some (f, λ) ∈ Xk. □

Proof. This follows immediately from the fact that, by our choice of xj , we have�
B1(0)

|∇(πP⊥ ◦ wj,r)|2 dx2 ≤ εj .

Indeed, given any sequence of radii r′j ∈ (0, 1], the PHSLVs (B1(0), wj,r′j , µ) will necessarily converge

(along a subsequence) to a planar PHSLV of the form (ξ(B1(0)), h, k) for some integer k ≥ 1, with
h : ξ(B1(0)) → P weakly conformal and wj,r′j → h ◦ ξ in C0

loc(B1(0)), as well as

µ
|∇wj,r′j |

2

2
dx2 ⇀ |∂x1(h ◦ ξ) ∧ ∂x2(h ◦ ξ)| dx2

on B1(0). Finally, thanks to (VIII.1), the density of the limit induced varifold is at most C0
π at each

point. By definition of ν0, we deduce that k ≤ ν0. ■

Proposition X.17. For j large enough, for r = ρj the previous index k equals µ. □

Proof. By our choice of ρj , the map wj,ρj (defined on B1(0)) has SSW (wj,ρj ) ⊆ {0}. The conclusion
now follows directly from Lemma X.4. ■

Appendix: a counterexample to the closure of PHSLVs with degenerating
conformal class

In this appendix, inspired by a counterexample by Orriols from [21], we provide an explicit
example where a sequence of parametrized Hamiltonian stationary Legendrian varifolds, given by
embedded tori in S5 with degenerating conformal class, converges to a varifold whose weight is
supported on a one-dimensional Hopf fiber, and is thus non-rectifiable. This should not be too
surprising, since this fiber has nonetheless Hausdorff dimension 2 for the Carnot–Carathéodory
distance associated with the canonical horizontal distribution on S5.

As discussed earlier in the paper, this is a new phenomenon compared to the isotropic setting,
and shows in particular that the control of the conformal class has to be assumed in order to
guarantee compactness of PHSLVs, unless the stronger notion of PHSLV∗ is adopted (see Definition
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V.1, Remark VII.10, and Remark VII.11). It also shows that compactness of integral HSLVs fails,
while we still know that these are closed among rectifiable varifolds by Theorem IV.1.

Theorem A.1. There exist a sequence of flat rectangular tori T1,Rk
:= R2/2π(Z ⊕ RkZ), with

Rk → ∞, and a sequence of conformal Hamiltonian stationary Legendrian embeddings

uk : T1,Rk
→ S5 ⊂ C3,

where S5 is equipped with the canonical contact form, such that the PHSLV

(T1,Rk
, uk, 1)

induces a varifold vk converging to a non-rectifiable Hamiltonian stationary Legendrian varifold.
More precisely, calling H : S5 → CP2 the canonical Hopf fibration and

C := H−1([0, 0, 1]) = {(0, 0, eiα) | α ∈ R/2πZ}
one of the Hopf fibers, the limit of vk(P, p) disintegrates as

vk ⇀ 2π · µ(eiα)⊗H1 C(0, 0, eiα),
where µ(eiα) is the uniform measure on the set P(eiα) of Legendrian planes in T(0,0,eiα)S

5 given by

P(eiα) := {(eiα)∗Pτ,η | (τ, η) ∈ (R/2πZ)2},
with Pτ,η := span{(cos τ)e1+(sin τ)e2, (cos η)e3+(sin η)e4} ⊂ T(0,0,1)S

5 and (eiα)∗Pτ,η ⊂ T(0,0,eiα)S
5

its image through the differential of the map x 7→ eiαx. □

Remark A.2. In fact, for a Legendrian immersion u : Σ → S5, the triple (Σ, u, 1) is a PHSLV if
and only if u is Hamiltonian stationary, which is equivalent to the fact that H ◦u is H-minimal (i.e.,
div(JH) = 0; see [5]). Moreover, the stronger notion of PHSLV∗ assumed in Remark VII.11 is in
fact equivalent to the notion of PHSLV if Σ = S2 (since we can write any smooth ω ⊊ S2 as the
difference of two disjoint unions of disks), but not for higher genus. Thus, this counterexample does
not contradict Remark VII.11. □

