Wronskian for Products of Airy Functions

10.4.58 $W \{ Ai^2~(z),~ Ai~ (z)~ Bi~ (z),~ Bi^2~ (z) \}=2 \pi ^{-3}$

Asymptotic Expansions for $|z|$ Large

$ c_0=1,~c_k=\frac{\Gamma(3k+\frac{1}{2})}{54^k k!\Gamma(k+\frac{1}{2})}=\frac{(2k+1)(2k+3)\dots(6k-1)}{216^k k!},$

$d_0=1,d_k=-\frac{6k+1}{6k-1}c_k \qquad (k=1,2,3,\dots)$

$\zeta=\frac{2}{3}z^{3/2}$

Per tornare indietro clicca qui