Proof. We equip S5 ⊂ R6 with the canonical contact structure α :=
∑3

ℓ=1[x2ℓ−1 dx2ℓ − x2ℓ dx2ℓ−1]

and let H := ker(α). We denote by H : S5 (⊂ C3) → CP2 the tautological Hopf fibration given
by H(w1, w2, w3) := [w1, w2, w3] and recall that ∇H(z) gives an isometry Hz → Tπ(z)CP2. For any

t ∈ (0, 1] we consider the following map v̂t from T1,1 := R2/2π(Z⊕ Z) to CP2:

v̂t(θ, ϕ) := [tei(θ+ϕ), te−i(θ−ϕ), 1].

In the chart

Ξ : CP2 \ {[w1, w2, 0] : [w1, w2] ∈ CP1} → C2, [z1, z2, 1] 7→ (z1, z2),

the Kähler form ω := i∂∂ log(1 + |z|2) of CP2 reads

ω =
i

(1 + |z|2)2
[(1 + |z|2)(dz1 ∧ dz1 + dz2 ∧ dz2)− (z1 dz1 + z2 dz2) ∧ (z1 dz1 + z2 dz2)];

in particular, we see that dα = H∗ω (as this holds at z = 0 in the chart and these objects are
U(3)-invariant). Also, we easily compute that v̂∗t ω = 0 and thus v̂t : T1,1 → CP2 is a Lagrangian
embedding for t ∈ (0, 1]. We now look for a Legendrian lift of v̂t, i.e., for a real-valued function
αt(θ, ϕ) such that

ut(θ, ϕ) :=
eiαt

√
1 + 2t2

(tei(θ+ϕ), te−i(θ−ϕ), 1) ∈ S5

is Legendrian. We have respectively

∂θut = i(∂θαt)ut +
eiαt

√
1 + 2t2

(itei(θ+ϕ),−ite−i(θ−ϕ), 0)
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and

∂ϕut = i(∂ϕαt)ut +
eiαt

√
1 + 2t2

(itei(θ+ϕ), ite−i(θ−ϕ), 0).

The Legendrian condition iut · ∂θut = iut · ∂ϕut = 0 is then equivalent to

∂θαt = 0, ∂ϕαt +
2t2

1 + 2t2
= 0.

Hence,

ut(θ, ϕ) :=
e
−i 2t2

1+2t2
ϕ

√
1 + 2t2

(tei(θ+ϕ), te−i(θ−ϕ), 1)

is a Legendrian lift of v̂t. We have

∂θut =
e
−i 2t2

1+2t2
ϕ

√
1 + 2t2

(itei(θ+ϕ),−ite−i(θ−ϕ), 0)

and

∂ϕut = i

 1

1 + 2t2
ut −

e
−i 2t2

1+2t2
ϕ

√
1 + 2t2

(0, 0, 1)

 ,
which give

|∂θut|2 =
2t2

1 + 2t2
, |∂ϕut|2 =

2t2

(1 + 2t2)2
, ∂θut · ∂ϕut = 0.

Hence, in the new local coordinates (θ, ϕt := ϕ/
√
1 + 2t2), the map ut is conformal and reads

ut =
e
−i 2t2√

1+2t2
ϕt

√
1 + 2t2

(tei(θ+
√
1+2t2ϕt), te−i(θ−

√
1+2t2ϕt), 1).

We easily compute

∂2θ2ut = −ut +
e
−i 2t2√

1+2t2
ϕt

√
1 + 2t2

(0, 0, 1),

as well as

∂ϕtut = i
1√

1 + 2t2
ut − ie

−i 2t2√
1+2t2

ϕt
(0, 0, 1)

and

∂2ϕ2t
ut = − 1

1 + 2t2
ut +

1− 2t2√
1 + 2t2

e
−i 2t2√

1+2t2
ϕt
(0, 0, 1).

Combining these identities, we obtain

∂2θ2ut + ∂2ϕ2t
ut = −ut[|∂θut|2 + |∂ϕtut|2] + i

2− 2t2√
1 + 2t2

∂ϕtut.

The function βt := 2t2−2√
1+2t2

ϕt can be defined only locally, but dβt still gives a globally defined

harmonic one-form. Also, in (θ, ϕt) coordinates we have

∆ut + ut|∇ut|2 + i∇βt · ∇ut = 0.

We deduce that ut is a conformal Hamiltonian stationary immersion. For any k ∈ N \ {0, 1} we
introduce tk ∈ (0, 1] such that

2t2k
1 + 2t2k

=
1

k
, i.e., 1 + 2t2k =

k

k − 1
, i.e., tk :=

1√
2k − 2

.
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Letting uk := utk , γk :=
√

k
k−1 , and writing ϕ in place of ϕtk , we have

uk(θ, ϕ) = γ−1
k e−iγkϕ/k

(
1√

2k − 2
ei(θ+γkϕ),

1√
2k − 2

e−i(θ−γkϕ), 1

)
.

Observe that uk is conformal and defines an Hamiltonian stationary Legendrian embedding of
T1,k/γk = R2/2π(Z⊕ (k/γk)Z), whose area is

1

2

�
T1,k/γk

|∇uk|2 dx2 =
� 2π

0

� 2πk/γk

0

2t2k
1 + 2t2k

dϕ dθ = 4π2γ−1
k ,

which stays bounded. Hence, calling vk the corresponding rectifiable varifold of multiplicity 1, which
is induced by the PHSLV (T1,k/γk , uk, 1), modulo extraction of a subsequence we have

vk ⇀ v∞.

Since the image of uk converges to the Hopf fiber π−1([0, 0, 1]) in the Hausdorff topology, we know
that |v∞| is supported on this fiber. Let Φ : G→ R be a continuous function, where Π : G→ S5 is

the bundle of Legendrian planes. Clearly, uk = e−iγkϕ/k(0, 0, 1) + o(1) and, denoting τ := θ + γkϕ
and η := −θ + γkϕ, we have

∂θuk
|∂θuk|

=
1√
2
e−iγkϕ/k(− sin τ, cos τ, sin η,− cos η, 0, 0) + o(1)

and
∂ϕuk
|∂ϕuk|

=
1√
2
e−iγkϕ/k(− sin τ, cos τ,− sin η, cos η, 0, 0) + o(1).

We consider the two-dimensional family of Legendrian planes in T(0,0,1)S
5 given by

P̃τ,η :=
1

2
(− sin τ, cos τ, sin η,− cos η, 0, 0) ∧ (− sin τ, cos τ,− sin η, cos η, 0, 0).

The image of the Legendrian plane P̃τ,η via the differential of w 7→ eiαw (as a map from C3 to C3)

will be simply denoted by (eiα)∗P̃τ,η. The previous computations show that

⟨vk,Φ⟩ =
1

k

�
T1,k/γk

Φ((e−iγkϕ/k)∗P̃τ,η, e−iγkϕ/k(0, 0, 1)) dθ dϕ+ o(1).

We have γkϕ = 1
2(τ +η) and θ :=

1
2(τ −η). Hence, we get dθ∧dϕ = 1+o(1)

2 dτ ∧dη, and the previous
integral becomes

1

2k

�
R2/Γ

Φ((e−i(τ+η)/(2k))∗P̃τ,η, e−i(τ+η)/(2k)(0, 0, 1)) dτ dη,

where Γ := 2πZ(1,−1)⊕ 2πZ(k, k), or equivalently

1

2k

k∑
ℓ=1

�
Qℓ

Φ((e−2πiℓ/k)∗P̃τ,η, e−2πiℓ/k(0, 0, 1)) dτ dη + o(1),

where Q1 is the square with vertices (0, 0), (2π,−2π), (4π, 0), and (2π, 2π), while Qℓ is its translation
by (ℓ− 1)(2π, 2π) (note that τ+η

2k = 2πℓ
k +O(k−1) on Qℓ). Thus, we have

⟨v∞,Φ⟩ =
1

4π

�
Q1

[� 2π

0
Φ((eiα)∗P̃τ,η, eiα(0, 0, 1)) dα

]
dτ dη

=
1

4π2

�
[0,2π]2

[� 2π

0
2πΦ((eiα)∗P̃τ,η, eiα(0, 0, 1)) dα

]
dτ dη,

as claimed. ■
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